
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221214692

WinMagic : Subquery Elimination Using Window Aggregation.

Conference Paper · January 2003

DOI: 10.1145/872757.872840 · Source: DBLP

CITATIONS

23
READS

876

6 authors, including:

Some of the authors of this publication are also working on these related projects:

BigSQL, BigData, Spark View project

Complex and Progressive Query Optimization View project

Calisto Zuzarte

IBM

78 PUBLICATIONS 597 CITATIONS

SEE PROFILE

Hamid Pirahesh

IBM

137 PUBLICATIONS 9,413 CITATIONS

SEE PROFILE

Wenbin Ma

IBM

9 PUBLICATIONS 185 CITATIONS

SEE PROFILE

Qi Cheng

IBM

10 PUBLICATIONS 108 CITATIONS

SEE PROFILE

All content following this page was uploaded by Qi Cheng on 23 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221214692_WinMagic_Subquery_Elimination_Using_Window_Aggregation?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221214692_WinMagic_Subquery_Elimination_Using_Window_Aggregation?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/BigSQL-BigData-Spark?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Complex-and-Progressive-Query-Optimization?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Calisto-Zuzarte?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Calisto-Zuzarte?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/IBM2?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Calisto-Zuzarte?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hamid-Pirahesh?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hamid-Pirahesh?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/IBM2?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hamid-Pirahesh?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wenbin_Ma2?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wenbin_Ma2?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/IBM2?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wenbin_Ma2?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qi-Cheng-27?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qi-Cheng-27?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/IBM2?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qi-Cheng-27?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qi-Cheng-27?enrichId=rgreq-8b31e9515de8d92a3ef63e2972f86621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTIxNDY5MjtBUzo5OTgxOTMxODE1MzIzOUAxNDAwODEwMTg5NjI3&el=1_x_10&_esc=publicationCoverPdf

WinMagic : Subquery Elimination Using Window
Aggregation

Calisto Zuzarte Hamid Pirahesh Wenbin Ma Qi Cheng Linqi Liu Kwai Wong
 IBM IBM IBM IBM IBM IBM
 8200 Warden Ave. 650 Harry Road 8200 Warden Ave. 8200 Warden Ave. 8200 Warden Ave. 8200 Warden Ave.
 Markham,On,Canada San Jose, California Markham,On,Canada Markham,On,Canada Markham,On,Canada Markham,On,Canada
 (905) 413 2530 (408) 927 1754 (905) 413 4192 (905) 413 2804 (905) 413 3898 (905) 413 2818
 calisto@ca.ibm.com pirahesh@almaden.ibm.com wenbinm@ca.ibm.com qicheng@ca.ibm.com liulinqi@ca.ibm.com kwaiwong@ca.ibm.com

ABSTRACT
Database queries often take the form of correlated SQL queries.
Correlation refers to the use of values from the outer query block
to compute the inner subquery. This is a convenient paradigm for
SQL programmers and closely mimics a function invocation
paradigm in a typical computer programming language. Queries
with correlated subqueries are also often created by SQL
generators that translate queries from application domain-specific
languages into SQL. Another significant class of queries that use
this correlated subquery form is that involving temporal databases
using SQL. Performance of these queries is an important
consideration particularly in large databases. Several proposals to
improve the performance of SQL queries containing correlated
subqueries can be found in database literature. One of the main
ideas in many of these proposals is to suitably decorrelate the
subquery internally to avoid a tuple-at-a-time invocation of the
subquery. Magic decorrelation is one method that has been
successfully used. Another proposal is to cache the portion of the
subquery that is invariant with the changing values of the outer
query block. What we propose here is a new technique to handle
some typical correlated queries. We go a step further than to
simply decorrelate the subquery. By making use of extended
window aggregation capabilities, we eliminate redundant access to
common tables referenced in the outer query block and the
subquery. This technique can be exploited even for non-correlated
subqueries. It is possible to get a huge boost in performance for
queries that can exploit this technique, which we call WinMagic.
This technique was implemented in IBM® DB2® Universal
Database™ Version 7 and Version 8. In addition to improving
DB2 customer queries that contain aggregation subqueries, it has
provided significant improvements in a number of TPCH
benchmarks that IBM has published since late in 2001.

1. INTRODUCTION
Large database systems are often associated with complex queries
because applications, competing for processing time, try to retrieve
much of the information in a single query against the database. A

common structure for such queries is one that uses correlated
subqueries and is often associated with aggregation. Correlation
refers to the use of values from the outer query block to compute
the inner subquery. An example of such an SQL statement is the
query asking for the list of employees from a specific location,
their departments and their salaries, and where the salary is greater
than the average salary within a department:

Query 1:

SELECT emp_id, emp_name, dept_name
FROM employee E, department D
WHERE E.dept_num = D.dept_num AND

E.state = ‘CALIFORNIA’ AND
E.salary > (SELECT AVG(salary)

FROM employee E1
WHERE E1.dept_num = D.dept_num);

For each department that is needed in the outer query block, we
need to go back to the employee table and compute the average
salary of employees within that department. Depending on the
extent of the restrictions, other than the subquery predicate, on the
employee table, we access a good portion of the employee table
more than once for both the outer query block and the subquery
block. In a partitioned (shared-nothing) environment, this could
also mean a significant amount of network traffic to evaluate the
subquery remotely with each value from the outer row.

A similar issue is seen in temporal databases, where the tables
contain some aspect of time. Consider the following query:

Query 2:

SELECT * FROM empl E1
WHERE eff_date = (SELECT MAX(eff_date)

FROM empl E2
WHERE E1.emplid = E2.emplid) AND

seq = (SELECT MAX(seq)
FROM empl E3
WHERE E1.emplid = E3.emplid and

E1.eff_date = E3.eff_date)

Here, the employee table contains records of the employees’ past
lives within the organization. In the query above, we are looking
for the most recently updated employee row given that the
effective_date and sequence (seq) column values provide us with
the latest updates.

One can see that this query, as is, would not have an efficient plan.
Later in this paper (query 8) we show how this query can be
rewritten automatically using window aggregate functions in a

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted
without fee provided that copies are not made or
distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-634-X/03/06...$5.00.

much more efficient way avoiding correlation and the joins to
multiple instances of the same table.

2. PRIOR ART
One could comprehend splitting query 1 into two steps. The first
step might compute the average salary of the employees in every
relevant department by joining the relevant employee data from the
employee table and the department. This data could be stored
within the application or in a temporary table containing
information of the department number, name and average salary
(let us call this column avgsal). Next we could go back and access
the employee table and join this to the temporary table to apply the
salary > avgsal predicate to get the result. This could be a disaster
when there is a large amount of data involved. It is not difficult to
realize that there are huge benefits to evaluating the result of the
query in one single statement.

The traditional approach to evaluating such correlated subqueries
is to use a nested iteration approach. Here the subquery is executed
for each row of the outer query block in literal compliance with the
semantics of the SQL statement. Although this approach may be
adequate in some circumstances, it can be expensive, particularly
in a massively parallel system using a shared-nothing architecture.
In such a system, with the data being distributed in different
partitions, this tuple-at-a-time approach can be expensive. The
employee table could be split across several partitions and there
would be a need to consolidate the average salary for a department
at a central coordinator node before applying the subquery.

More recently, particularly beneficial for a massively parallel
system (shared-nothing) environment, methods to decorrelate this
query have been proposed. In [1], certain fixed forms of complex
queries were recognized and rewritten. The work of [2] improved
on the technique where the use of the outer join solved the wrong
result issue when the result of the subquery was empty. In [3],
correlation values are collected in a temporary table and a distinct
collection is projected before joining to the subquery.

In [4],[5],[6] a technique called magic decorrelation is developed
where the relevant distinct values of the outer references are
extracted and, based on these values, all the possible results from
the subquery are materialized. The materialized results are joined
with the outer query block on the outer referenced values.
Although the rewritten query introduces extra views, joins and
duplicate removal, we can expect better performance since the
subquery is evaluated once with a consolidated temporary relation
and avoids a tuple-at-a-time communication overhead.

Decorrelation is not always possible and in some cases, even if
possible, may not always be efficient. In [7], a technique is
proposed where a portion of the query that is invariant with respect
to the changing outer values is cached. The cached result is reused
in subsequent executions and combined with the new results in the
changing portion of the subquery.

The recognition of redundancy and inefficiency when processing
such queries in commercial databases is evident in [8] and [9]. In
these papers an extension of the SQL syntax is proposed that
allows more efficient processing to be done on a group-by-group
basis. This makes the queries simpler and easier to handle in the
optimizer. The SQL standard compliant window aggregate

functions syntax already implemented in DB2 Universal Database
is a more powerful syntax. It also provides a way of expressing the
queries that allows a reduction of redundancy and inefficiency. The
subject of our paper is to transform queries automatically to exploit
this relatively new feature.

In [10], decorrelation techniques adopted in the Microsoft® SQL
Server product are described. The concept that is most relevant is
one called SegmentApply. Whenever a join connects two instances
of an expression and one of the expressions has an extra aggregate
and/or a filter, they try to generate a common sub-expression
(CSE). The extra aggregation is done on one consumer of the CSE
and is joined to all rows in that group from the other consumer of
the CSE. This is done one group at a time. They also consider
pushing appropriate joins through the CSE. This technique is
closest to our proposal, the major difference being that with
window aggregation, we go a step further and do not require a CSE
and the join.

3. WINMAGIC
The target queries that can best exploit the transformation that we
propose are often those that are optimized using decorrelation
techniques and contain aggregation in the subqueries. What we
propose is a new technique where we not only decorrelate the
subquery but also go a step further and eliminate the subquery. By
making use of extended window aggregation capabilities, we
eliminate access to common tables referenced in the outer query
block and the subquery. This provides a huge boost in performance.
Note that this technique is also applicable to noncorrelated
subqueries as we show later. Let us first briefly discuss what
window aggregate functions are.

3.1 Window aggregate functions
While most SQL users are familiar with regular aggregation
functions like MAX, MIN, SUM and AVG, there has been a
relatively recent adoption of another class of aggregation functions.
These are window aggregation functions that work on a specified
group of rows and report the result on the current row being
evaluated. This is both an aggregation function and in some sense a
scalar function since it does not collapse the rows involved when
computing the aggregation.

The general format of such a function that has been adopted by the
SQL standard is:

Function(arg)

OVER (
partition-clause order-clause

window-agg-group

)

.
The OVER clause specifies the three primary attributes of the
function. These three attributes are optional. The order-clause is
like an ORDER BY clause of a statement except that the order is
only relevant in the context of the function. The partition-clause is
similar to the commonly used GROUP BY clause but again is
relevant only in the context of the function. The window-agg-
group clause allows the specification of a window of rows to
which the aggregation is applied.

For the purpose of this paper, only the partition-clause will be
expanded upon. This will help illustrate the intended WinMagic
transformations.

To illustrate the use of the partition-clause, in query 3, for each
employee, we get the department, salary and the sum of all salaries
within the employee’s department. Note that the deptsum column
value is repeated for each row that corresponds to that department.
This repetitive information may or may not be output directly but
could be used to compute other useful information. For example, in
the statement below, the final column gives the percentage of the
employee’s salary in proportion to the total salary of all employees
within the department.

Query 3:

SELECT empnum, dept, salary,

SUM(salary) OVER (partition by dept) AS deptsum
DECIMAL(salary,17,0) * 100 /

SUM(salary) OVER(partition by
dept) AS salratio

FROM employee;

EMPNUM DEPT SALARY DEPTSUM SALRATIO
------- ------ ------- ------- --------

1 1 78000 383000 20.365
2 1 75000 383000 19.582
5 1 75000 383000 19.582
6 1 53000 383000 13.838
7 1 52000 383000 13.577
11 1 50000 383000 13.054
4 2 - 51000 -
9 2 51000 51000 100.000
8 3 79000 209000 37.799
10 3 75000 209000 35.885
12 3 55000 209000 26.315
0 - - 84000 -
3 - 84000 84000 100.000

3.2 WinMagic Transformation
Consider the following query from the TPCH benchmark.

Query 4:

SELECT SUM(l_extendedprice) / 7.0 AS avg_yearly
FROM tpcd.lineitem, tpcd.part
WHERE p_partkey = l_partkey AND

p_brand = 'Brand#23' AND
p_container = 'MED BOX' AND
l_quantity<(SELECT 0.2*avg(l_quantity)

FROM tpcd.lineitem
WHERE l_partkey = p_partkey);

To transform the query we perform these steps:
(1) Check the outer block to ensure (a) that it contains a subquery

with aggregation, and (b) that we have no conditions that
prevent breaking up the main query block such as functions
with side effects.

(2) Check the subquery block to ensure (a) that there are no odd
functions, and (b) that there are no constructs such as ORDER
BY and “fetch first n rows”, and (c) that the subquery is not
used as a common sub-expression.

(3) Check the aggregation function to ensure (a) that it has an
equivalent window aggregation function, and (b) that there is
no DISTINCT within the aggregation function.

(4) Match the subquery to the outer block. A temporary
supplementary query block is constructed with candidate
tables from the outer block including common tables, those
involved in the correlation. This is done to be able to call the
matching routines used for matching materialized views.

Once this is done, we can get rid of this supplementary query
block.

The main steps used to rewrite the query are:

(1) Replace the aggregation by the window aggregation function

as an extra column in the subquery. The partition-clause in the
window aggregation function is used to define the grouping.

(2) Pull down the tables involved in the correlation from the outer
query block to the subquery. No costing is required if the
tables being joined in the outer query block are primary key
or unique column joins. If this is the case, then we do not
multiply the number of rows that go into the aggregation. If
this is not the case, then we need to cost the transformation
and compensate within the aggregation by adding a key.

(3) Finally redirect all the columns required in the outer query to
those flowing through the subquery and get rid of the useless
unreferenced tables in the outer query block.

The resulting query can be written as follows:
Query 5:

WITH WinMagic AS
(SELECT l_extendedprice, l_quantity,
avg(l_quantity)over(partition by p_partkey)

AS avg_l_quantity
FROM tpcd.lineitem, tpcd.part
WHERE p_partkey = l_partkey and

p_brand = 'Brand#23' and
p_container = 'MED BOX')

SELECT SUM(l_extendedprice) / 7.0 as avg_yearly
FROM WinMagic
WHERE l_quantity < 0.2 * avg_l_quantity;

The original query accessed the LINEITEM table twice, once in
the main query block and once in the subquery block. The major
benefit of our transformation is the elimination of an access of the
LINEITEM table without the need for a CSE and a join. In
addition the PART table is joined to the LINEITEM table before
the aggregation. This allows us to compute the aggregation for the
partitions that are relevant to the query, which is what effectively
what sideways-information-passing (SIP) does in magic
decorrelation [5],[6].

3.3 General considerations for WinMagic
We have seen the simple case based on the following structure
where the dotted line shows correlation:

 Figure 1 : Representation of Query 4

More complex scenarios can be handled within DB2. A
generalized representation is shown below:

MainSelect

PART GB
SQSel

LINEITEM

LINEITEM

 Figure 2 : Query with correlated subquery

where
• T1, T2, T3, T4 could be a set of one or more tables or views.
• T1 in the subquery is a lossless join.
• T2 appears in the main query but is not joined to T4.

Because of the power of the materialized view matching in DB2
Universal Database [11], it was easy to cover a very general query.
The resulting transformation of the general query is shown in
figure 3:

 Figure 3 : Internal query after WinMagic

The portion of the subquery referencing the overlapping tables
must typically subsume the corresponding portion of the outer
query block in order to compute the aggregation correctly and
eliminate one invocation of the common tables. However, as an
extension to this technique, if there are more restrictive predicates
in the subquery, the window aggregate function could be suitably
modified to account for the additional restriction as part of the
computation of the aggregate. For example:

Query 6:

SELECT cntrycode, COUNT(*) AS numcust,

SUM(c_acctbal) AS totacctbal
FROM (SELECT SUBSTR(c_phone, 1, 2) AS cntrycode,

c_acctbal
FROM tpcd.customer
WHERE SUBSTR(c_phone, 1, 2) IN ('13','31','23')
AND c_acctbal >
(SELECT avg(c_acctbal)
FROM tpcd.customer
WHERE c_acctbal > 0.00 AND
SUBSTR(c_phone, 1, 2) IN ('13','31','23'))

) as cstsale
GROUP BY cntrycode ORDER BY cntrycode;

The extra subquery predicate must not be applied to the rows of the
outer query block (although in this specific case it would be OK).
However, the window aggregation function should account for the
predicate through judicious use of the CASE expression to ensure
that the aggregation is unaffected by rows that do not satisfy the
extra predicate.

Query 7:

SELECT cntrycode, COUNT(*) AS numcust,
SUM(c_acctbal) AS totacctbal

FROM (SELECT SUBSTR(c_phone, 1, 2)AS cntrycode,
c_acctbal,
AVG(CASE WHEN (c_acctbal > 0) THEN c_acctbal

ELSE NULL END) OVER() AS AVGACCTBAL,
FROM tpcd.customer
WHERE SUBSTR(c_phone,1,2) IN ('13', '31', '23')
) AS cstsale

WHERE c_acctbal > AVGACCTBAL
GROUP BY cntrycode ORDER BY cntrycode;

WinMagic is not only applicable to correlated subqueries.
Evaluate-at-open subqueries could also be handled. WinMagic can
also be extended to cover cases that do not contain aggregation in
the subquery. As in query 2 provided earlier in the paper, we can
show that the query can be simplified by eliminating the joins as
follows:

Query 8 (WinMagic for temporal database query)

SELECT … FROM
(SELECT E1.*,
max(eff_date) over (partition by emplid) as ME
max(seq) over (partition by emplid,eff_date) as MS
FROM empl E1) as E

WHERE eff_date = ME AND seq = MS;

4. PERFORMANCE RESULTS
WinMagic was used with significant impact in some of the recent
TPCH benchmarks. In a 100GB scale TPCH database, the test
environment included IBM p660s running the AIX® operating
system using a 5-node partitioned database. The results are shown
below with the second run using a 5-node partitioned database with
intra-partition parallelism set to degree 4.

The result of query 4 (TPCH Q17) showed a significant
improvement with a performance gain of about 50%. Much of this
is attributed to eliminating the access to the LINEITEM table.

0

100

200

300

400

500

Query 4 Query 4 (SMP)

Magic Decorrelation

WinMagic

Figure 4: About 50% improvement with WinMagic for query 4 (100 GB TPCH Q17)

The other query where WinMagic was used was TPCH Q2:

Query 9:

SELECT s_acctbal, s_name, n_name, p_partkey, p_mfgr,
s_address, s_phone, s_comment

FROM tpcd.part, tpcd.supplier, tpcd.partsupp,
tpcd.nation, tpcd.region

WHERE p_partkey = ps_partkey AND
s_suppkey = ps_suppkey AND
p_size = 15 AND p_type like '%BRASS' AND
s_nationkey = n_nationkey AND
n_regionkey = r_regionkey AND
r_name = 'EUROPE' AND

T3, T4 columns from WinMagic
WHERE … AND T3col < winagg

T2

T3

WinMagic

T4 T1

MainSelect

T2 T3 T4 GB

SQSel

T3 T1

ps_supplycost =
(SELECT MIN(ps_supplycost)
FROM tpcd.partsupp, tpcd.supplier, tpcd.nation,

tpcd.region
WHERE p_partkey = ps_partkey AND

s_suppkey = ps_suppkey AND
s_nationkey = n_nationkey AND
n_regionkey = r_regionkey AND
r_name = 'EUROPE')

ORDER BY s_acctbal desc, n_name, s_name, p_partkey
FETCH FIRST 100 ROWS ONLY;

0

10

20

30

40

Query 9 Query 9 (SMP)

Magic Decorrelation

WinMagic

Figure 5 : !0%-15% impprovement with WinMagic for query 9 (100Gb TPCH Q2)

Even though multiple table accesses and joins were eliminated
using WinMagic in Query 9, the performance gain was not as
significant since the tables involved were small and the pages for
the redundant table access was most likely in the bufferpool for the
magic decorrelation version.

On a larger-scale 10TB TPCH database, the performance gains for
both queries were 50% to 60% compared to the magic
decorrelation technique.

0
200
400
600
800

1000
1200
1400

Query 4(TPCH Q17)

Magic Decorrelation

WinMagic

Figure 6: 60%- impprovement with WinMagic for query 4 (10TB TPCH Q17)

0

50

100

150

200

Query 9 TPCH Q2)

Magic Decorrelation

WinMagic

Figure 7: 50%- impprovement with WinMagic for query 9 (10TB TPCH Q2)

5. CONCLUSION
Using the power of the existing materialized view matching
algorithms [11] and the new window aggregation functions, we
could easily implement this powerful transformation with minimal
effort. Many customers have such common queries written in the
traditional form. Given that most customers do not have the luxury
of rewriting their applications to exploit the new window

aggregation syntax, this internal rewrite can be expected to have a
huge impact on improving the performance of such queries.

6. REFERENCES
[1] W. Kim. “On Optimizing an SQL-Like Nested Query”, ACM
Transactions on Database Systems, 7 Sep 1982.

[2] U. Dayal: “Of Nests and Trees: A Unified Approach to
Processing Queries that Contain Nested Subqueries, Aggregates
and Quantifiers”. Proceedings on the Eighteenth International
Conference on Very Large Databases (VLDB) pp. 197-208, 1987

[3] R. Ganski and H. Wong “Optimization of Nested SQL Queries
Revisited”, Proceedings of ACM SIGMOD, San Francisco,
California, U.S.A., 1987 pp 22-33

[4] I. S. Mumick, H. Pirahesh, and R. Ramakrishnan. The Magic of
Duplicates and Aggregates. In Proceedings. 16th International
Conference on Very Large Data Bases, Brisbane, August 1990.

[5] C. Leung, H. Pirahesh, P. Seshadri and J. Hellerstein. "Query
Rewrite Optimization Rules in IBM DB2 Universal Database". In
Readings in Database Systems, Third Edition, M.Stonebraker and
J.Hellerstein (eds.), Morgan Kaufmann, pp. 153-168, 1998.

[6] P. Seshadri, H. Pirahsh and T.Y.C. Leung. "Complex Query
Decorrelation". Proceedings of the International Conference on
Data Engineering (ICDE), Louisiana, USA, February 1996.

[7] Jun Rao and Kenneth A. Ross. "A New Strategy for Correlated
Queries". Proceedings of the ACM SIGMOD Conference, pages
37-48, ACM Press, New York, 1998.

[8] D. Chatziantoniou and K. A. Ross. Querying multiple features
of groups in relational databases. In Proceedings of the 22rd
International Conference on Very Large Databases, pages 295-306,
1996.

[9] D. Chatziantoniou and K. A. Ross. Groupwise processing of
relational queries. In Proceedings of the 23rd International
Conference on Very Large Databases, Athens, pp 476–485, 1997.

[10] C.A. GalindoLegaria and M. Joshi. Orthogonal Optimization
of Subqueries and Aggregation. In Proceedings of ACM SIGMOD,
International Conference on Management of Data, Santa Barbara,
California, U.S.A 2001

[11] M.Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh and M.
Urata. Answering complex SQL queries using automatic summary
tables. In SIGMOD 2000, pages 105-116

IBM, AIX, DB2, and DB2 Universal Database are trademarks or
registered trademarks of International Business Machines Corporation
in the United States, other countries, or both.

Microsoft is a registered trademark of Microsoft Corporation in the
United States, other countries, or both.

Other company, product, or service names may be trademarks or
service marks of others.

View publication statsView publication stats

https://www.researchgate.net/publication/221214692

	page1: 652
	page2: 653
	page3: 654
	page4: 655
	page5: 656

