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Abstract 

We provide several new sampling-based estima- 
tors of the number of distinct values of an at- 
tribute in a relation. We compare these new esti- 
mators to estimators from the database and sta- 
tistical literature empirically, using a large num- 
ber of attribute-value distributions drawn from a 
variety of real-world databases. This appears to 
be the first extensive comparison of distinct-value 
estimators in either the database or statistical lit- 
erature, and is certainly the first to use highly- 
skewed data of the sort frequently encountered in 
database applications. Our experiments indicate 
that a new “hybrid” estimator yields the highest 
precision on average for a given sampling frac- 
tion. This estimator explicitly takes into account 
the degree of skew in the data and combines a 
new “smoothed jackknife” estimator with an es- 
timator due to Shlosser. We investigate how the 
hybrid estimator behaves as we scale up the size 
of the database. 

1 Introduction 
Virtually all query optimization methods in relational and 
object-relational database systems require a means of as- 
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sessing the number of distinct values of an attribute in a 
relation. Accurate assessment of the number of distinct 
values can be crucial for selecting a good query plan. For 
example, the relative error in the join-selectivity formu- 
las used in the classic System R algorithms (Selinger, et 
al. [SAC+79]) is directly related to the relative error in the 
constituent distinct-value estimates, and it is well known 
that poor join-selectivity estimates can increase the exe- 
cution time of a join query by orders of magnitude. As 
another example, consider a query of the form “select * 
from R, S where R.A = S.B and f(S.C) > lc” that might 
be posed to an object-relational database system, and sup- 
pose that the predicate f is very expensive to compute; cf 
Hellerstein and Stonebraker [HS94]. Further suppose that 
10% of the tuples in S join with tuples in R, and that 10% 
of the tuples in S satisfy f(S.C) > Ic. The query optimizer 
needs to decide whether to do the selection before or after 
the join. If attribute C has only a few distinct values in S, 
then by building a cache containing (S.C,f(S.C)) pairs, 
the selection can be performed without invoking the func- 
tion f more than a few times. This approach makes the 
selection relatively inexpensive, and it is better to do the 
selection before the join. If, on the other hand, attribute 
C has many distinct values, then f will be invoked many 
times when doing the selection, even if a cache is used. 
Since the selection operation is very expensive in this case, 
it is better to do the join R.A = S.B first, and then apply 
the selection predicate to the 10% of the tuples in S that 
survive the join. It is not hard to see that a poor estimate 
of the number of distinct values can increase the execution 
time of the above query by orders of magnitude. 

When there is an index on the attribute of interest, 
the number of distinct values can be computed exactly, 
in a straightfoward and efficient manner. We focus on the 
frequently-occurring case in which no such index is avail- 
able. In the absence of an index, exact computation of the 
number of distinct values requires at least one full scan of 
the relation, followed by a sort- or hash-based computa- 
tion involving each tuple in the relation. For most appli- 
cations this approach is prohibitively expensive, both in 
time and space. “Probabilistic counting” methods (As- 
trahan, Schkolnick, and Whang [ASW87], Flajolet and 
Martin [FM85], and Whang, Vander-Zanden, and Tay- 
lor [WVTSO]) estimate the number of distinct values with- 
out sorting and require only a small amount of memory. 
(These hash-based methods are actually deterministic, but 
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use probabilistic arguments to motivate the form of the 
estimate.) Although much less expensive than exact com- 
putation, probabilistic counting methods still require that 
each tuple in the relation be scanned and processed. As 
databases continue to grow in size, such exhaustive pro- 
cessing becomes increasingly undesirable; this problem is 
especially acute in database mining applications. Several 
ad hoc estimation formulas that do not require a scan of 
the relation have been derived under various “uniformity” 
assumptions on the data (see, for example, Gelenbe and 
Gardy [GG82]). These formulas do not provide any indi- 
cation of the precision of the estimate and can be off by 
orders of magnitude when the underlying assumptions are 
violated. In this paper we consider sampling-based meth- 
ods for estimating the number of distinct values. Such 
methods process only a small fraction of the tuples in a re- 
lation, do not require a priori assumptions about the data, 
and permit assessment and control of estimation error. 

Estimating the number of distinct attribute values us- 
ing sampling corresponds to the statistical problem of es- 
timating the number of classes in a population. A number 
of estimators have been proposed in the statistical litera- 
ture (see Bunge and Fitzpatrick [BFi93] for a recent sur- 
vey), but only three estimators, due to Goodman [Goo49], 
Chao [Cha84], and Burnham and Overton [B078, B079], 
respectively, have been considered in the database litera- 
ture; see Hou, Ozsoyoglu, and Taneja [HOT88, HOT891 
and Ozsoyoglu, et al. [ODT91]. As discussed in Section 2, 
each of these three estimators has serious theoretical or 
practical drawbacks. We therefore turn our attention to es- 
timators from the statistical literature that have not been 
considered in the database setting and also to new estima- 
tors. 

Identification of improved estimators is difficult. Ideally, 
a search for a good estimator would proceed by comparing 
analytic expressions for the accuracy of the estimators un- 
der consideration, and choosing the estimator that works 
best over a wide range of distributions; cf the comparison 
of join selectivity estimators in Haas, Naughton, Seshadri, 
and Swami [HN+93]. Unfortunately, analysis of distinct- 
value estimators is highly non-trivial, and few analytic re- 
sults are available. To make matters worse, there has been 
no extensive empirical testing or comparison of estimators 
in either the database or statistical literature. As discussed 
in Section 3, the testing that has been done in the statis- 
tical literature has generally involved small sets of data in 
which the frequencies of the different attribute values are 
fairly uniform; real data is seldom so well-behaved. In their 
survey, Bunge and Fitzpatrick provisionally recommend an 
estimator due to Chao and Lee [CL92], but this recommen- 
dation is not based on any systematic study. Moreover, be- 
cause the Chao and Lee estimator is designed for sampling 
from an infinite population, that is, for sampling with re- 
placement, it can take on large (and even infinite) values 
when there are a large number of distinct attribute values 
in the sample. 

In this paper, we develop several new sampling-based 
estimators of the number of distinct values of an attribute 
in a relation and compare these new estimators empiri- 
cally to estimators from the database and statistical lit- 

erature. Our test data consists of approximately fifty 
attribute-value distributions drawn from three large real- 
world databases: an insurance company’s billing records, 
a telecom company’s fault-repair records, and the student 
and enrollment records from a large university. Perhaps 
the most interesting of the new estimators is a “smoothed 
jackknife” estimator, derived by adapting the conventional 
jackknife estimation approach to the distinct-value prob- 
lem. 

Our experimental results indicate that no one estimator 
is optimal for all attribute-value distributions. In particu- 
lar, the relative performance of the estimators is sensitive 
to the degree of skew in the data. (Data with “high skew” 
has large variations in the frequencies of the attribute val- 
ues; Yiniform data” or data with “low skew” has nonex- 
istent or small variations.) We therefore develop a new 
estimator that is a hybrid of the new smoothed jackknife 
estimator and an estimator due to Shlosser [Sh181]. The 
hybrid estimator explicitly takes into account the observed 
degree of skew in the data. For our real-world data, this 
new estimator yields a higher precision on average for a 
given sampling fraction than previously proposed estima- 
tors. 

In Sections 2 and 3, we review the various estimators 
in the database and statistical literature, respectively. We 
develop several new estimators in Section 4. Our experi- 
mental results are in Section 5: after comparing the per- 
formance of the various estimators, we investigate how the 
new hybrid estimator performs as the size of the problem 
grows. In Section 6 we summarize our results and indicate 
directions for future work. 

2 Estimators from the Database Liter- 
at ure 

In this section we review the Goodman, Chao, and jack- 
knife estimators that have been proposed in the database 
literature. As discussed below, all of these estimators have 
serious flaws. 

Throughout, we consider a fixed relation R consisting 
of N tuples and a fixed attribute of this relation having D 
distinct values, numbered 1,2,. . . , D. For 1 5 j 5 D, let 
Nj be the number of tuples in R with attribute value j, 
so that N = c$ Nj. Both the new and existing estima- 
tors described in this section are based on a sample of n 
tuples selected randomly and uniformly from R, without 
replacement; we call such a sample a simple random sam- 
ple. We focus on sampling without replacement because, 
as indicated in Section 5.2 below, such sampling minimizes 
estimation errors. (See Olken [Olk93], for a survey of algo- 
rithms that can be used to obtain a simple random sample 
from a relational database.) Denote by nj the number of 
tuples in the sample with attribute value j for 1 5 j 5 D. 
Also denote by d the number of distinct attribute values 
that appear in the sample and, for 1 5 i 5 n, let fi be the 
number of attribute values that appear exactly i times in 
the sample. Thus, c:‘, fi = d and cy=, if; = n. 
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2.1 Goodman’s Estimator 

Goodman [Goo49] shows that 

is the unique unbiased estimator of D when n > 
max(Nr,Nz,... , ND). He also shows that there exists no 
unbiased estimator of D when n 5 max(Nr, Nz, . . . , ND). 
Hou, Ozsoyoglu, and Taneja [HOT881 propose Baood for 
use in the datzbase setting. 

Although DGo,,d is unbiased, Goodman [Goo49], Hou, 
Ozsoyoglu, and Taneja [HOT881 and Naughton and Se- 
shadri [NSSO] all observe that &oOd can have extremely 
high variance and numerically unstable behavior at small 
sample sizes. Our own preli_minary experiments confirmed 
this observation. We found Doood to be very unstable, with 
relative estimation errors in excess of 20,000% for some 
distributions and sample sizes (even when &oOd is trun- 
cated so that it lies between d and N). Moreover, Doood 
was extremely expensive to compute numerically, requir- 
ing the use of multiple precision arithmetic to avoid over- 
flows. These problems were particularly severe for large 
relatio_ns and small sample sizes. We therefore do not con- 
sider Doood further. 

2.2 Chao Estimator 

Ozsoyoglu, et al. [ODT91] propose the estimator 

fi” 
Dchao=d+-, 2f2 

due to Chao [Cha84], for application in the database set- 
ting. This estimator, however, estimates only a lower 
bound on D; cf Section 1.3.3 in [BFi93]. As a result, the 
Chao estimator usually underestimates the actual number 
of distinct values (unless f2 = 0, in which case the estima- 
tor blows up). For these reasons, Doha0 has been super- 
seded by the estimator 6s~. discussed in Section 3.1 below, 
and we do not consider Doha0 further. 

2.3 Jackknife Estimators 

Burnham and Overton [B078, B079], Heltshe and For- 
rester [HF83], and Smith and van Bell [SvB84] develop 
jackknife schemes for estimating the number of species in 
a population. Ozsoyoglu et al. [ODT91] propose the use of 
the procedures developed in [B078, B079] for estimating 
the number of distinct values of an attribute in a relation. 

The jackknife estimators are defined as follows (see 
Efron and Tibshirani [ET931 for a general discussion of 
jackknife estimators). Denote by d, the number of distinct 
values in the sample; in this section we write d = d, to em- 
phasisize the dependence on the sample size n. Number the 
tuples in the sample from 1 to n and for 1 5 k 5 n denote 
by d+l(k) the number of distinct values in the sample af- 
ter tuple k has been removed. Note that d,+l(k) = d, - 1 
if the attribute value for tuple k is unique; otherwise, 
d,-l(k) = d,. Set d(,-1) = (l/n) cE=, dn-l(k). Then 

the conventional “first-order” jackknife estimator is defined 
by 

&J = d, - (n - l)(d,,-i, - d,). 

The rationale given in [B078, B079] for &J is as fol- 
lows. Suppose that there exists a sequence of nonzero con- 
stants { ak: k 2 1) such that 

E[d,] = D.22. 
k=l 

(1) 

Equation (1) implies that d,, viewed as an estimator of 
D, has a bias of O(n-l). It can be shown that, under 
the assumption in (l), the bias of the estimator DCJ is 
only O(nw2), so that &J can be viewed as a “corrected” 
version of the crude estimator d,. 

A second-order jackknife estimator can be based on the 
n quantities dn-r(l), d,-i(2), . . . ,d,-i(n) together with 
n(n - 1)/2 additional quantities of the form d,,-s(i,j) 
(i < j), where dn-z(i, j) is the number of distinct values in 
the sample after tuples i and j have been removed. Under 
the assumption in (l), it can be shown that the resulting 
estimator has a bias of order (n-“). This procedure can 
be carried out to arbitrary order; the mth order estimator 
has bias O(n-“+‘) provided that (1) holds. As the order 
increases, however, the variance of the estimator increases. 
General formulas for the mth order estimator are given in 
[B078, B079], along with a procedure for choosing the or- 
der of the estimator so as to minimize the overall mean 
square error (defined as the variance plus the square of the 
bias). 

The difficulty with the above approach is that, unlike 
the problem considered in [B078, B079, HF83, SvB84], 
E (d,,] is not of the form (1) in our estimation problem; 
see (6) below. It can be shown, in fact, that in our set- 
ting the bias of &J decreases and then increases as the 
sample size increases from 1 to N. This behavior can be 
seen empirically in Figures 6.1 and 6.2 of [ODTSl]. Our 
own preliminary experiments also indicated that estima- 
tors based on the formulas of Burnham and Overton do 
not work well in our setting, and we do not consider them 
further. In Section 4 we derive a new first-order jackknife 
estimator that takes into account the true bias structure 
of d. 

3 Estimators from the Statistical Lit- 
erat ure 

In this section we review several estimators that have been 
proposed in the statistical literature but not considered 
in the database literature. None of the estimators in this 
section have ever been extensively tested or compared. 

3.1 Chao and Lee Estimator 

The coverage C of a random sample is the fraction of tuples 
in R having an attribute value that appears in the sample: 

c= c $, 
{j: nj>O} 

313 



When the attribute-value distribution is perfectly @form, under the assumption that each tuple is included in the 
we have C = d/D. Therefore, given an estimator C of the sample with probability q = n/N, independently of all 
coverage, 2 natur@ estimator of the number of distinct other tuples. This “Bernoulli sampling” scheme approx- 
values is D = d/C. When sampling is performed with imates simple random sampling when both n and N are 
replacement, an estimate of C can be obtained for any large. Shlosser’s (rather complicated) derivation rests on 
attribute-value distribution by observing that the assumption that 

D N. 
l-E[C] = ~~P{nj=o} 

3=1 

= -+(&$," 

j=l 

and (using binomial probabilities) 

so that E[C] M 1 - E [jr] /n. A natural estimator of C 
is therefore given by e = 1 - fi/n. Chao and Lee [CL921 
combine this coverage estimator with a correction term to 
handle skew in the data and obtain the estimator 

d n(l-q-2 
DcL=x+- 

C c^ y' 

where T2 is an estimator of 

y2 = (l/D) Cj”=l (Nj - El2 
-2 3 
N 

the squared coefficient of variation of the frequen- 
cies Nr , Ns, . . . , ND. (In the above formula, E = 
(l/D) cy=, Nj = N/D.) Note that y2 = 0 when all the 
attribute-value frequencies are equal (uniform data); the 
larger the value of r2, the greater the skew in the data. In 
their survey, Bunge and Fitzpatrick [BFi93] recommended 
&n as their “provisional choice” among the available es- 
timators of D. , 

Chao and Lee derive &r, under the assumption that 
samples are taken from an infinite population. Conse- 
quently, when sampling from a finite relation &L can take 
on overly-large (and even infinite) values when there are 
many distinct attribute values in the sample. In [CL92], 
the performance of DCL was analyzed using simulations 
based on synthetic data. In all of the data sets, the skew 
parameter y2 was always less than 1 and the number of 
distinct values was always relatively small (< 200). In our 
data, we found many values of y2 larger than 10, with one 
value equal t,o 81.6. In Section 5.1 we examine the per- 
formance O~-DCL against both uniform and highly-skewed 
data when Da is truncated at N, the largest possible num- 
ber of distinct values in the relation. 

3.2 Shlosser’s Estimator 

Shlosser [Sh181] derives the estimator 

Dshloss = d + 
flc;& - dfi 

XI”=1 iq(l - nY-‘f* 

E [fi] E 

E [fl] = E’ (3) 

where Fi is the number of attribute values that appear ex- 
actly i times in the entire relation. Note that when each 
attribute value appears approximately m times in the rela- 
tion, where m > 1, then the relation in (3) does not hold. 
For this reason we would not expect &hioss to perform well 
when the attribute-value distribution is close to uniform. 

The estimator &aross performed well in Shlosser’s sim- 
ulations. He only tested his estimator, however, against 
two small, moderately skewed data sets consisting of 1,474 
and 18,032 elements, respectively. 

3.3 Sichel’s Parametric Estimator 

The idea behind a parametric estimator is to fit a probabil- 
ity distribution to the observed relative frequencies of the 
different attribute values. The number of distinct attribute 
values in the relation is then estimated as a function of the 
fitted values of the parameters of the distribution. Accord- 
ing to Bunge and Fitzpatrick [BFi93], the most promis- 
ing of the parametric estimators in the literature is due to 
Sichel [Si86a, Si86b, Si92] 

Sichel’s estimator is based on fitting a “zero-trunca- 
ted generalized inverse Gaussian-Poisson” (GIGP) distri- 
bution to the frequency data. This distribution has three 
parameters, denoted b, c, and V. In [Si92], Sichel shows 
that a wide variety of well-known distributions, including 
the Zipf distribution, can be closely approximated by the 
GIGP distribution. The specific estimator we consider is 
based upon a two-parameter version of the GIGP distri- 
bution obtained by fixing the parameter u at the value 
-l/2; Sichel asserts that this approach suffices for most of 
the distributions that he has encountered. For such a two- 
parameter GIGP model, the number of distinct attribute 
values in the population can be expressed as 2/bc, and the 
parameters b and c can be estimated as follows [Si86a]. Set 
A = 2n/d - ln(n/fr) and B = Pfi/d + ln(n/fr), and let g 
be the solution of the equation 

(1 + g) In(g) - Ag + B = 0 

such that fr/n < g < 1. Also set 

(4) 

i;= 914ndfd 
l-g 

and 
;= l-g2 -. 

v2 
Then the final estimate of the number of distinct attribute 
values is 

2 
&ichel = XX. 

bc 
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Development of practical estimation methods based on the 
full three-parameter GIGP model is an area of current re- 
search; see Burrell and Fenton [BFe93]. 

In preliminary experiments, we found ~sichel to be un- 
stable for a number of the attribute-value distributions that 
we considered. The problem was that for these distribu- 
tions the equation in (4) did not have a solution in the 
required range (fi/n, 1). As a result, the estimates took 
on values of 0 or 00. (Even when Bsichei was truncated 
at d or N, respectively, the relative estimation errors still 
exceeded 2000%.) This phenomenon is due to a poor fit 
of the (two parameter) GIGP distribution to the data. It 
is possible that use of the more flexible three parameter 
GIGP would permit a better fit to the data, but practical 
methods for fitting the three parameter distribution are 
not yet axailable. Because of these problems, we do not 
consider Dsichei further. 

3.4 Method-of-Moments Estimator 

When samples are taken from an infinite population and 
the frequencies of the distinct attribute values are all equal 
(N1=N2=... = NO), it can be shown (see Appendix A) 
that E [d] x D(l - eeniD ). A simple estimator DMMO is 
then obtained by using the observed number d of distinct 
attribute values in the sample as an estimate of E [d]. That 
is, DMMO is defined as the solution D of the equation 

d = D(l -e-+). 

The above equation can be solved numerically using, for 
example, Newton-Raphson iteration. (The technique of 
replacing E [d] by an estimate of E [d] is called the mzthod 
of moments.) The basic properties of the estimator DMMO 
have been extensively studied for the case of sampling from 
infinite populations with equal attribute-value frequencies; 
see Section 1.3.1 in [BFi93] for references. 

DMMO is designed for sampling from infinite popula- 
tions. When sampling from a finite relation, the estimator 
can take on overly-large (and even infinite) values if there 
are many distinct attribute values in the sample. EMMe 
also can be inaccurate when the data is heav>y skewed. In 
Section 4 below we derive modifications of DMMCJ that at- 
tempt to address these difficulties and in Section 5.1 we 
compare the performance_of the resulting estimators to 
&MO when the value of DMMO is truncated at N. 

3.5 Bootstrap Estimator 

Smith and van Bell [SvB84] propose the bootstrap estima- 
tor for a species-estimation problem closely related to the 
estimation problem considered here. Although our sam- 
pling model is slightly different, the resulting estimator 

DBoot = d + 
{j: nj>O} 

is identical to the one in [SvB84]. (Recall that nj denotes 
the number of tu@es in the sample with attribute value 
j.) Observe that Dnoot 5 2d, so that Dnoot may perform 
poorly when D is large and n is small. See [ET931 for a 
general discussion of bootstrap estimators. 

4 New Estimators 
In this section, we derive several new estimators of the 
number of distinct values of an attribute in a relation. Af- 
ter first deriving a “Horvitz-Thompson”-type estimator, we 
then develop method-of-moments estimators that explic- 
itly take into account both skewness in the data and the 
fact the we are sampling from a finite relation. Finally, we 
derive a new “smoothed jackknife” estimator. 

4.1 Horvitz-Thompson Estimator 

In this section we obtain an estimator of D by specializing 
an approach due to Horvitz and Thompson; see Sarndal, 
Swensson, and Wretman [SSW92] for a general discussion 
of Horvitz-Thompson estimators. Set Yj = 1 if nj > 0 and 
set Yj = 0 otherwise. Observe that 

Thus, if P { nj > 0 } is known for each j, then the estimator 

E= c 1 

Ij: n.,O) p{nj “1 I 

is an unbiased estimator of D. It can be shown (see Ap- 
pendix A) that P { nj > 0 } = 1 - &(Nj), where 

h&) = /&.; N) - r(N - 2 + ‘jrlN - n + ‘1 
I’(N-n-z+l)I’(N+l) (5) 

for I > 0. Here I’ denotes the standard gamma func- 
tion; see Section 6 of [AS72]. Of course, Nj, and hence 
P { nj > 0 }, is unknown in practice. However, we can es- 
timate P { nj > 0) by 1 - hn(Gj), where @j = (nj/n)N. 
The resulting estimator is 

E c 1 
HT = 

4.2 Method-of-Moments Estimators 

The estimator &MO was derived under the equal- 
frequency assumption Nr = N2 = ... = ND and the 
assumption that samples are taken from an infinite pop- 
ulation. Under the equal-frequency assumption but with 
sampling from a finite relation, it can be shown (see Ap- 
pendix A) that E[d] = D(l - &(N/D)), where &(z) is 
given by (5). We can thus define a new method-of-moments 
estimator DMMI as the solution D of the equation 

d = D(l - hn(N/D)). 

It is reasonable to expect that this estimator would perform 
well for reasonably uniform attribute-value distributions. 

When the frequencies of attribute values are unequal, 
we have (Appendix A) 

E[d] = D-ehn(Nj). 
j=l 
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To obtain an estimator that can handle skewed data, we 
approximate each term hn(Nj) in (6) by a second-order 
Taylor expansion about the point m = N/D. After some 
straightforward computations, we obtain 

y x 1 - hn(F) + ;Y+s@V)(g:,(N) -g:(N)), (7) 

where y2 is defined as in (2) and 

gn(s) = 2 l k=l N-z-n+k’ (8) 

It can be shown that 

N-l n 

y2 = %(n - 1) i=l c i(i - l)E [fi] + $ - 1, 

so that a natural method-of-moments estimator +2(D) of 
y2 is given by 

‘2(D) = Nn(n - 1) i=l 
tN - ljD ki(i - l)fi + ; - 1. (9) 

An estimator of the number of distinct attribute values in 
the relation can be obtained by replacing E [d] by d and 
y2 by T”(D) in (7) and numerically solving for D, but this 
approach is computa$onally expensive. Alternatively, the 
first-order estimate DMM~ can be used to estimate 71i and 
y2, and the resulting approximate version of (7) can be 
solved to yield an estimator &K! defined by 

&2=d l-h,@) 
( 

+;fi2+2(~MMl)hn(fi)(g;(fi) - g:(fi)))-l, 

where fi = N/&MI. Preliminary numerical experiments 
indicated that when y2 < 1 and nfN 2 0.05 the estima- 
tor 13,~s is essentially identical to the estimator obtained 
by numerical solution of (7). (As shown in Section 5, 
neither estimate performs satisiactorily when y2 > 1 or 
n/N < 0.05.) The estimator DMM~ can be viewed as a 
variant of &MI that has been “corrected” to account for 
the variability of the Nj’s. 

4.3 A Smoothed Jackknife Estimator 

Recall the notation of Section 2.3. In the usual derivation 
of the first-order jackknife estimator, we seek a constant K 
such that 

K(E (dn-11 - E [dn]) = bias of d, = E [dn] - D. 

Given K, we then estimate E [d,-r] by d(,-1) and E [dn] 
by d,, and the final bias-corrected estimator is given by 

i? = d, - K(dc,-lj - d,). (10) 

In the case of the conventional jackknife estimator (as in 
[B078]), we have K = (n- 1). As discussed in Section 2.3, 
the key assumption in (1) that underlies the derivation 

of the conventional jackknife estimator is not satisfied in 
our setting. We show in Appendix B that the appropriate 
expression for K is 

K,-N-F-n+l 

77 

where x = N/D and h, is defined as in (5). After substi- 
tuting this expression for K into (10) and “smoothing” the 
resulting estimation equation (see Appendix B for details), 
we obtain the final estimator 

Esja& = 1 - 
( 

(N-fi-n+l)fr -’ 
nN ) 

(dn + Nhn(fi)gn-l(fi,?2(i%i,) , (11) 

where =v2 is given by (9), gn-1 is given by (8), and 50 is 
defined by 

60 = (d, - (fl/n)) (I- (N -,“N’ ‘If’) -‘, 

and Iir= N/i& 

5 Experimental Results 
In this section, we compare the performance of the most 
promising of the distinct-value estimators described in Sec- 
tions 3 and 4 and develop a new hybrid estimator that 
performs better than any of the individual estimators. We 
then investigate how the hybrid estimator behaves as we 
scale up the size of the database. Our performance mea- 
sure is the mean absolute deviation (MAD) expressed as a 
percentage of the true number of distinct v$ues; that is, 
our performance measure for an estimator D of D is 

To motivate this performance measure, suppose that the 
a distinct-value estimator is used in conjunction with 
the classical System R formula as in [SAC+791 to esti- 
mate the selectivity of a join. Then a MAD of z% in 
the distinct-value estimator induces an error of approxi- 
mately &tz% in the selectivity estimate. (In our experi- 
ments, we also looked at the root-mean-square (RMS) er- 
ror 100E’/2[(E - D)“]/D; the RMS was consistently about 
4% to 6% higher than the MAD, but the relative perfor- 
mance of the estimators based on the RMS error was the 
same as the relative performance based on MAD.) 

In our experiments we always apply “sanity boun_ds” to 
each estimator. That i:, we incre_ase an estimator D to d 
if fi < d and decrease D to N if D > N. 

5.1 Empirical Performance Comparison 

Our comparison is based on 47 attribute-value distribu- 
tions obtained from three large (> 1.5 GB) databases, 
one containing student and enrollment records, one con- 
taining fault-repair records from a telecom company, and 
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Dist. tuples d.v.‘s yZ 
1 624473 624473 0.00 
2 1288928 1288928 0.00 
3 15469 15469 0.00 
4 113600 110074 0.04 
5 597382 591564 0.01 
6 621498 591564 0.05 
7 15469 131 3.76 
8 1341544 1288927 0.05 
9 100655 29014 0.67 

10 147811 110076 0.47 
11 162467 83314 0.47 
12 113600 3 0.70 
13 173805 109688 0.93 
14 73950 278 3.86 
15 1547606 51168 0.23 
16 73950 8 6.81 

Dist. tuples d.v.‘s y’ Dist. tuples d.v.‘s yL 
17 1547606 3 0.38 33 173805 61 31.71 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

633756 
597382 

1463974 
931174 
178525 

1654700 
624473 
113600 
173805 
931174 
178531 
73561 

147811 
1547606 
1547606 

202462 
437654 
624472 
110076 

52 
624473 

168 
6155 

72 
29 
23 

287 
62 
33 

194 

1.19 
1.53 
0.94 
1.63 
9.07 
1.13 
3.90 

24.17 
16.98 
3.22 

19.30 
55.77 
34.68 

3.33 
3.35 

34 597382 17 14.27 
35 1547606 21 6.30 
36 633756 221480 15.68 
37 1547606 49 6.55 
38 633756 213 16.16 
39 1463974 535328 7.60 
40 1463974 10 8.12 
41 931174 73 12.96 
42 1547606 909 7.99 
43 931174 398 19.70 
44 1341544 37 33.03 
45 624473 14047 81.63 
46 1654700 235 30.85 
47 1463974 233 37.75 

Table 1: Characteristics of 47 experimental attribute-value distributions. 

one containing billing records from a large insurance com- 
pany. Table 1 shows for each attribute-value distribution 
the total number of tuples, total number of distinct at- 
tribute values, and squared coefficient of variation of the 
attribute-value frequencies (that is, the parameter y2 given 
by (2)). The attributes corresponding to distributions l-3 
are primary keys, so that all attribute values are distinct 
and y2 = 0. For a given estimator and attribute-value 
distribution, we estimate the MAD by repeatedly drawing 
a sample from the distribution, evaluating the estimator, 
and then computing the absolute deviation. The final esti- 
mate is obtained by averaging over ail of the experimental 
repIications. We use 100 repetitions, which is sufficient to 
estimate the MAD with a standard error of 5 5% in virtu- 
aIly all cases; typically, the standard error is much less. 

Unlike the MAD of a join-selectivity estimator or an 
estimator of a population mean, the MAD of a distinct- 
value estimator is not independent of the population size; 
see, for example, p. 215 in Lewontin and Prout [LP56]. 
It follows that the MAD cannot be viewed as a simple 
function of the sample size. Initial experiments indicated 
that the MAD can more reliably be viewed as a function 
of the sampling fraction (see also Section 5.3), and so we 
vary the sampling fraction, rather than the sample size, in 
our experiments. 

All of the estimators except &T and &root were per- 
fectly accurate for attribute-value distribugons l-J.-The 
reason is that alI of the estimators except DHT and ~~~~~ 
assume that if all the attribute values in a sample are dis- 
tinct (as they must be when sampling from distributions 
l-3), then ail the attribute values in the relation are dis- 
tinct. 

Tables 2 and 3 display the average and maximum MAD 
for the remaining eight estimators when applied to distri- 
butions with low skew and high skew, respectively. (We 
exclude the three attribute-value distributions in which all 
values are distinct.) As can be seen from these results, 
the relative performance of the estimators for distributions 
with low skew is quite different from the relative perfor- 
mance for distributions with high skew. In particular, esti- 

mators 5~~2, &L, and E.sjack perform well for distribu- 
tions with low skew but perform poorly for distributions 
with high skew. To understand this effect, recall that these 
three estimators are derived essentially using Taylor-series 
expansions in y2 about the point y2 = 0. When the skew is 
high, y2 tends to be large and the underlying Taylor-series 
expansions are no longer valid; when the skew is low, the 
Taylor-series expan$ons are accurate. As discussed in Sec- 
tion 3, estimator Dshioss has the opposite behavior: due 
to the assumption in (3) the estimator does not work well 
fzr distributions with low skew. Because the derivation of 
&hioss does not depend on Taylor-series expansions in r2, 
the estimator can achieve reasonable accuracy even when 
y2 is large. 

The estimators Enoot and &r-do not perform partic- 
ularly well. As discussed earlier, ~~~~~ is bounded above 
by 2d, and thus yields poor estimates w_hen D is large and 
n is small. The poor performance of DHT may be due to 
the fact that the least frequent attribute values in the sam- 
ple have the greatest effect on the value of the estimator, 
but for each infrequent value j it is difficult to accurately 
estimate the frequency Nj of the value in the relation. 

- It is interesting to n@e that &MO performs better than 
DMM~. “Correcting” DMMO to account for sampling with- 
out replacement (as opposed to just truncating the value 
of &MO at N) appears to result in underestimation prob- 
lems for this type of estimator. The reason for this is that 
the degradation in accuracy due to errors in estimating y2 
outweighs the advantages of using y2. 

As can be seen from Table 2, estimator Esjack gives the 
lowest MAD for the $stributions with low skew. The supe- 
rior performance of Dsjack is possibly due to the stabilizing 
effect of smoothing the estim%tor. On the other hand, the 
results in Table 3 show that DshiOSS gives the lowest MAD 
for the distributions with high skew. These observations 
suggest that a hybrid estimator that explicitly takes data 
skew into account might perform better overall. We de- 
velop and test such an estimator in the next section. 
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samp. Estimator 
frac. hhb~~ kmf0 &m 5~h12 i&r &,,t 5.c~ C.Qia& 

5% 64.58 19.87 37.82 39.42 60.64 62.39 21.18 20.88 
(252.85) (46.40) (209.55) (246.92) (92.14) (93.10) (75.43) (41.28) 

10% 33.95 17.61 32.68 35.44 51.71 53.59 21.97 16.52 
(107.29) (36.60) (178.20) (245.29) (84.52) (86.21) (123.04) (32.77) 

20% 17.61 14.10 20.46 22.80 38.81 40.77 30.80 11.31 
(58.67) (36.50) (64.07) (106.72) (70.04) (72.45) (196.13) (33.87) 

Table 2: Estimated mean absolute deviation (%) for 8 distinct-value estimators- low skew case. Average value and 
(maximum value) over 20 “low skew” attribute-value distributions for sampling fractions of 5%, lo%, and 20%. 

samp. Estimator 
frac. &loss &MO .&Ml &fulMz &r Loot &X g'sjack 

5% 32.45 34.82 36.37 58.45 35.26 36.59 262.28 45.99 
(132.06) (70.27) (70.27) (515.05) (80.88) (83.09) (4194.38) (186.15) 

10% 23.56 27.81 29.44 36.77 27.59 28.26 158.60 39.61 
(95.07) (60.08) (60.08) (166.51) (65.70) (69.04) (1235.51) (186.15) 

20% 13.60 19.86 21.51 22.69 18.36 18.48 156.08 33.68 
(49.23) (45.81) (45.81) (59.37) (45.81) (47.04) (1072.38) (186.15) 

Table 3: Estimated mean absolute deviation (%) for 8 distinct-value estimators- high skew case. Average value and 
(maximum value) over 24 “high skew” attribute-value distributions for sampling fractions of 5%, lo%, and 20%. 

5.2 Performance of a Hybrid Estimator 

To obtain an estimator that is accurate over a wide range 
of attribute-value distributions, it is natural to try a hy- 
brid approach in which the data is tested to see whether 
there is a large a?ount of skew. If the da+ appears to 
be skewed, then Dshloss is used; otherwise, Dsja& is used. 
One straightforward way to detect skew is to perform an 
approximate x2 test for uniformity. Specifically, we set 
?i = nfd and compute the statistic 

tL= c 
(nj - E)2 

{j:TZj>O} A 

For k > 1 and 0 < (Y < 1, let z&l,a be the unique real 
number such that if x:-i is a random variable having k - 1 
degrees of freedom then P { x:-i < zk-1,a } = a. Then 

the estimator &ybrid (with parameter o) is defined by 

if 21 5 xn-r+ 
if u > zn-l+. 

In our experiments we take a: = 0.975. 
Table 4 shows the average a$ maximum MAD over 

all 47 attribute distributions for Dhybrid and for the eight 
estimators considered in the previouz section. As can be 
seen from the table, the estimator &b&J is able to ex- 
ploit the relative strengths of the estimators fisjack and 
&hioss to achieve the lowest overall average SAD. For a 
sampling fraction of between 10% and 20%, Dhybrid esti- 
mates the number of distinct values to within an average 
error of ilO% to f16%. Astrahan, et al. [ASW87] found 
this degree of precision adequate in the setting of query 
optimization. 

Though details are not given here, we also computed the 
average and maximum MAD of the various estimators over 

all 47 attribute distributions using sampling vrith replace- 
ment. The relative performance of the estimators remained 
essentially the same as indicated aboveAexcept that DMMO 
occasionally had a lower MAD than Dhybrid. The MAD 
for the best-performing estimator under sampling with re- 
@acement, however, was always higher than the MAD for 
Dhybrid under sampling without replacement. Thus, our 
results indicate that, as might be expected, sampling with- 
out replacement minimizes estimation errors. 

5.3 Scaleup Performance of the Hybrid Esti- 
mator 

Up to this point in this paper we have not addressed an 
important but difficult question: when is sampling-based 
estimation of the number of distinct values an attractive 
alternative to exact computation of the numb_er of distinct 
values? Unfortunately, the error behavior of Dhybrid is suf- 
ficiently complex that it is difficult to make general state- 
ments about the cost of sampling to a specified accuracy. 
For this reason, our goal in this section is not to provide an 
exact answer to the question “when should one use sam- 
pling for distinct-value estimation.” sather, we seek to 
identify trends in the performance of Hybrid that indicate 
how it performs as the size of the problem grows. It turns 
out that these trends in performance depend upon how the 
problem is scaled. 

One way to scale up the problem is to keep the number 
of distinct attribute values fixed and multiply the frequency 
of each distinct value by the scaleup factor (thereby leaving 
the relative frequencies unchanged). This sort of scaleup 
appears, among other places, in the enrollment table of 
our university database. Each record of this table repre- 
sents a student taking a course, with attributes student id, 
credits, grade, and so forth. Consider, for example, the 
credits attribute of this table. The values of credits vary 
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samp. Estimator 

frac. iLbss 6m0 &MI 8~~2 &-IT iLot E’cL, 
5% 

6jack &brid 

44.05 26.24 34.66 46.62 49.70 51.18 142.95 32.37 23.85 

10% 
(252.85) (70.27) (209.55) (515.05) (92.21) (93.17) (4194.38) (186.15) (135.22) 

26.48 21.69 28.94 33.86 41.50 42.75 90.34 27.26 15.65 

20% 
(107.29) (60.08) (178.20) (245.29) (84.66) (86.33) (1235.51) (186.15) (44.63) 

14.44 16.14 19.69 21.29 30.37 31.42 92.81 22.01 10.33 
(58.67) (45.81) (64.07) (106.72) (70.26) (72.65) (1072.38) (186.15) (42.22) 

Table 4: Estimated mean absolute deviation (%) for 9 distinct-value estimators- combined results. Average value and 
(maximum value) over 47 attribute-value distributions for sampling fractions of 5%, lo%, and 20%. 

Table 5: Performance of &ybrid for bounded-domain 
scaleup, 10K samples in each case. 

from 0 to 9, with 3, 4, and 5 being very popular values. 
The relative frequencies of the specific credits values re- 
main largely unchanged whether we look at a database of 
10,000 or l,OOO,OOO enrollment records. We call this kind 
of scaleup bounded-domain scaleup, since here the size of 
the domain of the attribute does not vary. 

For bounded-domain scaleup, &ybrid performs very 
well. Table 5 gives one example of a bounded-domain 
scaleup experiment. We generate the data sets for this ex- 
periment by adding tuples to the relation according to the 
distribution of values in a highly-skewed generalized Zipf 
distribution (Zipf(2.00) with 33 distinct values.) In more 
detail, we begin with a 1000 tuple relation drawn from this 
distribution. It turns out that in this relation the most fre- 
quent attribute value appears 609 times, the next most fre- 
quent value appears 153 times, and so forth. We scale this 
to a 100,000 tuple relation by making the most frequent 
value appear 60,900 times, the next most frequent value 
appear 15300 times, and so forth. For the 200,000 tuple 
relation, the most frequent value appears 121,800 times, 
the next most frequent value 30,600 times, etc. Table 5 
shows that for a constant sample size the MAD remains 
approximately constant as the relation grows. That is, the 
sampling fraction required to achieve a given precision de- 
creases as the relation grows. 

Another way to scale up the problem is to add new 
distinct attribute values as the relation grows such that 
for each 1 5 i 5 N the fraction of distinct values that 
appears exactly i times in the relation remains unchanged. 
We call this kind of scaleup unbounded-domain scaleup. 
Unbounded-domain scaleup also appears in the university 
database. For example, consider the student id attribute of 
the enrollment table. Here, if we consider a database with 
10,000 or 1M enrollment records the number of distinct 
values of student id grows proportionally, while the number 
of occurrences of each value does not vary significantly. 

Figure 1 gives an example of an unbounded-domain 
scaleup experiment. Here we begin with the same gen- 
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Figure 1: Performance of &ybrid for unbounded-domain 
scaleup. 

eralized Zipf distribution used in Table 5, but scale up the 
relation by adding new distinct values. Specifically, we 
start with the same 1000 tuple relation as before. Recall 
that in this relation the most frequent attribute value ap- 
pears 609 times, the second most frequent value appears 
153 times, and so forth. To generate the 100,000 tuple rela- 
tion, we add 99 new distinct values, each of which appears 
609 times; another 99 new distinct values, each of which 
appears 153 times; and so forth. 

Figure 1 shows that, unlike bounded-domain scaleup, 
for a constant sample size the MAD increases as the re- 
lation grows. The discontinuity between 800K and 9OOK 
tuples is a result of the hybrid estimator switching from 
the Shlosser estimator (at 800K tuples and below) to the 
new smoothed jackknife estimator (at 900K and 1M) due 
to the decreasing skew in the distribution as the relation 
scales. 

Figure 1 also shows that if we keep the sample size a 
fixed percentage of the input, the MAD remains roughly 
constant as the relation grows; this suggests tliat while 
sampling does not get more attractive for larger inputs un- 
der unbounded-domain scaleup, it does not get less attrac- 
tive either, so the effectiveness of sampling-based distinct- 
value estimation depends on the statistical properties of 
the data but not on the relation size. 

6 Conclusions 
Sampling-based estimation of the number of distinct values 
of an attribute in a relation is a very challenging problem. 
It is much more difficult, for example, than estimation of 
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the selectivity of a join (cf [HN+93]). Perhaps for this 
reason, distinct-value estimation has received less atten- 
tion than other database sampling problems, in spite of its 
importance in query optimization. Our results indicate, 
however, that in certain situations sampling-based meth- 
ods can be used to estimate the number of distinct values 
at potentially a fraction of the cost of other methods. 

In this paper we have provided a new distinct-value es- 
timator that differs from previous estimators in that it ex- 
plicitly adaIts to differing levels of data skew. This new 
estimator, Dhybrid, is free from the flaws found in all of the 
previous distinct-value estimators in the database litera- 
ture. Moreover, in empirical tests based on attribute-value 
distributions actually encountered in practice, Dhybrid out- 
performed all previous known estim_ators. The perfor- 
mance of the new hybrid estimator Dhybrid as the size of 
the problem grows depends on the precise nature of the 
scaleup. If the number of distinct attribute values remains 
fixed as the relation grows, then the cost of sampling (rel- 
ative to processing all the tuples in the relation) decreases. 
If the number of distinct attribute values increases as the 
relation grows, then the relative cost of sampling remains 
roughly constant for a fixed sampling fraction. 

There is ample scope for future work. A key rzearch 
question is how to extend the applicability of the Dhybrid 
estimator. Since zhybrrd is based on the sampling of indi- 
vidual tuples rather than pages of tuples and can require a 
10-200/o sampling fraction, this estimator is best suited for 
situations in which reduction of CPU costs is a key con- 
cern. For example, the work described here was partially 
motivated by a situation in which a relation needed to be 
scanned for a variety of purposes, distinct-val_ue estimation 
was desired, and the scan was CPU bound. Dhybrid is dso 

well-suited to distinct-value estimation for main-m_emory 
databases, where CPU costs dominate I/O costs. &ybrid 
can also be used effectively when I/O costs dominate and 
tuples are assigned to pages independently of the attribute 
value (that is, no “clustering” of attribute values on pages). 
In this case, the tuples required for the &ybrid estimator 
can be sampled a page at a time wit&out compromising 
estimation accuracy. The estimator Dhybrid needs to be 
extended, however, to permit sampling of tuples a page at 
a time when the attribute values are clustered on pages. 

It is probable that more sophisticated hybrid estimators 
can be developed, resulting in further improvements in per- 
formance. It is also possible that if a practical parametric 
estimator based on the full three-parameter GIGP distri- 
bution could be constructed, it could fruitfully be used by 
itself or incorporated into a hybrid estimator. We arejnves- 
tigating techniques for estimating the variance Of Dhybrid 

and other estimators. This error information could poten- 
tially be used to develop fixed-precision estimation proce- 
dures for the number of distinct values. We are also con- 
sidering various techniques for incorporating information 
from the system catalog and from previous monitoring of 
the database system into the estimator to improve estima- 
tion accuracy. Finally, we are starting to investigate how 
to incorporate sampling-based estimates into query opti- 
mizers. 
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A Expected Number of Distinct Val- 
ues in a Sample 

Consider a simple random sample of size n drawn from a 
relation with N tuples and suppose that the attribute of 

interest has D distinct values in the relation. The prob- 
ability that the attribute value j does not appear in the 
sample (that is, the probability that n1 = 0) is equal to 
the hypergeometric probability 

hn(Nj) = (Nnw) / (r) 
= I’(N - Nj + l)I’(N - n + 1) 

I’(N-n-Nj+l)r(N+l)’ 

where Nj is the frequency of attribute value j in the rela- 
tion. We have used the fact that I’(z + 1) = z! whenever x 
is a nonnegative integer. Let Yj = 1 if nj > 0 and Yj = 0 
otherwise. Observe that 

E[Yj]=P{Yj=l}=P{nj>O}=l-h,(Nj). 

Letting d denote the number of distinct attribute values in 
the sample, we find that 

E id = E 1 1 2 yj = 2 E [y3] = D - 2 hn(Nj). 
j=l j=l j=l 

In particular, if Nl = N2 = .. . = ND = N/D, we have 
E [d] = D (1 - hn(N/D)) . If, in addition, N is very large 
relative to n, so that we are effectively sampling from an 
infinite population, we have hn(x) x (1 - 5) n, so that 

T x 1 - exp(nln(1 - 0-l)) M 1 - emnlD, 

where we have used the additional approximation ln(1 - 
D-l) x -1/D. 

B Derivation of the Smoothed Jack- 
knife Estimator 

As discussed in Section 4.3, we seek a constant K such that 

E [dn] - D 
K = E [d,-11 - E [dn] ’ 

The jackknife estimator is then given by 5 = d - 
K(dc,-l) - d,). Observe that dc,-l) = d, - fi/n, so 

that 3 can be written as 

Using (6), we have 

Set r = N/D. Writing hn(Nj) z hn(N)+(Nj -N)hL(N) 
and 

N3 
N-n+1 

hn-l(Nj) s (N-;+l)h-d~) 

NjhL-l(N) - 
N-n+l +:-1,‘T’, 
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for 1 5 j 5 D, substituting into (13), and using the ap- 
proximation 

for small 2, we obtain 

estimator Dajack can be viewed as a modification of&n for 
sampling from a finite relation. Conversely, our derivation 
shows that Doha0 can be viewed as eszentially a jackknife 
estimator. Unlike DCL, the estimator Dsjack does not equal 
00 when all attribute values in the sample are distinct. 

KC%-- 
N-X-n-ti 

m ( 

i _ R2h:,-1m 

) hn-l(P) . 
(14) 

As before, y2 is the squared coefficient of deviation of the 
numbers Nr,Ns,..., ND; see (2). Substituting (14) into 
(12) and using the easily-established fact that ha(z) = 
-hk(z)gk(z) for Ic 2 1, we obtain 

1- (N-?if-n+l)fl 
nN > 

= d 
n 

+ (N - 77-n + l)flgn-d~)r2. (i5) 
n 

We then “smooth” the jackknife by replacing the right side 
of the estimation equation (15) by its expected value. It 
can be shown that 

Replacing fi/n by E [fi] /n on the right side of (15) and 
using (16) yields 

5 
( 

i- (N-N-n+l)fl 
nN > 

= d, + Nh,(N)g,-l(R)y’. (17) 

A distin_ct-value estimatoz can be obtained by replacing p 
by N/D and y2 by ;V2 (D) in (17) and solving (17) iter- 
atively for 6. As in the case of the method-of-moments 
estimator, however, we can obtain an estimate that is al- 
most as accurate and much cheaper to compute by starting 
with a crude estimate of D and then correcting this esti- 
mate using (17). To do this, we replace each Nj in (13) 
with r and substitute the resulting expression for K into 
(12) to obtain the relation 

g=d 
n 

+ (N-r-n+l)fl 
nN (18) 

We then approximate m by N/c in (18) and solve for 5. 
The resulting solution, denoted by 50, is given by 

& = (dn - (f&)) (1 - (N -1; ‘If’) -’ 

and serves as our initial crude estimate. To obtain the final 
estimator in (ll), we approximate E by I? = N/Do and 
y2 by T”(&) in (17) and solve. 

Modification of Chao and Lee’s derivation of &L to 
account for random sampling from a-finite relation yields 
an estimator essentially identical to Dsjackv Thus, the new 
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