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Abstract—Network I/O workloads are dominating in many 
data centers and cloud computing environments today. One 
way to improve inter Virtual Machine (VM) communication 
efficiency is to support co-resident VM communication by 
using shared memory based approaches and to resort to the 
traditional TCP/IP for inter-VM communications between 
VMs that are located on different physical hosts. Although a 
number of independent efforts are dedicated to improving 
communication efficiency between co-resident VMs, they differ 
from one another in terms of how the inter-VM 
communication optimization is carried out and where in the 
software stack the shared memory channel is established. In 
this paper, we provide an in-depth overview of the design 
choices and techniques for optimizing the performance of the 
co-resident inter-VM communication, with dual objectives. 
First, we describe the core design guidelines and key issues for 
optimizing inter-VM communication by using shared memory 
based mechanisms. Typical issues include choices of 
implementation layer in the software stack, seamless agility for 
VM live migration and VM dynamic deployment support, 
multilevel transparency. Second, we conduct a comprehensive 
analysis of representative state-of-the-art research efforts and 
implementation techniques based on the core design guidelines. 
We also give an analysis of future requirements in advanced 
features such as reliability, security and stability. The research 
reported in this paper not only provides the reference for 
developing the next generation of inter-VM communication 
optimization mechanisms, but also offers opportunities for 
both cloud infrastructure providers and cloud service 
consumers to improve inter-VM communication efficiency in 
virtualized platforms. 
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I. INTRODUCTION 
It is well known that the virtual machine monitor (VMM 

or hypervisor) technology benefits from two orthogonal and 
yet complimentary design choices. First, VMM by design 
enables virtual machines (VMs) residing on the same 
physical host to share resources through time and space 
slicing. Second, VMM technology introduces host-neutral 
abstraction by design, which treats all VMs as independent 
computing nodes regardless of where they are located.  

Although VMM technology offers significant benefits in 
terms of functional and performance isolation, live migration 

based load balance, fault tolerant, portability of applications, 
higher resources utilization, both design choices carry some 
performance penalties. First, VMM offers significant 
advantages over native machines when VMs co-resident on 
the same physical host are non-competing in terms of 
network and computing resources. However, the 
performance of VMs is significantly degraded compared to 
that of native machine when co-resident VMs are competing 
for resources under high workload demands due to high 
overheads of switches and events in host/guest domain and 
VMM [1]. Second, the communication overhead between 
co-resident VMs can be as high as the communication cost 
between VMs located on separate physical machines. This is 
because the abstraction of VMs supported by VMM 
technology does not differentiate whether the data request is 
coming from co-resident VMs or not. Several research 
projects [2-11] have demonstrated that. Linux guest domain 
shows lower network performance than native Linux [12], 
when an application running on a VM communicates with 
another VM. [4] showed that with copying mode, the inter-
VM communication performance is enhanced but still 
lagging behind compared to the performance on native Linux, 
especially for co-resident VMs. 

There are two main reasons for the performance 
degradation of co-resident VM communication [3, 5-6]: (i) 
long communication data path through the TCP/IP network 
stack, (ii) lack of communication awareness in CPU 
scheduler and absence of real time inter-VM interactions. 
Thus in order to improve the performance of network 
intensive applications running in virtualized computing 
environments, there are two categories of solutions to 
improve the performance of inter-VM communication: one is 
to use memory sharing approach for co-resident VMs to 
improve both communication throughput and latency, and 
the other is to reduce inter-VM communication latency by 
optimizing CPU scheduling policies. One of the main 
arguments is that TCP/IP based network communication is 
inefficient when co-resident VMs communicate with one 
another since TCP/IP was originally designed for inter 
physical machine communication via LAN/Internet. To date, 
most of the research and kernel development efforts reported 
in literature are based on shared memory to improve 
communication efficiency among co-resident VMs. And 
most of the documented efforts are centered on open source 
hypervisors, such as Xen and KVM. Thus, in this paper we 



present a comprehensive survey on shared memory based 
techniques for inter-VM communication optimization. 

Relatively speaking, there are more shared memory 
efforts on Xen platform than KVM platform in the literature. 
Related work such as IVC [2], XenSocket [3], XWAY [4], 
XenLoop [5], MMNet [6] above Fido [7] and XenVMC [8] 
are on Xen platform. While all KVM-based efforts, such as 
VMPI [9], Socket-outsourcing [10] and Nahanni [11], are 
recent development since 2009. One reason could be due to 
the fact that Xen open source was made available since 2003 
and KVM is built on hardware containing virtualization 
extensions (e.g., Intel VT or AMD-V) that were not available 
until 2005. Interestingly, even the development efforts on the 
same platform (Xen or KVM) differ from one another in 
terms of where in the software stack the shared memory 
channel is established and how the inter-VM communication 
optimization is carried out. 

In this paper, we provide an in-depth overview of the 
design choices and techniques for optimizing the 
performance of the co-resident inter-VM communication, 
with dual objectives. First, we describe the core design 
guidelines and key issues for optimizing inter-VM 
communication using shared memory based mechanisms. 
Typical issues include choices of implementation layer in the 
software stack, seamless agility for VM live migration and 
VM dynamic deployment support, multilevel transparency. 
Second, based on the proposed guidelines, we conduct a 
comprehensive survey of representative state-of-the-art 
research efforts on both Xen and KVM platforms using a 
structured approach. We also give an analysis of future 
requirements in advanced features such as reliability, 
security and stability. We conjecture that the research 
reported in this paper is beneficial not only to researchers 
and developers of the next generation inter-VM 
communication optimization mechanisms, but also to cloud 
infrastructure providers and cloud service consumers that run 
applications on the virtualized platform. 

The rest of this paper is organized as follows. Section II 
provides an overview of the basic concepts and terminology 
of network I/O and shared memory structures in VMMs. 
Section III discusses a selection of design guidelines and key 
issues for shared memory based communication mechanisms 
for co-resident VMs. Section IV makes a comprehensive 
comparison of existing work using a number of indicators 
based on the design guidelines. Section V analyzes further 
requirements in other desired features, such as reliability, 
security and stability. Section VI concludes the paper. 

II. BACKGROUND AND PRELIMINARY  
In this paper, we focus on representative work based on 

typical open source VMMs, Xen and KVM. 

A. Xen Network Architecture and Interfaces 
1) Network I/O Architecture 

Xen is an open-source x86/x64 hypervisor coordinates 
the low-level interaction between VMs and physical 
hardware [13]. It supports both full-virtualization and para-
virtualization. The latter provides a more efficient and lower 
overhead mode of virtualizations. In this mode, Dom0, a 
privileged domain, performs the tasks to create, terminate 

and migrate guest VMs (DomU). Xen exports virtualized 
network devices to each DomU. The native network driver is 
expected to run in the Isolated Device Domain (IDD), which 
is typically either Dom0 or a driver specific VM. The IDD 
hosts a backend network driver. An unprivileged VM uses its 
frontend driver to access interfaces of the backend. Fig. 1 
illustrates the network I/O architecture and interfaces. The 
frontend and the backend exchange data by sharing memory 
pages, either in copying mode or in page flipping mode. The 
sharing is enabled by Xen grant table mechanism that we 
will introduce later in this section. The bridge in IDD 
handles the packets from the network interface card (NIC) 
and performs the software-based routine in the receiver VM. 
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Figure 1.  Xen network I/O architecture and interfaces 

Each I/O operation in either split I/O or Direct I/O model 
requires involvement of the hypervisor or Dom0, which may 
turn out to be a performance bottleneck for I/O intensive 
systems While VMM-bypass I/O model allows time-critical 
I/O operations to be processed directly in guest VMs without 
involvement of the hypervisor or a privileged VM. 

2) Communication Mechanisms Among Domains 
As shown in Fig. 1, the shared I/O Ring buffers between 

the frontend and the backend are built upon the grant table 
and event channel mechanisms provided by Xen. Grant table 
work as a generic mechanism to share pages of data between 
domains. It offers a fast and secure way for DomUs to 
receive indirect access to the network hardware through 
Dom0. Event channel is an asynchronous signal mechanism 
for domains on Xen. It supports inter/intra VM notification. 
XenStore is a configuration and status information storage 
space shared between domains. The information is organized 
hierarchically. Each domain gets its own path in the store. 

B. QEMU/KVM 
KVM is an open-source solution for Linux on x86 

hardware that supports virtualization extension. It consists of 
two parts: one is QEMU, which is a hardware emulator 
running in the host OS as a user level process and provides 
I/O device model for VM; the other is a KVM kernel device 
driver module, which provides core virtualization 
infrastructure including virtual CPU services for QEMU and 
supports functionalities such as VM creation, VM memory 
allocation. The OS running in a VM is called guest OS. 
There are two modes of I/O virtualization for KVM. 

1) Full-Virtualized Network I/O by Device Emulation 



Device emulation is provided by user space QEMU. It 
makes the guest OS using the device interacts with the 
device as if it were actual hardware rather than software. 
And there is no need to modify corresponding device driver 
in the guest OS. Fig. 2 illustrates the architecture of KVM 
full-virtualized network I/O. When the guest OS tries to 
access the emulated device, the I/O instruction traps into the 
KVM kernel module. Then the module forwards the requests 
to QEMU. Then QEMU asks the guest OS to write data into 
the buffer of virtualized NIC (VNIC) and copies the data into 
TAP device. And the data is forwarded to the device of 
destination guest OS by the software bridge. When the TAP 
device receives the data, it wakes up the QEMU process, 
who first copies the data into its VNIC buffer, from where 
copies the data to the virtual device in the destination guest 
OS. After that, QEMU notify the KVM kernel module to 
receive the data. And the module sends interrupts to notify 
the guest OS about the data arriving. Through virtual driver 
and network protocol stack, the data is passed to applications. 

 
Figure 2.  The architecture of KVM full-virtualized network I/O 

2) Virtio based Para-Virtualized Network I/O 
Although emulated devices offer broader compatibility 

than para-virtualized devices, the performance is lower due 
to the overhead of context switches across the barrier 
between user level guest OS and Linux kernel, as well as that 
between Linux kernel and user space QEMU. Therefore, 
Virtio, a para-virtualized I/O framework was introduced. 
Virtio avoids unnecessary I/O operations and reduces the 
number of data copies and context switches between the 
kernel and user space. 

III. OVERVIEW OF DESIGN CHOICES 
In this section we first describe the motivation and 

objectives for designing a shared memory based approach 
for residency-aware inter-VM communication. Then we 
present design guidelines and key issues for designing and 
implementing a high performance inter-VM communication 
protocol based on shared memory mechanisms. 

A. Why Shared Memory based Approaches 
Modern operating systems, such as Linux, provide 

symmetrical shared memory facilities between processes. 
Typical inter process communication mechanisms in Linux 
are System V IPC and POSIX IPC. With the IPC 

mechanisms, the processes communicate in a fast and super 
efficient manner through shared memory since data shared 
between processes can be immediately visible to each other.  

Compared with IPC, communication via TCP/IP takes 
longer time because data transfer from the sender VM to the 
receiver VM typically goes through a long communication 
path via VMM on sender VM’s host, TCP/IP stack and 
VMM on receiver VM’s host. Similarly, in KVM platforms, 
data transfer between the sender VM and the receiver VM 
also incurs multiple switches between VM and VMM in 
addition to going through the TCP/IP stack.  

By introducing shared memory based approaches and 
bypassing TCP/IP, we may gain a number of performance 
optimization opportunities: the number of data copies is 
reduced by shortening the data transmission path, 
unnecessary switches between VM and VMM are avoided 
by reducing dependency to VMM, and using shared memory 
also makes data writes visible immediately. In short, shared 
memory based approaches have the potential to achieve 
higher communication efficiency for co-resident VMs. 

B. Functionality and Design Objectives 
A shared memory based approach for inter-VM 

communication should be highly efficient, highly transparent 
and seamlessly agile in the presence of VM live migration 
and dynamic deployment. To support these design objectives, 
the following three core capabilities should be provided: (i) 
determining whether the receiver VM is co-resident with the 
sender VM on the same host, (ii) support both local and 
remote inter-VM communication protocols and upon 
detection of local mode of communication, automatically 
switching to the shared memory based channel, and (iii) the 
shared memory based inter-VM communication should be 
incorporated into the existing virtualized platform in an 
efficient and fully transparent manner [4-8, 10].  

The design objective of high performance aims at 
improving network throughput by supporting VM residency-
aware approach, which is capable of distinguishing 
communication between co-resident VMs from 
communication between VMs on separate physical hosts, so 
that the communication path between co-resident VMs is cut 
short and the communication overhead is reduced. The 
design objective of seamless agility calls for support of on-
demand detection and automatic switching between local 
mode (co-resident inter-VM communication) and remote 
mode (remote inter-VM communication) to ensure that the 
VM live migration and the agility for VM deployment are 
retained. Finally, the design objective of the transparency of 
the shared memory based mechanism over programming 
languages, guest OS kernel and VMM ensures that there is 
no need to make code modifications, recompilation or re-
linking to support legacy applications. 

C. Implementation Layer in Software Stack 
By supporting the shared memory based inter-VM 

communication mechanism to co-exist with the TCP/IP 
based inter-VM communication protocol, we can shorten the 
data transfer path and minimize the communication overhead 
between co-resident VMs. To achieve this, we need to 
intercept every outgoing data requests, examine and detect 



whether the receiver VM is co-resident with the sender VM, 
and if so, redirect the outgoing data request to a co-resident 
VM communication protocol instead. To provide seamless 
agility, the switching between local mode and remote mode 
should be done automatically and transparently. 

The shared memory based inter-VM communication 
protocol can be implemented in three alternative ways based 
on the choice of the implementation layer in the software 
stack where the shared memory channel is established: (i) 
user libraries and system calls layer (or layer 1), (ii) below 
system calls layer and above transport layer (or layer 2), and 
(iii) below IP layer (or layer 3). Implementation in different 
layers may bring different impacts on programming 
transparency, kernel-hypervisor level transparency, seamless 
agility and performance overhead. 

1) User Libraries and System Calls Layer 
One way to implement the shared memory based inter-

VM communication protocol is to modify the standard user 
and programming interfaces in the user libraries and system 
calls layer. This approach is simple and straightforward. It 
introduces less switching overhead for crossing two 
protection barriers: from guest user level to guest kernel 
level and from guest OS to host OS. However, it exposes 
shared memory up to the user level applications running in 
guest VMs and fails to maintain the programming 
transparency. Thus, it is up to the application programmers 
to manually incorporate the shared memory based inter-VM 
communication optimization into their application systems.  

2) Below System Calls Layer & Above Transport Layer 
An alternative approach to implement shared memory 

based inter-VM communication is below system calls layer 
and above transport layer. Due to hierarchical structure of 
TCP/IP network stack, when data is sent through the stack, it 
has to be encapsulated with additional headers layer by layer 
in the sender node. When the encapsulated data reaches the 
receiver node, the headers will have to be removed layer by 
layer. Thus if the data is intercepted and redirected in a 
higher layer in the software stack, it will lead to two 
desirable results: smaller data size and shorter processing 
path (less processing time on data encapsulation and the 
reverse process). This observation makes us conjecture that 
implementation in higher layer can potentially lead to lower 
latency and higher throughput of network I/O workloads. But 
if the shared memory channel is established in Layer 1, it is 
hard to maintain programming language transparency. From 
this perspective, layer 2 solutions are more attractive. 

3) Below IP Layer 
Another alternative method is to implement the shared 

memory based inter-VM communication optimization below 
IP layer. There are several advantages of choosing 
implementation in this layer: (i) since the interception is 
below the TCP/IP protocol stack, the existing TCP/IP 
features, such as reliability and so on, remain untouched; and 
(ii) third party tool, such as netfilter [14], is available to hook 
into the long TCP/IP network path to facilitate the 
implementation of functionalities such as packets 
interceptions. However, layer 3 is lower in the software stack. 
As mentioned, it potentially lead to higher latency due to 
higher protocol processing overheads, more number of data 
copies and context switches across barriers. Thus if 

alternative approaches for ensuring reliability and 
implementing functionalities similar with those provided by 
third party tools are available, to achieve better performance 
and programming transparency, layer 2 is preferred. 

D. Design Choices for Seamless Agility  
By seamless agility, we mean that both the detection of 

co-resident VMs and the switch between local and remote 
mode of inter-VM communication should be carried out 
automatically and adaptively in the presence of VM live 
migration and VM dynamic deployment (e.g., on-demand 
addition or removal of VMs).  

1) Automatic Detection of Co-resident VMs 
When a shared memory based inter-VM channel is to be 

set up or torn down, we need to verify if the communicating 
VMs are co-resident or not. Two methods are usually used to 
maintain co-residency information. The first one is called the 
static method, which is primarily used when the membership 
of co-resident VMs is preconfigured or collected manually 
by the administrator and is assumed not to change during the 
network operations afterwards. Thus, user applications are 
aware of the co-residency information. The second one is 
called a dynamic method, which provides automatic 
detection mechanisms for co-resident VMs and thus 
conveniently support VM live migration and dynamic VM 
deployment. The static method cannot detect the arrival or 
departure of VMs without administrator intervention. 

There are two alternative approaches for implementing 
dynamic methods according to who initiates the process:  

• The privileged domain or corresponding self-defined 
software entity periodically gathers co-residency 
information and sends it to VMs on the same host.  

• VM peers advertise their presence/absence to all 
other VMs on the same host upon significant events, 
such as VM creation, VM destruction, VM live 
migration into and out of a host, VM failure, etc. 

The first approach is asynchronous and needs centralized 
management by host domain. It is relatively easier to 
implement since co-residency information is scattered in a 
top-down fashion and the information is supposed to be sent 
to co-resident VMs consistently. However, the period 
between two periodical probing operations needs to be 
configured properly. If the period is set longer than needed, it 
would bring delayed co-residency information. If it is too 
short, it might lead to unnecessary probing and thus 
consumes undesirable CPU cycles. The second approach is 
event-driven and synchronous. When a VM migrates out/in, 
the VM is expected to notify related VMs and to update the 
co-residency information. Thus, the updates are immediate 
upon the occurrence of the corresponding events. In 
comparison, the first approach periodically collects the status 
from co-resident VMs and thus introduces delayed update 
and some level of inconsistency. Even with the second 
approach, it is possible that co-residency information of 
multiple VMs changes concurrently. Thus, the consistency of 
the VM co-residency information should be maintained. 

2) Transparent Switch between Local and Remote mode 
To enable transparent VM live migration, we need not 

only to provide both local and remote mode of inter-VM 
communication channels, but also to support transparent 



switch between the two types of inter-VM connections. Two 
tasks are involved in performing the switch: (i) to verify if 
the communicating VMs are co-resident, (ii) to find the 
proper point where and when to perform the transparent 
switch automatically. For the first task, the unique identity of 
every VM and the co-residency information are needed. 
[Dom ID, IP/Mac address] pairs can be used to uniquely 
identify domains. The VM co-residency membership is 
dynamically updated by automatic detection mechanism of 
co-resident VMs. As for the second task, the approach is to 
intercept the requests before setting up or tearing down 
connections or before the sender VM transfers the data.  

E. Multilevel Transparency 
By multilevel transparency, we refer to three levels of 

transparency: user level transparency, OS kernel 
transparency and VMM transparency.  

User level transparency refers to a key design choice 
regarding whether applications can take advantages of the 
residency-aware optimization without any modifications to 
the existing applications and user libraries. With user level 
transparency, legacy applications do not need to be modified 
to use the shared memory based local channel. User level 
transparency is usually one of the preferable end goals for 
software development, since it makes program development 
and management easier and simpler. To achieve this level of 
transparency, it is better to implement the inter co-resident 

VM communication in a layer lower than layer 1 such that 
no modification is made to the API and user libraries. 

By OS kernel transparency, we mean that there is no 
modification to either host OS kernel or guest OS kernel, so 
that no kernel recompilation and re-linking are needed. With 
this feature, no customized OS kernel and kernel patches, 
and so forth, need to be introduced, which indicates a more 
general and ready to deploy solution. To obtain the feature of 
OS kernel transparency, one feasible approach is to use non-
intrusive and self-contained kernel modules to implement 
shared memory based inter-VM communication mechanism 
since kernel modules have dual advantages: they are 
compiled separately from OS kernel and thus recompiling 
and re-linking the kernel can be avoided, and they can be 
loaded at runtime without requiring system reboot. 

VMM Transparency means no modification to VMM 
since modifying VMM is relatively more difficult and error 
prone than modifying OS kernel. To keep the stability of 
VMM and to maintain the independence between VMM and 
the guest OS instances, it is desirable to only use interfaces 
exported by the VMM, with VMM’s code untouched. 

IV. IMPLEMENTATION TECHNIQUES: A  COMPARISON 
In this section, we make comprehensive analysis and 

comparison in terms of the choice of implementation layer in 
software stack, fundamental functionalities, seamless agility, 
and multilevel transparency. Fig. 3 compares the 
architectural layout of existing representative approaches.

 
Figure 3.  Architectural layout of co-resident VM communication mechanisms 

A. User Libraries and System Calls Layer 
We briefly describe three existing approaches 

implemented in this layer: IVC, VMPI and Nahanni. 
IVC is designed for cluster-based HPC environment. It 

establishes the shared memory channel in layer 1. Different 
from other related work on Xen platform, IVC is developed 
based on VMM-bypass I/O model instead of split I/O model. 
IVC consists of three parts: (i) a user space VM-aware 
communication IVC library, supporting shared memory 
based fast communication between co-resident VMs, which 
provides socket style interfaces, (ii) a user space 
MVAPICH2-ivc library, which is derived from MVAPICH2, 

an MPI library over Infiniband, and (iii) a kernel driver, 
which is called by the user space libraries to grant the 
receiver VM the right to access the sharing buffer allocated 
by the IVC library and gets the reference handles from Xen 
hypervisor. Evaluation demonstrates that in an environment 
with multi-core systems and Infiniband interconnects, IVC 
achieves comparable performance with native platforms. 

VMPI is an Inter-VM communication mechanism for co-
resident VMs targeted to HPC cluster environment on KVM 
platform. In VMPI, only local channels are supported. 
Different from other related work, VMPI supports two types 
of local channels: one to allow fast MPI data transfers 
between co-resident VMs based on shared buffers accessible 



directly from guest OSes’ user spaces, the other to enable 
direct data copies through the hypervisor. VMPI provides a 
virtual device that supports these two types of local channels. 
Both OS kernel and the hypervisor are extended and 
modified to implement VMPI. Experimental results show 
that VMPI achieves near native performance in terms of MPI 
latency and bandwidth. VMPI only supports a small subset 
of MPI API. Its scalability is limited since it does not support 
a varying number of co-resident VMs to communicate. 

Nahanni provides inter co-resident VM shared memory 
API and commands for both host-to-guest and guest-to-guest 
communication on KVM platform. It is designed and 
implemented mainly in layer 1 and its interfaces are visible 
to user space applications. Nahanni consists of three 
components: a POSIX shared memory region on the host OS, 
a modified QEMU that supports a new Nahanni PCI device 
named ivshmem, and a Nahanni guest kernel driver 
developed based on UIO (User space I/O) device driver 
model. The shared memory region is allocated by host 
POSIX operations. It is mapped to QEMU process address 
space. The mapped memory can be used by guest 
applications by mapping it again to guest user space. Shared-
Memory Server (SMS), a standalone host process running 
outside of QEMU is designed and implemented to enable 
inter-VM notification. Evaluation results shows that 
applications or benchmarks achieve better performance with 
Nahanni support. However, to take advantage of Nahanni, it 
is required to rewrite applications/libraries, to modify/extend 
existing applications/libraries. Nahanni does not support 
transparent switches between local and remote mode. VM 
migration is not fully supported. 

B. Below System Calls Layer & Above Transport Layer 
XWAY, XenVMC and Socket-outsourcing are three 

existing approaches implemented in this layer. 
XWAY makes efforts to abstract all socket options and 

keeps user level transparency. XWAY modifies the OS 
kernel by patching it and intercepts TCP socket calls below 
system calls layer and above transport layer. Hierarchically, 
XWAY consists of three layers: switch, protocol and device 
driver. They are implemented as a few lines of kernel patch 
and a loadable kernel module. At the very first packet 
delivery attempt, the switch layer is used to determine if the 
receiver is co-resident or not. Then between TCP socket and 
local XWAY protocol, it transparently chooses which lower 
layer protocol should be called whenever a message is 
transmitted. The protocol layer conducts the tasks of data 
transmission via the device driver. The device driver plays 
basic role to support XWAY socket and XWAY protocol. It 
writes data into the sharing buffer or reads data from it. It 
also transfers events between the sender and the receiver and 
makes callback to upper layers when necessary. Evaluation 
results show that under various workloads XWAY achieves 
better performance that native TCP socket by bypassing the 
long TCP/IP network stack and providing direct shared 
memory based channel for co-resident VMs. 

XenVMC is a fast residency-aware inter-VM 
communication protocol with seamless agility and multilevel 
transparency. For XenVMC, Each guest OS hosts a non-

intrusive self-contained XenVMC kernel module, which is 
inserted as a thin layer in layer 2. XenVMC kernel module 
contains six sub modules: (i) Connection Manager is 
responsible for establishing or tearing down local 
connections between two VMs, (ii) Data Transfer Manager is 
responsible for data sending and receiving, (iii) Event 
Manager handles data transmission related notifications 
between the sender and the receiver, (iv) System Call 
Analyzer intercepts related system calls and analyzes them, 
if co-resident VMs are identified, it bypasses traditional 
TCP/IP paths, (v) VM State Publisher is responsible for 
announcement of VM co-residency membership 
modification to related guest VMs, (vi) Live Migration 
Assistant supports transparent switch between local and 
remote mode communication together with other sub 
modules. Experimental evaluation shows that compared with 
virtualized TCP/IP method, XenVMC improves co-resident 
VM communication throughput by up to a factor of 9 and 
reduces corresponding latency by up to a factor of 6. 

Socket-outsourcing enables inter co-resident VM 
communication by bypassing the network protocol stack in 
guest OSes. It consists of three parts: a socket layer guest 
module, the VMM extension and a user level host module. In 
guest OS, a high level functionality module in socket layer is 
replaced to implement the guest module. Socket-outsourcing 
supports standard socket API. It is user transparent. However, 
the VMM is extended to provide shared memory region 
between co-resident VMs, event queues for asynchronous 
notification between host module and guest module, as well 
as VM Remote Procedure Call (VRPC). The user level host 
module acts as a VRPC server for the guest module and 
provides socket-like interfaces between the guest module and 
the host module. Experimental results show that by using 
Socket-outsourcing a guest OS achieves similar network 
throughput as a native OS using up to four Gigabit Ethernet 
links. Using an N-tier Web benchmark with significant 
amount of inter-VM communication, the performance is 
improved by up to 45% than conventional KVM hosted VM 
approach.  No live migration support is provided. 

C. Below IP Layer 
We also describe three existing approaches in this layer: 

XenSocket, XenLoop and MMNet. 
XenSocket provides a shared memory based one way co-

resident channel between two VMs and bypasses the TCP/IP 
network stack when the communication is local. Most of its 
code is in layer 2 and is compiled into a kernel module. It is 
not binary compatible with existing applications. In 
XenSocket, there are two types of memory pages shared by 
the communicating VM peers: the descriptor page, used for 
control information storage, and the buffer pages, used for 
data transmission. They work together to form a circular 
buffer. When a connection is be established, the shared 
memory for circular buffer is allocated by the receiver VM 
and later mapped by the sender VM. Then the sender writes 
data into the buffer and the receiver reads data from it. The 
connection is torn down from the sender side after data 
transfer to ensure the shared resources be released properly. 
To enhance the security, application components with 



different trust levels are placed on separate VMs or physical 
machines. Performance evaluation shows that XenSocket 
achieves better bandwidth than TCP/IP network. XenSocket 
does not support automatic detection of co-resident VMs and 
transparent switches between local and remote mode.  

XenLoop provides fast inter-VM shared memory 
channels for co-resident VMs based on Xen memory sharing 
facilities. It keeps the feature of multilevel transparency. To 
utilize netfilter, XenLoop is implemented below IP layer, the 
same layer as netfilter resides. XenLoop consists of two parts: 
(i) a kernel module, named XenLoop module, which is 
loaded into each guest OS that want to benefit from the fast 
local channel, and (ii) a domain discovery module in Dom0. 
Implemented on top of netfilter, the module in guest OS 
intercepts outgoing network packets below the IP layer and 
automatically switches between the standard network path 
and a high speed inter-VM shared memory channel. Every 
VM is uniquely identified by [guest-ID, MAC address] pairs. 
The bidirectional inter-VM channel consists of two FIFO 
data channels (one for data sending, the other for data 
receiving) and a bidirectional event channel that is used to 
enable notifications of data presence for the communicating 
VMs. The module in Dom0 is responsible to discover co-
resident VMs dynamically and maintain the co-residency 
information, with the help of XenStore. XenLoop supports 
transparent VM live migration. Evaluations demonstrate that 
XenLoop increases bandwidth by up to a factor of 6 and 

reduces the latency by up to a factor of 5 compared with 
frontend-backend mode. 

MMNet works together with Fido framework to provide 
shared memory based inter-VM communication optimization 
for co-resident VMs on Xen platform. Fido offers three 
fundamental facilities: a shared memory mapping 
mechanism, a signaling mechanism for inter-VM 
synchronization and a connection handling mechanism. Fido 
maps entire kernel space of the sender VM to that of the 
receiver VM in a read only manner to avoid unnecessary 
data copies and to ensure security. Actually, it is designed for 
communicating between VMs that are trustable to each other, 
where the mapping of guest OSes’ memory is acceptable. 
Built on Fido, MMNet achieves programming transparency 
by providing a standard Ethernet interface. Fido and MMNet 
together give the user a view of standard network device 
interfaces, while the optimization of shared memory based 
inter-VM communication is hidden beneath the IP layer. 
MMNet provides near native performance and achieves 
much better performance than frontend-backend model. 

D. Seamless Agility & Multi-level Transparency 
Seamless agility refers to VM co-residency membership 

maintenance, automatic switches between local and remote 
channels, transparent VM live migration and dynamic live 
VM deployment support by the shared memory based inter-
VM communication mechanism. Seamless agility features of 
representative approaches are summarized in Table I. 

TABLE I.  SEAMLESS AGILITY FOR VM LIVE MIGRATION AND VM DYNAMIC DEPLOYMENT SUPPORT 

Xen Based KVM Based 
 IVC XenSocket XWAY XenLoop MMNet 

(Fido) XenVMC VMPI Socket-
outsourcing Nahanni

VM Co-residency membership 
maintenance 

Yes 
Static No Yes 

Static
Yes 

Dynamic
Yes 

Dynamic
Yes 

Dynamic No No Yes 

Automatic switch between local  and 
Remote channels Yes No Yes Yes Yes Yes No No No 

Transparent VM live migration support Not fully 
transparent No No Yes Yes Yes No No No 

Dynamic VM deployment support No No No Yes Yes Yes No No No 

Xen based approaches utilize Xen Grant Table and Event 
Channel to facilitate the design and implementation of shared 
memory communication channel and the notification 
protocol. Almost all of them keep the feature of VMM 
transparency except IVC, which modifies the VMM to 
enable VM live migration. In comparison, KVM based 
approaches, such as Nahanni, VMPI and Socket-outsourcing 

are all not VMM transparent. The existing support from 
QEMU/KVM for host-guest and guest-guest memory 
sharing is not sufficient. Thus current QEMU/KVM is 
modified or extended to provide such supports. Among all 
the representative related work, only XenLoop, MMNet and 
XenVMC keep the features of multilevel transparency. The 
multilevel transparency features are summarized in Table II. 

TABLE II.  MULTILEVEL TRANSPARENCY FEATURES 

Xen Based KVM Based 
 IVC XenSocket XWAY XenLoop MMNet 

(Fido) XenVMC VMPI Socket-
outsourcing Nahanni 

User level transparency No No Yes Yes Yes Yes No Yes No 
OS kernel level transparency Yes Yes No Yes Yes Yes Yes No Yes 
VMM level transparency No Yes Yes Yes Yes Yes No No No 

V. ADVANCED  FEATURES 
Most of the existing development work to date pays little 

attentions to advanced features such as reliability, security 

and stability. We argue that the next generation of a shared 
memory based fast communication mechanism for co-
resident VMs should give full consideration on how to 
provide such advanced features. 



Reliability. The shared memory based inter-VM 
communication for co-resident VMs should have the ability 
to perform and maintain expected functionalities in the case 
of failures. Thus mechanisms ensuring reliability, such as 
connection handling upon VM failures, pending data 
processing when VM migrates in/out, should be offered. 

Security. A critical design issue for any mechanism that 
supports an external process or VM to access memory of 
another VM is security. Since information leakage is a severe 
concern for memory sharing between un-trusted VMs, a VM 
should not be able to access another VM’s memory without 
permission unless the communicating VMs have mutual trust. 
Thus special care must be taken to ensure desirable degree of 
isolation among communicating VM peers. 

Stability. From our experimental observations on 
existing open source shared memory based co-resident VM 
communication mechanism, we find that throughput or 
latency of data interchange turns unstable under certain 
circumstances and the mechanisms even fails to work in 
some boundary conditions [15]. Therefore, special concerns 
should be paid during the design of the shared memory 
based inter-VM communication mechanisms for co-resident 
VMs to ensure the stability. No matter whether the network 
protocol is TCP or UDP, the size of messages is extremely 
small or large, the arriving frequency of messages is normal 
or badly high, the number of co-resident VMs is large scale 
or not, the performance is expected to be reasonably stable 
and the system is supposed to operate normally. 

VI. CONCLUSION 
This paper makes three unique contributions. First, we 

present the core design guidelines and key issues for 
optimizing inter-VM communication using shared memory 
based mechanisms, including the choices of implementation 
layer in the software stack, seamless agility for VM live 
migration and VM dynamic deployment support, multilevel 
transparency. Second, we conduct a comprehensive analysis 
of representative state-of-the-art research efforts and 
implementation techniques based on the core design 
guidelines. Third, we also give a prospect of further 
requirements in advanced features such as reliability, 
security and stability. The research results reported in this 
paper not only serves as a comprehensive reference for 
developing the next generation of inter-VM communication 
optimization mechanisms, but also offers both cloud 
infrastructure providers and cloud service consumers an 
opportunity to further improve inter-VM communication 
efficiency in virtualized platforms. 
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