
Residency-Aware Virtual Machine Communication Optimization:
Design Choices and Techniques

Yi Ren
College of Computer Science

National University of Defense
Technology

Changsha, P. R. China, 410073
renyi@nudt.edu.cn

Ling Liu, Qi Zhang
School of Computer Science

Georgia Institute of Technology
Atlanta, Georgia 30332–0250, USA
{lingliu, qzhang90}@cc.gatech.edu

Qingbo Wu, Jie Yu, Jinzhu Kong,
Jianbo Guan, Huadong Dai
College of Computer Science

National University of Defense
Technology

Changsha, P. R. China, 410073
guanjb@nudt.edu.cn

Abstract—Network I/O workloads are dominating in many
data centers and cloud computing environments today. One
way to improve inter Virtual Machine (VM) communication
efficiency is to support co-resident VM communication by
using shared memory based approaches and to resort to the
traditional TCP/IP for inter-VM communications between
VMs that are located on different physical hosts. Although a
number of independent efforts are dedicated to improving
communication efficiency between co-resident VMs, they differ
from one another in terms of how the inter-VM
communication optimization is carried out and where in the
software stack the shared memory channel is established. In
this paper, we provide an in-depth overview of the design
choices and techniques for optimizing the performance of the
co-resident inter-VM communication, with dual objectives.
First, we describe the core design guidelines and key issues for
optimizing inter-VM communication by using shared memory
based mechanisms. Typical issues include choices of
implementation layer in the software stack, seamless agility for
VM live migration and VM dynamic deployment support,
multilevel transparency. Second, we conduct a comprehensive
analysis of representative state-of-the-art research efforts and
implementation techniques based on the core design guidelines.
We also give an analysis of future requirements in advanced
features such as reliability, security and stability. The research
reported in this paper not only provides the reference for
developing the next generation of inter-VM communication
optimization mechanisms, but also offers opportunities for
both cloud infrastructure providers and cloud service
consumers to improve inter-VM communication efficiency in
virtualized platforms.

Keywords-residency-aware; inter-VM communication;
shared memory; seamless agility; multilevel transparency

I. INTRODUCTION
It is well known that the virtual machine monitor (VMM

or hypervisor) technology benefits from two orthogonal and
yet complimentary design choices. First, VMM by design
enables virtual machines (VMs) residing on the same
physical host to share resources through time and space
slicing. Second, VMM technology introduces host-neutral
abstraction by design, which treats all VMs as independent
computing nodes regardless of where they are located.

Although VMM technology offers significant benefits in
terms of functional and performance isolation, live migration

based load balance, fault tolerant, portability of applications,
higher resources utilization, both design choices carry some
performance penalties. First, VMM offers significant
advantages over native machines when VMs co-resident on
the same physical host are non-competing in terms of
network and computing resources. However, the
performance of VMs is significantly degraded compared to
that of native machine when co-resident VMs are competing
for resources under high workload demands due to high
overheads of switches and events in host/guest domain and
VMM [1]. Second, the communication overhead between
co-resident VMs can be as high as the communication cost
between VMs located on separate physical machines. This is
because the abstraction of VMs supported by VMM
technology does not differentiate whether the data request is
coming from co-resident VMs or not. Several research
projects [2-11] have demonstrated that. Linux guest domain
shows lower network performance than native Linux [12],
when an application running on a VM communicates with
another VM. [4] showed that with copying mode, the inter-
VM communication performance is enhanced but still
lagging behind compared to the performance on native Linux,
especially for co-resident VMs.

There are two main reasons for the performance
degradation of co-resident VM communication [3, 5-6]: (i)
long communication data path through the TCP/IP network
stack, (ii) lack of communication awareness in CPU
scheduler and absence of real time inter-VM interactions.
Thus in order to improve the performance of network
intensive applications running in virtualized computing
environments, there are two categories of solutions to
improve the performance of inter-VM communication: one is
to use memory sharing approach for co-resident VMs to
improve both communication throughput and latency, and
the other is to reduce inter-VM communication latency by
optimizing CPU scheduling policies. One of the main
arguments is that TCP/IP based network communication is
inefficient when co-resident VMs communicate with one
another since TCP/IP was originally designed for inter
physical machine communication via LAN/Internet. To date,
most of the research and kernel development efforts reported
in literature are based on shared memory to improve
communication efficiency among co-resident VMs. And
most of the documented efforts are centered on open source
hypervisors, such as Xen and KVM. Thus, in this paper we

present a comprehensive survey on shared memory based
techniques for inter-VM communication optimization.

Relatively speaking, there are more shared memory
efforts on Xen platform than KVM platform in the literature.
Related work such as IVC [2], XenSocket [3], XWAY [4],
XenLoop [5], MMNet [6] above Fido [7] and XenVMC [8]
are on Xen platform. While all KVM-based efforts, such as
VMPI [9], Socket-outsourcing [10] and Nahanni [11], are
recent development since 2009. One reason could be due to
the fact that Xen open source was made available since 2003
and KVM is built on hardware containing virtualization
extensions (e.g., Intel VT or AMD-V) that were not available
until 2005. Interestingly, even the development efforts on the
same platform (Xen or KVM) differ from one another in
terms of where in the software stack the shared memory
channel is established and how the inter-VM communication
optimization is carried out.

In this paper, we provide an in-depth overview of the
design choices and techniques for optimizing the
performance of the co-resident inter-VM communication,
with dual objectives. First, we describe the core design
guidelines and key issues for optimizing inter-VM
communication using shared memory based mechanisms.
Typical issues include choices of implementation layer in the
software stack, seamless agility for VM live migration and
VM dynamic deployment support, multilevel transparency.
Second, based on the proposed guidelines, we conduct a
comprehensive survey of representative state-of-the-art
research efforts on both Xen and KVM platforms using a
structured approach. We also give an analysis of future
requirements in advanced features such as reliability,
security and stability. We conjecture that the research
reported in this paper is beneficial not only to researchers
and developers of the next generation inter-VM
communication optimization mechanisms, but also to cloud
infrastructure providers and cloud service consumers that run
applications on the virtualized platform.

The rest of this paper is organized as follows. Section II
provides an overview of the basic concepts and terminology
of network I/O and shared memory structures in VMMs.
Section III discusses a selection of design guidelines and key
issues for shared memory based communication mechanisms
for co-resident VMs. Section IV makes a comprehensive
comparison of existing work using a number of indicators
based on the design guidelines. Section V analyzes further
requirements in other desired features, such as reliability,
security and stability. Section VI concludes the paper.

II. BACKGROUND AND PRELIMINARY
In this paper, we focus on representative work based on

typical open source VMMs, Xen and KVM.

A. Xen Network Architecture and Interfaces
1) Network I/O Architecture

Xen is an open-source x86/x64 hypervisor coordinates
the low-level interaction between VMs and physical
hardware [13]. It supports both full-virtualization and para-
virtualization. The latter provides a more efficient and lower
overhead mode of virtualizations. In this mode, Dom0, a
privileged domain, performs the tasks to create, terminate

and migrate guest VMs (DomU). Xen exports virtualized
network devices to each DomU. The native network driver is
expected to run in the Isolated Device Domain (IDD), which
is typically either Dom0 or a driver specific VM. The IDD
hosts a backend network driver. An unprivileged VM uses its
frontend driver to access interfaces of the backend. Fig. 1
illustrates the network I/O architecture and interfaces. The
frontend and the backend exchange data by sharing memory
pages, either in copying mode or in page flipping mode. The
sharing is enabled by Xen grant table mechanism that we
will introduce later in this section. The bridge in IDD
handles the packets from the network interface card (NIC)
and performs the software-based routine in the receiver VM.

DomU-1

App1

Network
Protocol

Stack

Front End

Privileged
Driver Domain

Backend

Ethernet Bridge
send/recv

Native NIC
Driver

Backend

Xen Hypervisor

DomU-2

App1

Network
Protocol

Stack

Front End

recv/send

Shared
I/O Ring

Shared
I/O Ring

Physical NIC

IDD

Event Channel Event Channel

Grant
Table

Grant
Table

Figure 1. Xen network I/O architecture and interfaces

Each I/O operation in either split I/O or Direct I/O model
requires involvement of the hypervisor or Dom0, which may
turn out to be a performance bottleneck for I/O intensive
systems While VMM-bypass I/O model allows time-critical
I/O operations to be processed directly in guest VMs without
involvement of the hypervisor or a privileged VM.

2) Communication Mechanisms Among Domains
As shown in Fig. 1, the shared I/O Ring buffers between

the frontend and the backend are built upon the grant table
and event channel mechanisms provided by Xen. Grant table
work as a generic mechanism to share pages of data between
domains. It offers a fast and secure way for DomUs to
receive indirect access to the network hardware through
Dom0. Event channel is an asynchronous signal mechanism
for domains on Xen. It supports inter/intra VM notification.
XenStore is a configuration and status information storage
space shared between domains. The information is organized
hierarchically. Each domain gets its own path in the store.

B. QEMU/KVM
KVM is an open-source solution for Linux on x86

hardware that supports virtualization extension. It consists of
two parts: one is QEMU, which is a hardware emulator
running in the host OS as a user level process and provides
I/O device model for VM; the other is a KVM kernel device
driver module, which provides core virtualization
infrastructure including virtual CPU services for QEMU and
supports functionalities such as VM creation, VM memory
allocation. The OS running in a VM is called guest OS.
There are two modes of I/O virtualization for KVM.

1) Full-Virtualized Network I/O by Device Emulation

Device emulation is provided by user space QEMU. It
makes the guest OS using the device interacts with the
device as if it were actual hardware rather than software.
And there is no need to modify corresponding device driver
in the guest OS. Fig. 2 illustrates the architecture of KVM
full-virtualized network I/O. When the guest OS tries to
access the emulated device, the I/O instruction traps into the
KVM kernel module. Then the module forwards the requests
to QEMU. Then QEMU asks the guest OS to write data into
the buffer of virtualized NIC (VNIC) and copies the data into
TAP device. And the data is forwarded to the device of
destination guest OS by the software bridge. When the TAP
device receives the data, it wakes up the QEMU process,
who first copies the data into its VNIC buffer, from where
copies the data to the virtual device in the destination guest
OS. After that, QEMU notify the KVM kernel module to
receive the data. And the module sends interrupts to notify
the guest OS about the data arriving. Through virtual driver
and network protocol stack, the data is passed to applications.

Figure 2. The architecture of KVM full-virtualized network I/O

2) Virtio based Para-Virtualized Network I/O
Although emulated devices offer broader compatibility

than para-virtualized devices, the performance is lower due
to the overhead of context switches across the barrier
between user level guest OS and Linux kernel, as well as that
between Linux kernel and user space QEMU. Therefore,
Virtio, a para-virtualized I/O framework was introduced.
Virtio avoids unnecessary I/O operations and reduces the
number of data copies and context switches between the
kernel and user space.

III. OVERVIEW OF DESIGN CHOICES
In this section we first describe the motivation and

objectives for designing a shared memory based approach
for residency-aware inter-VM communication. Then we
present design guidelines and key issues for designing and
implementing a high performance inter-VM communication
protocol based on shared memory mechanisms.

A. Why Shared Memory based Approaches
Modern operating systems, such as Linux, provide

symmetrical shared memory facilities between processes.
Typical inter process communication mechanisms in Linux
are System V IPC and POSIX IPC. With the IPC

mechanisms, the processes communicate in a fast and super
efficient manner through shared memory since data shared
between processes can be immediately visible to each other.

Compared with IPC, communication via TCP/IP takes
longer time because data transfer from the sender VM to the
receiver VM typically goes through a long communication
path via VMM on sender VM’s host, TCP/IP stack and
VMM on receiver VM’s host. Similarly, in KVM platforms,
data transfer between the sender VM and the receiver VM
also incurs multiple switches between VM and VMM in
addition to going through the TCP/IP stack.

By introducing shared memory based approaches and
bypassing TCP/IP, we may gain a number of performance
optimization opportunities: the number of data copies is
reduced by shortening the data transmission path,
unnecessary switches between VM and VMM are avoided
by reducing dependency to VMM, and using shared memory
also makes data writes visible immediately. In short, shared
memory based approaches have the potential to achieve
higher communication efficiency for co-resident VMs.

B. Functionality and Design Objectives
A shared memory based approach for inter-VM

communication should be highly efficient, highly transparent
and seamlessly agile in the presence of VM live migration
and dynamic deployment. To support these design objectives,
the following three core capabilities should be provided: (i)
determining whether the receiver VM is co-resident with the
sender VM on the same host, (ii) support both local and
remote inter-VM communication protocols and upon
detection of local mode of communication, automatically
switching to the shared memory based channel, and (iii) the
shared memory based inter-VM communication should be
incorporated into the existing virtualized platform in an
efficient and fully transparent manner [4-8, 10].

The design objective of high performance aims at
improving network throughput by supporting VM residency-
aware approach, which is capable of distinguishing
communication between co-resident VMs from
communication between VMs on separate physical hosts, so
that the communication path between co-resident VMs is cut
short and the communication overhead is reduced. The
design objective of seamless agility calls for support of on-
demand detection and automatic switching between local
mode (co-resident inter-VM communication) and remote
mode (remote inter-VM communication) to ensure that the
VM live migration and the agility for VM deployment are
retained. Finally, the design objective of the transparency of
the shared memory based mechanism over programming
languages, guest OS kernel and VMM ensures that there is
no need to make code modifications, recompilation or re-
linking to support legacy applications.

C. Implementation Layer in Software Stack
By supporting the shared memory based inter-VM

communication mechanism to co-exist with the TCP/IP
based inter-VM communication protocol, we can shorten the
data transfer path and minimize the communication overhead
between co-resident VMs. To achieve this, we need to
intercept every outgoing data requests, examine and detect

whether the receiver VM is co-resident with the sender VM,
and if so, redirect the outgoing data request to a co-resident
VM communication protocol instead. To provide seamless
agility, the switching between local mode and remote mode
should be done automatically and transparently.

The shared memory based inter-VM communication
protocol can be implemented in three alternative ways based
on the choice of the implementation layer in the software
stack where the shared memory channel is established: (i)
user libraries and system calls layer (or layer 1), (ii) below
system calls layer and above transport layer (or layer 2), and
(iii) below IP layer (or layer 3). Implementation in different
layers may bring different impacts on programming
transparency, kernel-hypervisor level transparency, seamless
agility and performance overhead.

1) User Libraries and System Calls Layer
One way to implement the shared memory based inter-

VM communication protocol is to modify the standard user
and programming interfaces in the user libraries and system
calls layer. This approach is simple and straightforward. It
introduces less switching overhead for crossing two
protection barriers: from guest user level to guest kernel
level and from guest OS to host OS. However, it exposes
shared memory up to the user level applications running in
guest VMs and fails to maintain the programming
transparency. Thus, it is up to the application programmers
to manually incorporate the shared memory based inter-VM
communication optimization into their application systems.

2) Below System Calls Layer & Above Transport Layer
An alternative approach to implement shared memory

based inter-VM communication is below system calls layer
and above transport layer. Due to hierarchical structure of
TCP/IP network stack, when data is sent through the stack, it
has to be encapsulated with additional headers layer by layer
in the sender node. When the encapsulated data reaches the
receiver node, the headers will have to be removed layer by
layer. Thus if the data is intercepted and redirected in a
higher layer in the software stack, it will lead to two
desirable results: smaller data size and shorter processing
path (less processing time on data encapsulation and the
reverse process). This observation makes us conjecture that
implementation in higher layer can potentially lead to lower
latency and higher throughput of network I/O workloads. But
if the shared memory channel is established in Layer 1, it is
hard to maintain programming language transparency. From
this perspective, layer 2 solutions are more attractive.

3) Below IP Layer
Another alternative method is to implement the shared

memory based inter-VM communication optimization below
IP layer. There are several advantages of choosing
implementation in this layer: (i) since the interception is
below the TCP/IP protocol stack, the existing TCP/IP
features, such as reliability and so on, remain untouched; and
(ii) third party tool, such as netfilter [14], is available to hook
into the long TCP/IP network path to facilitate the
implementation of functionalities such as packets
interceptions. However, layer 3 is lower in the software stack.
As mentioned, it potentially lead to higher latency due to
higher protocol processing overheads, more number of data
copies and context switches across barriers. Thus if

alternative approaches for ensuring reliability and
implementing functionalities similar with those provided by
third party tools are available, to achieve better performance
and programming transparency, layer 2 is preferred.

D. Design Choices for Seamless Agility
By seamless agility, we mean that both the detection of

co-resident VMs and the switch between local and remote
mode of inter-VM communication should be carried out
automatically and adaptively in the presence of VM live
migration and VM dynamic deployment (e.g., on-demand
addition or removal of VMs).

1) Automatic Detection of Co-resident VMs
When a shared memory based inter-VM channel is to be

set up or torn down, we need to verify if the communicating
VMs are co-resident or not. Two methods are usually used to
maintain co-residency information. The first one is called the
static method, which is primarily used when the membership
of co-resident VMs is preconfigured or collected manually
by the administrator and is assumed not to change during the
network operations afterwards. Thus, user applications are
aware of the co-residency information. The second one is
called a dynamic method, which provides automatic
detection mechanisms for co-resident VMs and thus
conveniently support VM live migration and dynamic VM
deployment. The static method cannot detect the arrival or
departure of VMs without administrator intervention.

There are two alternative approaches for implementing
dynamic methods according to who initiates the process:

• The privileged domain or corresponding self-defined
software entity periodically gathers co-residency
information and sends it to VMs on the same host.

• VM peers advertise their presence/absence to all
other VMs on the same host upon significant events,
such as VM creation, VM destruction, VM live
migration into and out of a host, VM failure, etc.

The first approach is asynchronous and needs centralized
management by host domain. It is relatively easier to
implement since co-residency information is scattered in a
top-down fashion and the information is supposed to be sent
to co-resident VMs consistently. However, the period
between two periodical probing operations needs to be
configured properly. If the period is set longer than needed, it
would bring delayed co-residency information. If it is too
short, it might lead to unnecessary probing and thus
consumes undesirable CPU cycles. The second approach is
event-driven and synchronous. When a VM migrates out/in,
the VM is expected to notify related VMs and to update the
co-residency information. Thus, the updates are immediate
upon the occurrence of the corresponding events. In
comparison, the first approach periodically collects the status
from co-resident VMs and thus introduces delayed update
and some level of inconsistency. Even with the second
approach, it is possible that co-residency information of
multiple VMs changes concurrently. Thus, the consistency of
the VM co-residency information should be maintained.

2) Transparent Switch between Local and Remote mode
To enable transparent VM live migration, we need not

only to provide both local and remote mode of inter-VM
communication channels, but also to support transparent

switch between the two types of inter-VM connections. Two
tasks are involved in performing the switch: (i) to verify if
the communicating VMs are co-resident, (ii) to find the
proper point where and when to perform the transparent
switch automatically. For the first task, the unique identity of
every VM and the co-residency information are needed.
[Dom ID, IP/Mac address] pairs can be used to uniquely
identify domains. The VM co-residency membership is
dynamically updated by automatic detection mechanism of
co-resident VMs. As for the second task, the approach is to
intercept the requests before setting up or tearing down
connections or before the sender VM transfers the data.

E. Multilevel Transparency
By multilevel transparency, we refer to three levels of

transparency: user level transparency, OS kernel
transparency and VMM transparency.

User level transparency refers to a key design choice
regarding whether applications can take advantages of the
residency-aware optimization without any modifications to
the existing applications and user libraries. With user level
transparency, legacy applications do not need to be modified
to use the shared memory based local channel. User level
transparency is usually one of the preferable end goals for
software development, since it makes program development
and management easier and simpler. To achieve this level of
transparency, it is better to implement the inter co-resident

VM communication in a layer lower than layer 1 such that
no modification is made to the API and user libraries.

By OS kernel transparency, we mean that there is no
modification to either host OS kernel or guest OS kernel, so
that no kernel recompilation and re-linking are needed. With
this feature, no customized OS kernel and kernel patches,
and so forth, need to be introduced, which indicates a more
general and ready to deploy solution. To obtain the feature of
OS kernel transparency, one feasible approach is to use non-
intrusive and self-contained kernel modules to implement
shared memory based inter-VM communication mechanism
since kernel modules have dual advantages: they are
compiled separately from OS kernel and thus recompiling
and re-linking the kernel can be avoided, and they can be
loaded at runtime without requiring system reboot.

VMM Transparency means no modification to VMM
since modifying VMM is relatively more difficult and error
prone than modifying OS kernel. To keep the stability of
VMM and to maintain the independence between VMM and
the guest OS instances, it is desirable to only use interfaces
exported by the VMM, with VMM’s code untouched.

IV. IMPLEMENTATION TECHNIQUES: A COMPARISON
In this section, we make comprehensive analysis and

comparison in terms of the choice of implementation layer in
software stack, fundamental functionalities, seamless agility,
and multilevel transparency. Fig. 3 compares the
architectural layout of existing representative approaches.

Figure 3. Architectural layout of co-resident VM communication mechanisms

A. User Libraries and System Calls Layer
We briefly describe three existing approaches

implemented in this layer: IVC, VMPI and Nahanni.
IVC is designed for cluster-based HPC environment. It

establishes the shared memory channel in layer 1. Different
from other related work on Xen platform, IVC is developed
based on VMM-bypass I/O model instead of split I/O model.
IVC consists of three parts: (i) a user space VM-aware
communication IVC library, supporting shared memory
based fast communication between co-resident VMs, which
provides socket style interfaces, (ii) a user space
MVAPICH2-ivc library, which is derived from MVAPICH2,

an MPI library over Infiniband, and (iii) a kernel driver,
which is called by the user space libraries to grant the
receiver VM the right to access the sharing buffer allocated
by the IVC library and gets the reference handles from Xen
hypervisor. Evaluation demonstrates that in an environment
with multi-core systems and Infiniband interconnects, IVC
achieves comparable performance with native platforms.

VMPI is an Inter-VM communication mechanism for co-
resident VMs targeted to HPC cluster environment on KVM
platform. In VMPI, only local channels are supported.
Different from other related work, VMPI supports two types
of local channels: one to allow fast MPI data transfers
between co-resident VMs based on shared buffers accessible

directly from guest OSes’ user spaces, the other to enable
direct data copies through the hypervisor. VMPI provides a
virtual device that supports these two types of local channels.
Both OS kernel and the hypervisor are extended and
modified to implement VMPI. Experimental results show
that VMPI achieves near native performance in terms of MPI
latency and bandwidth. VMPI only supports a small subset
of MPI API. Its scalability is limited since it does not support
a varying number of co-resident VMs to communicate.

Nahanni provides inter co-resident VM shared memory
API and commands for both host-to-guest and guest-to-guest
communication on KVM platform. It is designed and
implemented mainly in layer 1 and its interfaces are visible
to user space applications. Nahanni consists of three
components: a POSIX shared memory region on the host OS,
a modified QEMU that supports a new Nahanni PCI device
named ivshmem, and a Nahanni guest kernel driver
developed based on UIO (User space I/O) device driver
model. The shared memory region is allocated by host
POSIX operations. It is mapped to QEMU process address
space. The mapped memory can be used by guest
applications by mapping it again to guest user space. Shared-
Memory Server (SMS), a standalone host process running
outside of QEMU is designed and implemented to enable
inter-VM notification. Evaluation results shows that
applications or benchmarks achieve better performance with
Nahanni support. However, to take advantage of Nahanni, it
is required to rewrite applications/libraries, to modify/extend
existing applications/libraries. Nahanni does not support
transparent switches between local and remote mode. VM
migration is not fully supported.

B. Below System Calls Layer & Above Transport Layer
XWAY, XenVMC and Socket-outsourcing are three

existing approaches implemented in this layer.
XWAY makes efforts to abstract all socket options and

keeps user level transparency. XWAY modifies the OS
kernel by patching it and intercepts TCP socket calls below
system calls layer and above transport layer. Hierarchically,
XWAY consists of three layers: switch, protocol and device
driver. They are implemented as a few lines of kernel patch
and a loadable kernel module. At the very first packet
delivery attempt, the switch layer is used to determine if the
receiver is co-resident or not. Then between TCP socket and
local XWAY protocol, it transparently chooses which lower
layer protocol should be called whenever a message is
transmitted. The protocol layer conducts the tasks of data
transmission via the device driver. The device driver plays
basic role to support XWAY socket and XWAY protocol. It
writes data into the sharing buffer or reads data from it. It
also transfers events between the sender and the receiver and
makes callback to upper layers when necessary. Evaluation
results show that under various workloads XWAY achieves
better performance that native TCP socket by bypassing the
long TCP/IP network stack and providing direct shared
memory based channel for co-resident VMs.

XenVMC is a fast residency-aware inter-VM
communication protocol with seamless agility and multilevel
transparency. For XenVMC, Each guest OS hosts a non-

intrusive self-contained XenVMC kernel module, which is
inserted as a thin layer in layer 2. XenVMC kernel module
contains six sub modules: (i) Connection Manager is
responsible for establishing or tearing down local
connections between two VMs, (ii) Data Transfer Manager is
responsible for data sending and receiving, (iii) Event
Manager handles data transmission related notifications
between the sender and the receiver, (iv) System Call
Analyzer intercepts related system calls and analyzes them,
if co-resident VMs are identified, it bypasses traditional
TCP/IP paths, (v) VM State Publisher is responsible for
announcement of VM co-residency membership
modification to related guest VMs, (vi) Live Migration
Assistant supports transparent switch between local and
remote mode communication together with other sub
modules. Experimental evaluation shows that compared with
virtualized TCP/IP method, XenVMC improves co-resident
VM communication throughput by up to a factor of 9 and
reduces corresponding latency by up to a factor of 6.

Socket-outsourcing enables inter co-resident VM
communication by bypassing the network protocol stack in
guest OSes. It consists of three parts: a socket layer guest
module, the VMM extension and a user level host module. In
guest OS, a high level functionality module in socket layer is
replaced to implement the guest module. Socket-outsourcing
supports standard socket API. It is user transparent. However,
the VMM is extended to provide shared memory region
between co-resident VMs, event queues for asynchronous
notification between host module and guest module, as well
as VM Remote Procedure Call (VRPC). The user level host
module acts as a VRPC server for the guest module and
provides socket-like interfaces between the guest module and
the host module. Experimental results show that by using
Socket-outsourcing a guest OS achieves similar network
throughput as a native OS using up to four Gigabit Ethernet
links. Using an N-tier Web benchmark with significant
amount of inter-VM communication, the performance is
improved by up to 45% than conventional KVM hosted VM
approach. No live migration support is provided.

C. Below IP Layer
We also describe three existing approaches in this layer:

XenSocket, XenLoop and MMNet.
XenSocket provides a shared memory based one way co-

resident channel between two VMs and bypasses the TCP/IP
network stack when the communication is local. Most of its
code is in layer 2 and is compiled into a kernel module. It is
not binary compatible with existing applications. In
XenSocket, there are two types of memory pages shared by
the communicating VM peers: the descriptor page, used for
control information storage, and the buffer pages, used for
data transmission. They work together to form a circular
buffer. When a connection is be established, the shared
memory for circular buffer is allocated by the receiver VM
and later mapped by the sender VM. Then the sender writes
data into the buffer and the receiver reads data from it. The
connection is torn down from the sender side after data
transfer to ensure the shared resources be released properly.
To enhance the security, application components with

different trust levels are placed on separate VMs or physical
machines. Performance evaluation shows that XenSocket
achieves better bandwidth than TCP/IP network. XenSocket
does not support automatic detection of co-resident VMs and
transparent switches between local and remote mode.

XenLoop provides fast inter-VM shared memory
channels for co-resident VMs based on Xen memory sharing
facilities. It keeps the feature of multilevel transparency. To
utilize netfilter, XenLoop is implemented below IP layer, the
same layer as netfilter resides. XenLoop consists of two parts:
(i) a kernel module, named XenLoop module, which is
loaded into each guest OS that want to benefit from the fast
local channel, and (ii) a domain discovery module in Dom0.
Implemented on top of netfilter, the module in guest OS
intercepts outgoing network packets below the IP layer and
automatically switches between the standard network path
and a high speed inter-VM shared memory channel. Every
VM is uniquely identified by [guest-ID, MAC address] pairs.
The bidirectional inter-VM channel consists of two FIFO
data channels (one for data sending, the other for data
receiving) and a bidirectional event channel that is used to
enable notifications of data presence for the communicating
VMs. The module in Dom0 is responsible to discover co-
resident VMs dynamically and maintain the co-residency
information, with the help of XenStore. XenLoop supports
transparent VM live migration. Evaluations demonstrate that
XenLoop increases bandwidth by up to a factor of 6 and

reduces the latency by up to a factor of 5 compared with
frontend-backend mode.

MMNet works together with Fido framework to provide
shared memory based inter-VM communication optimization
for co-resident VMs on Xen platform. Fido offers three
fundamental facilities: a shared memory mapping
mechanism, a signaling mechanism for inter-VM
synchronization and a connection handling mechanism. Fido
maps entire kernel space of the sender VM to that of the
receiver VM in a read only manner to avoid unnecessary
data copies and to ensure security. Actually, it is designed for
communicating between VMs that are trustable to each other,
where the mapping of guest OSes’ memory is acceptable.
Built on Fido, MMNet achieves programming transparency
by providing a standard Ethernet interface. Fido and MMNet
together give the user a view of standard network device
interfaces, while the optimization of shared memory based
inter-VM communication is hidden beneath the IP layer.
MMNet provides near native performance and achieves
much better performance than frontend-backend model.

D. Seamless Agility & Multi-level Transparency
Seamless agility refers to VM co-residency membership

maintenance, automatic switches between local and remote
channels, transparent VM live migration and dynamic live
VM deployment support by the shared memory based inter-
VM communication mechanism. Seamless agility features of
representative approaches are summarized in Table I.

TABLE I. SEAMLESS AGILITY FOR VM LIVE MIGRATION AND VM DYNAMIC DEPLOYMENT SUPPORT

Xen Based KVM Based
 IVC XenSocket XWAY XenLoop MMNet

(Fido) XenVMC VMPI Socket-
outsourcing Nahanni

VM Co-residency membership
maintenance

Yes
Static No Yes

Static
Yes

Dynamic
Yes

Dynamic
Yes

Dynamic No No Yes

Automatic switch between local and
Remote channels Yes No Yes Yes Yes Yes No No No

Transparent VM live migration support Not fully
transparent No No Yes Yes Yes No No No

Dynamic VM deployment support No No No Yes Yes Yes No No No

Xen based approaches utilize Xen Grant Table and Event
Channel to facilitate the design and implementation of shared
memory communication channel and the notification
protocol. Almost all of them keep the feature of VMM
transparency except IVC, which modifies the VMM to
enable VM live migration. In comparison, KVM based
approaches, such as Nahanni, VMPI and Socket-outsourcing

are all not VMM transparent. The existing support from
QEMU/KVM for host-guest and guest-guest memory
sharing is not sufficient. Thus current QEMU/KVM is
modified or extended to provide such supports. Among all
the representative related work, only XenLoop, MMNet and
XenVMC keep the features of multilevel transparency. The
multilevel transparency features are summarized in Table II.

TABLE II. MULTILEVEL TRANSPARENCY FEATURES

Xen Based KVM Based
 IVC XenSocket XWAY XenLoop MMNet

(Fido) XenVMC VMPI Socket-
outsourcing Nahanni

User level transparency No No Yes Yes Yes Yes No Yes No
OS kernel level transparency Yes Yes No Yes Yes Yes Yes No Yes
VMM level transparency No Yes Yes Yes Yes Yes No No No

V. ADVANCED FEATURES
Most of the existing development work to date pays little

attentions to advanced features such as reliability, security

and stability. We argue that the next generation of a shared
memory based fast communication mechanism for co-
resident VMs should give full consideration on how to
provide such advanced features.

Reliability. The shared memory based inter-VM
communication for co-resident VMs should have the ability
to perform and maintain expected functionalities in the case
of failures. Thus mechanisms ensuring reliability, such as
connection handling upon VM failures, pending data
processing when VM migrates in/out, should be offered.

Security. A critical design issue for any mechanism that
supports an external process or VM to access memory of
another VM is security. Since information leakage is a severe
concern for memory sharing between un-trusted VMs, a VM
should not be able to access another VM’s memory without
permission unless the communicating VMs have mutual trust.
Thus special care must be taken to ensure desirable degree of
isolation among communicating VM peers.

Stability. From our experimental observations on
existing open source shared memory based co-resident VM
communication mechanism, we find that throughput or
latency of data interchange turns unstable under certain
circumstances and the mechanisms even fails to work in
some boundary conditions [15]. Therefore, special concerns
should be paid during the design of the shared memory
based inter-VM communication mechanisms for co-resident
VMs to ensure the stability. No matter whether the network
protocol is TCP or UDP, the size of messages is extremely
small or large, the arriving frequency of messages is normal
or badly high, the number of co-resident VMs is large scale
or not, the performance is expected to be reasonably stable
and the system is supposed to operate normally.

VI. CONCLUSION
This paper makes three unique contributions. First, we

present the core design guidelines and key issues for
optimizing inter-VM communication using shared memory
based mechanisms, including the choices of implementation
layer in the software stack, seamless agility for VM live
migration and VM dynamic deployment support, multilevel
transparency. Second, we conduct a comprehensive analysis
of representative state-of-the-art research efforts and
implementation techniques based on the core design
guidelines. Third, we also give a prospect of further
requirements in advanced features such as reliability,
security and stability. The research results reported in this
paper not only serves as a comprehensive reference for
developing the next generation of inter-VM communication
optimization mechanisms, but also offers both cloud
infrastructure providers and cloud service consumers an
opportunity to further improve inter-VM communication
efficiency in virtualized platforms.

ACKNOWLEDGMENT
The first author’s research is partially supported by grants

from National Advanced Technology Research and
Development Program under grant NO. 2011AA01A203,
National Nature Science Foundation of China (NSFC) under
grant NO. 60633050 and 61103015, Young Excellent
Teacher Researching and Training Abroad Program of China
Scholarship Council (CSC). The second and third authors are
partially supported by USA NSF CISE NetSE program and

CrossCutting program, an IBM faculty award and a grant
from Intel ISTC on Cloud Computing.

REFERENCES
[1] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, C. Pu, and Y. Cao.

“Who is your neighbor: net I/O performance interference in
virtualized clouds,” IEEE Transactions on Services Computing. IEEE
Computer Society, Los Alamitos, CA, USA. Jan, 2012.

[2] W. Huang, M. Koop, Q. Gao, and D.K. Panda. “Virtual machine
aware communication libraries for high performance computing”,
Proc. of the 2007 ACM/IEEE conference on Supercomputing (SC
'07). ACM New York, NY, USA. Article No. 9. 2007.

[3] X. Zhang, S. McIntosh, P. Rohatgi, J. L. Griffin. “XenSocket: A
high-throughput interdomain transport for virtual machines,” Proc. of
the ACM/IFIP/USENIX 2007 International Conference on
Middleware (Middleware '07). Springer-Verlag New York, Inc. New
York, NY, USA.pp. 184-203, 2007

[4] K. Kim, C. Kim, S. Jung, H. Shin, and J. Kim. “Inter-domain socket
communications supporting high performance and full binary
compatibility on Xen,”Proc. of the fourth ACM SIGPLAN/SIGOPS
international conference on virtual execution environments (VEE '08).
ACM New York, NY, USA. pp. 11-20, 2008.

[5] J. Wang, K. Wright, and K. Gopalan. “XenLoop: A transparent high
performance inter-VM network loopback,” Proc. of the 17th
International Symposium on High Performance Distributed
Computing (HPDC '08). ACM New York, NY, USA. pp. 109-118,
2008.

[6] P. Radhakrishnan, and K. Srinivasan. “MMNet: an efficient inter-vm
communication mechanism,” Proc. of Xen Summit. Boston, June
2008.

[7] A. Burtsev, K. Srinivasan, P. Radhakrishnan, L. N. Bairavasundaram,
K. Voruganti, and G. R. Goodson, “Fido: Fast Inter-Virtual-Machine
Communication for Enterprise Appliances”,Proc. of the 2009
conference on USENIX Annual technical conference.USENIX
Association Berkeley, CA, USA..pp. 25–25, 2009.

[8] Y. Ren, L. Liu, X. Liu, J. Kong, H. Dai, Q. Wu, and Y. Li,“A Fast
and Transparent Communication Protocol for Co-Resident Virtual
Machines,” Proc. of 8th IEEE International Conference on
Collaborative Computing (CollaborateCom2012). October 14 - 17,
Pittsburgh, PA, USA. 2012.

[9] F. Diakhaté, M. Perache, R. Namyst, and H. Jourdren, “Efficient
shared memory message passing for inter-VM communications,” 3rd
Workshop on Virtualization in High-Performance Cluster and Grid
Computing (VHPC'08), as part of Euro-Par 2008. Springer-Verlag
Berlin, Heidelberg. pp. 53-62, 2008.

[10] H. Eiraku, Y. Shinjo, C. Pu, Y. Koh, and K. Kato., “Fast Networking
with Socket-Outsourcing in Hosted Virtual Machine Environments,”
Proc. of ACM symposium on applied computing (SAC '09). ACM
New York, NY, USA. pp.310-317, 2009.

[11] A. C. Macdonell, “Shared-Memory Optimizations for Virtual
Machines,” PhD thesis, Department of Computing Science,
University of Alberta, 2011.

[12] A. Menon, A. L. Cox, and W. Zwaenepoel, “Optimizing network
virtualization in Xen,” Proc. of the annual conference on USENIX '06
annual technical conference (ATEC’06). USENIX Association
Berkeley, CA, USA, pp. 15-28, 2006.

[13] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,”Proc. of the nineteenth ACM symposium on Operating
systems principles (SOSP '03). ACM New York, NY, USA. pp. 164-
177, December 2003.

[14] Netfilter,http://www.netfilter.org/.
[15] Q. Zhang, L. Liu, and Y. Ren, “Co-Resident Inter-VM

Communication: Performance Measurement and Analysis”, CERCS
Technical Report, Georgia Institute of Technology , USA, Feb 2013.

