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PARALLEL MERGE SORT*

RICHARD COLEfY

Abstract. We give a parallel implementation of merge sort on a CREW PRAM that uses n processors
and O(log n) time; the constant in the running time is small. We also give a more complex version of the
algorithm for the EREW PRAM,; it also uses n processors and O(log n) time. The constant in the running
time is still moderate, though not as small.
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1. Introduction. There are a variety of models in which parallel algorithms can
be designed. For sorting, two models are usually considered: circuits and the PRAM;
the circuit model is the more restrictive. An early result in this area was the sorting
circuit due to Batcher [B-68]; it uses time 3 log” n. More recently, Ajtai et al. [AKS-83]
gave a sorting circuit that ran in O(log n) time; however, the constant in the running
time was very large (we will refer to this as the AKS network). The huge size of the
constant is due, in part, to the use of expander graphs in the circuit. The recent result
of Lubotzky et al. [LPS-86] concerning expander graphs may well reduce this constant
considerably; however, it appears that the constant is still large [ CO-86], [Pa-87].

The PRAM provides an alternative, and less restrictive, computation model. There
are three variants of this model that are frequently used: the CRCW PRAM, the
CREW PRAM, and the EREW PRAM,; the first model allows concurrent access to a
memory location both for reading and writing, the second model allows concurrent
access only for reading, while the third model does not allow concurrent access to a
memory location. A sorting circuit can be implemented in any of these models (without
loss of efficiency).

Preparata [Pr-78] gave a sorting algorithm for the CREW PRAM that ran in
O(log n) time on (n log n) processors; the constant in the running time was small. (In
fact, there were some implementation details left incomplete in this algorithm; this
was rectified by Borodin and Hopcroft in [BH-85].) Preparata’s algorithm was based
on a merging procedure given by Valiant [V-75]; this procedure merges two sorted
arrays, each of length at most n, in time O(log log n) using a linear number of processors.
When used in the obvious way, Valiant’s procedure leads to an implementation of
merge sort on n processors using O(log n loglog n) time. More recently, Kruskal
[K-83] improved this sorting algorithm to obtain a sorting algorithm that ran in time
O(log n log log n/log log log n) on n processors. (The basic algorithm was Preparata’s;
however, a different choice of parameters was made.) In part, Kruskal’s algorithm
depended on using the most efficient versions of Valiant’s merging algorithm; these
are also described in Kruskal’s paper.

More recently, Bilardi and Nicolau [BN-86] gave an implementation of bitonic
sort on the EREW PRAM that used n/logn processors and O(log” n) time. The
constant in the running time was small.
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In the next section, we describe a simple CREW PRAM sorting algorithm that
uses n processors and runs in time O(log n); the algorithm performs just 5/2n log n
comparisons. In § 3, we modify the algorithm to run on the EREW PRAM. The
algorithm still runs in time O(log n) on n processors; however, the constant in the
running time is somewhat less small than for the CREW algorithm. We note that apart
from the AKS sorting network, the known deterministic EREW sorting algorithms that
use about n processors all run in time O(log” n) (these algorithms are implementations
of the various sorting networks such as Batcher’s sort). Our algorithms will not make
use of expander graphs or any related constructs; this avoids the huge constants in
the running time associated with the AKS construction.

The contribution of this work is twofold: first, it provides a second O(log n) time,
n processor parallel sorting algorithm (the first such algorithm is implied by the AKS
sorting circuit); second, it considerably reduces the constant in the running time (by
comparison with the AKS result). Of course, AKS is a sorting circuit; this work does
not provide a sorting circuit.

In § 4, we show how to modify the CREW algorithm to obtain CRCW sorting
algorithms that run in sublogarithmic time. We will also mention some open problems
concerning sorting on the PRAM model in sublogarithmic time. In § 5, we consider a
parametric search technique due to Megiddo [ M-83]; we show that the partial improve-
ment of this technique in [C-87b] is enhanced by using the EREW sorting algorithm.

2. The CREW algorithm. By way of motivation, let us consider the natural tree-
based merge sort. Consider an algorithm for sorting # numbers. For simplicity, suppose
that n is a power of 2, and all the items are distinct. The algorithm will use an n-leaf
complete binary tree. Initially, the inputs are distributed one per leaf. The task, at each
internal node u of the tree, is to compute the sorted order for the items initially at the
leaves of the subtree rooted at u. The computation proceeds up the tree, level by level,
from the leaves to the root, as follows. At each node we compute the merge of the
sorted sets computed at its children. Use of the O(log log n) time, n processor merging
algorithm of Valiant, will yield an O(log nloglog n) time, n processor sorting
algorithm. In fact, we know there is an Q(loglog n) time lower bound for merging
two sorted arrays of n items using n processors [ BH-85]; thus we do not expect this
approach to lead to an O(log n) time, n processor sorting algorithm.

We will not use the fast O(log log n) time merging procedure; instead, we base
our algorithm on an O(log n) time merging procedure, similar to the one described
in the next few sentences. The problem is to merge two sorted arrays of n items. We
proceed in log n stages. In the ith stage, for each array, we take a sorted sample of
2" items, comprising every n/2'"'th item in the array. We compute the merge of these
two samples. Given the results of the merge from the i— 1st stage, the merge in the
ith stage can be computed in constant time (this, or rather a related result, will be
justified later).

At present, this merging procedure merely leads to an O(log® n) time sorting
algorithm. To obtain an O(log n) time sorting algorithm we need the following key
observation:

The merges at the different levels of the tree can be pipelined.
This is plausible because merged samples from one level of the tree provide fairly

good samples at the next level of the tree. Making this statement precise is the key to
the CREW algorithm.
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We now describe our sorting algorithm. The inputs are placed at the leaves of the
tree. Let u be an internal node of the tree. The task, at node u, is to compute L(u),
the sorted array that contains the items initially at the leaves of the subtree rooted at
u. At intermediate steps in the computation, at node u, we will have computed UP(u),
a sorted subset of the items in L(u); UP(u) will be stored in an array also. The items
in UP(u) will be a rough sample of the items in L(u). As the algorithm proceeds, the
size of UP(u) increases, and UP(u) becomes a more accurate approximation of L(u).
(Note that at each stage we use a different array for UP(u).)

We explain the processing performed in one stage at an arbitrary internal node
u of the tree. The array UP(u) is the array at hand at the start of the stage; NEWUP(u)
is the array at hand at the start of the next stage, and OLDUP(u) is the array at hand
at the start of the previous stage, if any. Also, in each stage, we will create an array
SUP(u) (short for SAMPLEUP(u)) at node u; NEWSUP(u), OLDSUP(u) are the
corresponding arrays in respectively, the next, and previous, stage. SUP(u) is a sorted
array comprising every fourth item in UP(u), measured from the right end; i.e., if
|UP(u)| = m, then SUP(u) contains the items of rank m -3 —4i in UP(u), for 0=i<
{m/4]. At each stage, for each node u, the computation comprises the following two
phases.

(1) Form the array SUP(u).

(2) Let v and w be u’s children. Compute NEWUP(u) = SUP(v) U SUP(w), where

U denotes merging.

There are some boundary cases where we need to change Phase 1. (For example,
initially, the UP arrays each contain one or zero items. Thus, the SUP arrays would
all be empty and the algorithm would do nothing.) In view of this, we establish the
following goal: at each stage, so long as 0# |UP(u)| #|L(u)|, the size of NEWUP(u)
is to be twice the size of UP(u). At this point, some definitions will be helpful. A node
is external if [UP(u)|=|L(u)|, and it is inside otherwise. Phases 1 and 2, above, are
performed at each inside node. At external nodes, Phase 2 is not performed and Phase
1 is modified as follows. For the first stage in which u is external, Phase 1 is unchanged.
For the second stage, SUP(u) is defined to be every second item in UP(u), in sorted
order. And for the third stage, SUP(u) is defined to be every item in UP(u), in sorted
order. It should be clear that we have achieved our goal, namely, the following lemma.

LEMMA 1. While 0 <|UP(u)| <|L(u)|, INEWUP(u)| =2|UP(u)|.

It is also clear that 3 stages after node u becomes external, node ¢, the parent of
u, also becomes external. We conclude the following.

Lemma 2. The algorithm has 3 log n stages.

It remains for us to show how to perform the merges needed for Phase 2. We will
show that they can be performed in constant time using O(n) processors. This yields
the O(log n) running time for the sorting algorithm.

A few definitions will be helpful. Let e, f, g be three items, with e < g. f is between
e and g if e=f and f< g, we also say that e and g straddle f. Let L and J be sorted
arrays. Let f be an item in J, and let e and g be the two adjacent items in L that
straddle f (if necessary, we let e = —00 or g =00); then the rank of f in L is defined
to be the rank of e in L (if e =—0o0, f is defined to have rank 0). We define the range
[e, g) to be the interval induced by item e (including the cases e = —00 and g =00). L
is a c-cover of J if each interval induced by an item in L contains at most ¢ items from
J. We also say that the items from J in the range [e, g) are contained in e’s interval.
We define L to be ranked in J (denoted L J) if for each item in L we know its rank
in J, and we define L and J to be cross-ranked (denoted Lx J) if both L->J and J > L.
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We will need the following observation to show that the merge can be performed
in O(1) time:

OLDSUP(v) is a 3-cover for SUP(v) for each node v; as UP(u)=

OLDSUP(v)UOLDSUP(w), we deduce UP(u) is a 3-cover for SUP(v);
similarly, UP(u) is a 3-cover for SUP(w).

This will be shown in Corollary 1, below. But first, we describe the merge
(Phase 2).

We need some additional information in order to perform the merge quickly.
Specifically, we assume UP(u) - SUP(v), UP(u)~> SUP(w) are available. Using these
rankings, in Step 1 we compute NEWUP(u), and in Step 2 we compute NEWUP(u) >
NEWSUP(v) and NEWUP(u) > NEWSUP(w).

Step 1—computing NEWUP(u). Let e be an item in SUP(v); the rank of e in
NEWUP(u) = SUP(v) U SUP(w) is equal to the sum of its ranks in SUP(») and SUP(w).
So to compute the merge we cross-rank SUP(v) and SUP(w) (the method is given in
the following two paragraphs). At this point, for each item e in SUP(v), besides
knowing its rank in NEWUP(u), we know the two items d and f in SUP(w) that
straddle e, and we know the ranks of d and f in NEWUP(u) (these will be needed in
Step 2). For each item in NEWUP(u) we record whether it came from SUP(v) or
SUP(w) and we record the ranks (in NEWUP(u)) of the two straddling items from
the other set.

Let ¢ be an item in SUP(v); we show how to compute its rank in SUP(w). We
proceed in two substeps.

Substep 1. For each item in SUP(v) we compute its rank in UP(u). This task is
performed by processors associated with the items in UP(u), as follows. Let y be an
item in UP(u). Consider the interval I(y) in UP(u) induced by y, and consider the
items in SUP(v) contained in I(y) (there are at most three such items by the 3-cover
property). Each of these items is given its rank in UP(u) by the processor associated
with y. Substep 1 takes constant time if we associate one processor with each item in
the UP array at each inside node.

Substep 2. (See Fig. 1.) For each item e in SUP(v) we compute the rank of e in
SUP(w). We determine the two items d and f in UP(u) that straddle e, using the rank
computed in Substep 1. Suppose that d and f have ranks r and ¢, respectively, in
SUP(w). Then all items of rank r or less are smaller than item e (recall we assumed
that all the inputs were distinct), while all items of rank greater than ¢ are larger than
item e; thus the only items about which there is any doubt as to their size relative to
e are the items with rank s, r<s =1t But there are at most three such items by the
3-cover property. By means of at most two comparisons, the relative order of e and
these (at most) three items can be determined. So Substep 2 requires constant time if
we associate one processor with each item in each SUP array.

UP(uw) L)
sse O o o .o
SUP(v) -—
>e
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Step 2—maintaining ranks. For each item e in NEWUP(u), we want to determine
its rank in NEWSUP(v) (and in NEWSUP(w), using an analogous method). We start
by making a few observations. Given the ranks for an item from UP(u) in both SUP(v)
and SUP(w) we can immediately deduce the rank of this item in NEWUP(u) =
SUP(v) USUP(w) (the new rank is just the sum of the two old ranks). Similarly, we
obtain the ranks for items from UP(v) in NEWUP(v). This yields the ranks of items
from SUP(v) in NEWSUP(v) (for each item in SUP(v) came from UP(v), and
NEWSUP(v) comprises every fourth item in NEWUP(v)). Thus, for every item e in
NEWUP(u) that came from SUP(v) we have its rank in NEWSUP(v); it remains to
compute this rank for those items e in NEWUP(u) that came from SUP(w).

Recall that for each item e from SUP(w) we computed the straddling items d and
f from SUP(v) (in Step 1). (See Fig. 2.) We know the ranks r and ¢ of d and f,
respectively, in NEWSUP(v) (as asserted in the previous paragraph). Every item of
rank r or less in NEWSUP(v) is smaller than e, while every item of rank greater than
t is larger than e; thus, the only items about which there is any doubt concerning their
size relative to e are the items with rank s, r <s = t. But there are at most three such
items by the 3-cover property. As before, the relative order of e and these (at most)
three items can be determined by means of at most two comparisons. Thus, Step 2
takes constant time if we associate a processor with each item in the NEWUP array
at each inside node.

d f key: ® from SUP (w)
NEWUP (u) =+ © from SUP (v)
NEWSUP(v) +++ © O eoe
<e >e
FiG. 2

It remains to prove the 3-cover property (Corollary 1 to Lemma 3) and to determine
the complexity of the algorithm (Lemmas 4 and 5).

LemMmA 3. Let k= 1. In each stage, any k adjacent intervals in SUP(u) contain at
most 2k + 1 items from NEWSUP(u).

Proof. We prove the result by induction on the (implicit) stage number. The claim
is true initially, for when SUP(u) first becomes nonempty, it contains one item and
NEWSUP(u) contains two items, and when SUP(u) is empty, NEWSUP(u) contains
at most one item.

Inductive step. We seek to prove that k adjacent intervals in SUP(u) contain at
most 2k +1 items from NEWSUP(u), assuming that the result is true for the previous
stage, i.e., that for all nodes ', for all k'=1, k' intervals in OLDSUP(u’) contain at
most 2k’-+1 items from SUP(u’).

We first suppose that u is not external at the start of the current stage. (See Fig. 3.)
Consider a sequence of k adjacent intervals in SUP(u); they cover the same range as
some sequence of 4k adjacent intervals in UP(u). Recall that UP(u)=
OLDSUP(v) UOLDSUP(w). The 4k intervals in UP(u) overlap some h =1 adjacent
intervals in OLDSUP(v) and some j=1 adjacent intervals in OLDSUP(w), with
h+j=4k+1. The h intervals in OLDSUP(v) contain at most 2k + 1 items from SUP(v),
by the inductive hypothesis, and likewise, the j intervals in OLDSUP(w) contain at
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most 2j + 1 items from SUP(w). Recall that NEWUP(u) = SUP(v) U SUP(w). Thus the
4k intervals in UP(u) contain at most 2h +2j+2 =8k +4 items from NEWUP(u). But
NEWSUP(u) comprises every fourth item in NEWUP(u); thus the k adjacent intervals
in SUP(u) contain at most 2k +1 items from NEWSUP(u).

It remains to prove the lemma for the first and second stages in which u is external
(for the third stage in which u is external there is no NEWUP(u) array, and hence no
NEWSUP(u) array). Here we can make the following stronger claim concerning the
relationship between SUP(u) and NEWSUP(u): k adjacent intervals in SUP(u) contain
exactly 2k items from NEWSUP(u) and every item in SUP(u) occurs in NEWSUP(u).
This is readily seen. Consider the first stage in which u is external. SUP(u) comprises
every fourth item in UP(u) = L(u) and NEWSUP(u) comprises every second item in
UP(u). Clearly the claim is true for this stage; the argument is similar for the second
stage. O

Taking k=1 we obtain the following.

CoRrOLLARY 1. SUP(u) is a 3-cover of NEWSUP(u).

Remark. An attempt to prove Lemma 3, in the same way, with a sampling strategy
of every second (rather than every fourth) item will not succeed. This explains why
we chose the present sampling strategy. It is not the only strategy that will work
(another possibility is to sample every eighth item, or even to use a mixed strategy,
such as using samples comprising every second and every fourth item, respectively, at
alternate levels of the tree); however, the present strategy appears to yield the best
constants.

We turn to the analysis of the algorithm. We start by computing the total number
of items in the UP arrays. If |UP(u)|#0 and v is not external, then 2|UP(u)|=
INEWUP(u)| = |SUP(v)|+|SUP(w)| =1(JUP(v)| +|UP(w)|) =5|UP(v)|; that is:

Observation. |UP(u)|=4|UP(v)|. So the total size of the UP arrays at u’s level is
3 of the size of the UP arrays at v’s level, if v is not external.

The observation need not be true at external nodes v. It is true for the first stage
in which v is external; but for the second stage, |UP(u)|=3|UP(v)|, and so the total
size of the UP arrays at u’s level is § of the total size of the arrays at v’s level; likewise,
for the third stage, |[UP(u)| =|UP(v)}, and so the total size of the UP arrays at u’s level
is 3 of the total size of the UP arrays at v’s level.
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Thus, on the first stage in which v is external, the total size of the UP arrays is
bounded above by n+n/8+n/64+---=n+n/7; on the second stage, by n+n/4+
n/32+:-+=n+2n/7; on the third stage, by n+n/2+n/16+- - - = n+4n/7. Similarly,
on the first stage, the total size of the SUP arrays (and hence of the NEWUP arrays
at inside nodes) is bounded above by n/4+n/32+n/256+- - -=2n/7; on the second
stage, by n/2+n/16+n/128+- - - =4n/7; on the third stage, by n+n/8+n/64+- - .=
8n/7.

We conclude that the algorithm needs O(n) processors (so as to have a processor
standing by each item in the UP, SUP, and NEWUP arrays) and takes constant time.
Let us count precisely how many comparisons the algorithm performs.

LemMMA 4. The algorithm performs 15/4n log n comparisons.

Proof. Comparisons are performed in Substep 2 of Step 1 and in Step 2. In Step
1, at most 2 comparisons are performed for each item in each SUP array. Over a
sequence of three successive stages this is 2 - (2n/7+4n/7+8n/7) =4n comparisons.
In Step 2, at most 2 comparisons are performed for each item in the NEWUP array
at each inside node. Over a sequence of three successive stages this is also 4n com-
parisons. However, we have overcounted here; on the third stage, in which node u
becomes external, we do not perform any comparisons for items in NEWUP(u); this
reduces the cost of Step 2 to 2n comparisons.

So we have a total of at most 6n comparisons for any three successive stages.
However, we are still overcounting; we have not used the fact that during the second
and third stages in which node v is external, SUP(v) is a 2-cover of NEWSUP(v) and
every item in SUP(v) occurs in NEWSUP(v) (see the proof of Lemma 3). This implies
that in Step 1, for each item in array SUP(v), in the second or third stage in which v
is external, at most one comparison need be made (and not two). This reduces the
number of comparisons in Step 1, over a sequence of three stages, by n/2+n=3/2n.
Likewise, in Step 2, for each item in array NEWUP(u), in the first or second stages
in which the children of u are external nodes, at most one comparison is performed.
This reduces the number of comparisons in Step 2, over a sequence of three stages,
by n/4+n/2=3/4n. Thus the total number of comparisons, over the course of three
successive stages, is 5/2n for Step 1, and 5/4n for Step 2, a total of 15/4n com-
parisons. [

In order to reduce the number of comparisons to 5/2n log n, we need to modify
the algorithm slightly. More specifically, we modify Step 1, as follows, so that it
performs a total of 5/4n log n comparisons, rather than 5/2n log n comparisons. When
computing the rank of each item from SUP(v) (respectively, SUP(w)) in SUP(w)
(respectively, SUP(v)), we will allow only the items in SUP(v) to perform comparisons
(or rather, processors associated with these items). We compute the ranks for items
from SUP(v) as before. To obtain the ranks for items from SUP(w) we need to change
both substeps. We change Substep 1 as follows. For each item h in SUP(w), we compute
its rank r in UP(u) as before (the old Substep 1). Let k be the item of rank r in UP(u),
and let s be the rank of k in SUP(v). We also store the rank s with item h. s is a good
estimate of the rank of h in SUP(v); it is at most three smaller than the actual rank.
We change Substep 2 as follows. (See Fig. 4.) Item e in SUP(v), of rank ¢, communicates
its rank to the following, at most three, receiving items in SUP(w): those items with
rank ¢ in SUP(v) which at present store a smaller estimate for this rank. (These items
are determined as follows. Let d and f be the items from UP(u) that straddle e. Let
g be the successor of e in SUP(v). The receiving items are exactly those items straddled
both by e and g, and by d and f; the second constraint implies that there are at most
three receiving items for e, by the 3-cover property.) For those items h in SUP(w) that
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do not receive a new rank from an item in SUP(v), the rank s computed in the modified
Substep 1 is the correct rank.

This new procedure reduces the number of comparisons in Step 1 by a factor of
2, and leaves unaltered the number of comparisons in Step 2. We conclude the following.

LeMMA 5. The algorithm performs 5/2n log n comparisons.

We have shown the following.

THeOREM 1. There is a CREW PRAM sorting algorithm that runs in O(log n) time
on n processors, performing at most 5/2n log n comparisons.

Remark. The algorithm needs only O(n) space. For although each stage requires
O(n) space, the space can be reused from stage to stage.

3. The EREW algorithm. The algorithm from § 2 is not EREW at present. While
it is possible to modify Step 1 of a phase so that it runs in constant time on an
EREW PRAM, the same does not appear to be true for Step 2. Since we use a somewhat
different merging procedure here, we will not explain how Step 1 can be modified.
However, we do explain the difficulty faced in making Step 2 run in constant time on
an EREW PRAM. The explanation follows. Consider NEWUP(u) and consider e and
g, two items adjacent in SUP(v); suppose that in NEWUP(u), between e and g, there
are many items f from SUP(w). Let f' be an item in NEWSUP(v), between e and g.
(See Fig. 5.) The difficulty is that for each item f we have to decide the relative order
of f and f'; furthermore, the decision must be made in constant time, without read
conflicts, for every such item f. This cannot be done. To obtain an optimal logarithmic
time EREW sorting algorithm we need to modify our approach. Essentially, the
modification causes this difficult computation to become easy by precomputing most
of the result.

We now describe the EREW algorithm precisely. We use the same tree as for the
CREW algorithm. At each node v of the tree we maintain two arrays: UP(v) (defined
as before), and DOWN(v) (to be defined). We define the array SUP(v) as before; we
introduce a second sample array, SDOWN(v): it comprises every fourth item in

key: ® from SUP (w)

e f
NEWUP (u)... -~
E fw ¢ o from SUP (v)

see

s
NEWSUP(V)..§ o
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DOWN(v). Let u, w, x, and y be, respectively, the parent, sibling, left child, and right
child of v. A stage of the algorithm comprises the following three steps, performed at
each node v.

(1) Form the arrays SUP(v) and SDOWN(v).
(2) Compute NEWUP(v) =SUP(x) U SUP(y).
(3) Compute NEWDOWN(v) =SUP(w) U SDOWN(u).

We will need to maintain some other arrays in order to perform the merges in constant
time; namely, the arrays UP(v) U SDOWN(v) and SUP(v) U SDOWN(v). It is useful
to note that SDOWN(v) is a 3-cover of NEWSDOWN(v); the proof of this result is
identical to the proof of the 3-cover property for the SUP arrays (given in Lemma 3
and Corollary 1).

We describe the new merging procedure. Assume that J and K are two sorted
arrays of distinct items, J and K having no items in common. We show how to compute
Jx K in constant time using a linear number of processors (this yields L=J U K),
supposing that we are given the following arrays and rankings (see Fig. 6):

(i) Arrays SJ and SK that are 3-covers for J and K| respectively.
(ii)) SJxSK and SL=SJUSK.

(iii) SK - J and SJ-> K.

(iv) SJ—>J and SK » K.

We will also compute SL- L.

We note that the interval I between two adjacent items, e and f, from SL= SJ U SK
contains at most three items from each of J and K. In order to cross-rank J and K,
it suffices, for each such interval, to determine the relative order of the (at most) six
items it contains. To carry out this procedure we associate one processor with each
interval in the array SL. The number of intervals is one larger than the number of
items in this array. The cross-ranking proceeds in two substeps: for each interval I in
SL, in Substep 1 we identify the two sets of (at most) 3 items contained in I, and in
Substep 2 we compute the cross-rankings for the items contained in I

Sy +——+SK key: —e input ranking
1 1 ---# output ranking
J *——e - K

FiG. 6

Substep 1. The (at most) three items from J are those straddled by e and f. If e
is in SJ (respectively, SK) we determine the leftmost of these (at most) three items
using SJ —» J (respectively, SK - J); the rightmost item is obtained similarly. The (at
most) three items from K are computed analogously.

Substep 2. This substep is straightforward; for each interval in SL, it requires at
most five comparisons, and a constant number of other operations.

Computing SL— L. For each item e in SL, we simply add its ranks in J and K,
which yields its rank in L (these ranks are obtained from SJ-J and SJ-> K if e is
from SJ, and from SK - J and SK - K if e is from SK).
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Remark. If SJ (respectively, SK) is a 4-cover of J (respectively, K) but SJ
(respectively, SK) is contained in J (respectively, K) then (essentially) the same
algorithm can be used, since the interior of any interval in SL will still contain at most
three items from J and at most three items from K.

We return to the EREW sorting algorithm. We suppose that the following rankings
are available at the start of a phase at each node v (see Fig. 7):

(a) OLDSUP(x)x OLDSUP(y).

(b) OLDSUP(v) - SUP(v).

(c) OLDSUP(w)x OLDSDOWN(u).

(d) OLDSDOWN(v)>SDOWN(v).

(e) SUP(v)x SDOWN(v).

(f) UP(v) x SDOWN(v).

(g) SUP(v)x DOWN(v).

In addition, we note that since DOWN(v) = OLDSUP(w) U OLDSDOWN(u), and as
we have SUP(v) x DOWN(v) from (g), we can immediately obtain:

(h) OLDSUP(w) - SUP(v).

(i) OLDSDOWN(u)~ SUP(v).

Likewise, from UP(v)=OLDSUP(x)UOLDSUP(y) and from (f), UP(v)x
SDOWN(v), we obtain:

(j) OLDSUP(x)->SDOWN(v), OLDSUP(y)-» SDOWN(v).

The computation of (a)-(g) for the next stage at node v proceeds in five steps. In Step
1 we compute (a) and (b), in Step 2, (¢) and (d), in Step 3, (e), in Step 4, (f), and in
Step 5, (g).

Remark. We note that all the items in DOWN(u) come from outside the subtree
rooted at u (this is easily verified by induction). This implies that SUP(w) and
SDOWN(u) have no items in common, and likewise for UP(v) and DOWN(v). Thus,
all the cross-rankings J x K that we compute below obey the assumption that J and
K contain no items in common.

Step 1. Compute SUP(x) x SUP(y) (yielding NEWUP(v)). The computation also
yields UP(v)> NEWUP(v), and hence SUP(v)-> NEWSUP(v). (See Fig. 8.) We
already have:

(i) OLDSUP(x)x OLDSUP(y) (from (a) at node v).

(ii) OLDSUP(x)- SUP(y) (from (h) at node y).

(iii) OLDSUP(y)—> SUP(x) (from (h) at node x).

————

0 - PR
WN({u)
:OLDSDO hf(c"nf/ (c) {OLDSUP(y) \
I
powNw+l ) (@) (Qlosup(v) OLDSDOWN(v) ! (al l=uptv)
l\(\)LDSUP(w/),/ (b) @] T oLpsup "l’/

———— —— —

SUP (v) <£L—>SDOWN(V)

1 (f) (g)

UP{v) DOWN (v)

FiG. 7
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OLDSUP(x) «— o o1 psup (y)

(h) {h)
(b) (b)

SUP(x) SUP(y)

F1G. 8. Step 1.

(iv) OLDSUP(x)- SUP(x) (from (b) at node x).

(v) OLDSUP(y)-SUP(y) (from (b) at node y).

Step 2. Compute SUP(w) x SDOWN(u) (yielding NEWDOWN(v)). This compu-
tation also yields DOWN(v)> NEWDOWN(v), and hence SDOWN(v)-
NEWSDOWN(v). (See Fig. 9.) We already have:

(i) OLDSUP(w)x OLDSDOWN(u) (from (c¢) at node v).

(ii) OLDSUP(w)—->SDOWN(u) (from (j) at node u).

(iii) OLDSDOWN(u) - SUP(w) (from (i) at node w).

(iv) OLDSUP(w) - SUP(w) (from (b) at node w).

(v) OLDSDOWN(u)->SDOWN(u) (from (d) at node u).

Step 3. Compute NEWSUP(v) x NEWSDOWN(v). (See Fig. 10.) We already

have:

(i) SUP(v) x SDOWN(v) (from (e) at node v).

(i) SUP(v) x NEWDOWN(v), and hence SUP(v)> NEWSDOWN(v) (this is
obtained from: SUP(v) x SUP(w), from Step 1 at node u, and SUP(v) X
SDOWN(u), from Step 2 at node w, yielding SUP(v)x
[SUP(w)USDOWN(u)] = SUP(v) x NEWDOWN(v)).

OLDSUP (w)<'(—C)> OLDSDOWN (u}
(j) (i)

{b) (d)

SUP (w) SDOWN (u)
F1G. 9. Step 2.

(e)

SUP(v)e——————» SDOWN {v)
step3ii step 3iii

stepl step 2

NEWSUP (v} NEWSDOWN (v)
F1G. 10. Step 3.
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(iii) NEWUP(v) x SDOWN(v), and hence SDOWN(v) > NEWSUP(v) (this is
obtained from SUP{x) x SDOWN(v), from Step 2 at node y, and SUP(y) x
SDOWN(v), from Step 2 at node x, yielding [SUP(x)USUP(y)]x
SDOWN(v) = NEWUP(v) x SDOWN(v)).

(iv) SUP(v) > NEWSUP(v) (from Step 1 at node v).

(v) SDOWN(v)-> NEWSDOWN(v) (from Step 2 at node v).
Step 4. Compute NEWUP(v) x NEWSDOWN(v). (See Fig. 11.) We already have:
(i) NEWSUP(») x SDOWN(v) (from Step 3(iii) at node v).

(ii) SDOWN(v)-> NEWUP(v) (from Step 3(iii) at node v).

(iii) NEWSUP(v) > NEWSDOWN(v) (from Step 3 at node v).

(iv) NEWSUP(v) > NEWUP(v).

{(v) SDOWN(v)> NEWSDOWN(v) (from Step 2 at node v).
{(Here NEWSUP(v) is a 4-cover of NEWUP(v), contained in NEWUP(v); as explained
in the remark following the merging procedure, this leaves the complexity of the
merging procedure unchanged.)

Step 5. Compute NEWSUP(v) x NEWDOWN(v). (See Fig. 12.) We already have:

(i) SUP(v) x NEWSDOWN(v) (from Step 3(ii) at node v).

(ii) SUP(v)> NEWDOWN(v) (from Step 3(ii) at node v).

(iii) NEWSDOWN(v) > NEWSUP(v) (from Step 3 at node v).

(iv) SUP(v)—> NEWSUP(v) (from Step 1 at node v).

(v) NEWSDOWN(v) > NEWDOWN(v).
We conclude that each stage can be performed in constant time, given one processor
for each item in each array named in (i) of each step, plus one additional processor
per array.

It remains to show that only O(n) processors are needed by the algorithm. This

is a consequence of the following linear bound on the total size of the DOWN arrays.

LEMMA 6. |[DOWN(v)| =16/31|SUP(v)|.

Proof. This is readily verified by induction on the stage number. 0

NEWSUP (v ) a—reP 31t

step3 step3iii

SDOWN (v}

step 2
NEWUP(v) NEWSDOWN (v)
Fi1G. 11. Step 4.
tep 3ii
SUP(v) e——P =11 o NEWSDOWN (v)
step 3ii step3

stepl
NEWSUP(v) NEWDOWN (v)

FiG. 12. Step S.
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CoROLLARY 2. The total size of the DOWN arrays, at any one stage, is O(n).

This algorithm, like the CREW algorithm, has 3 log n stages. We conclude the
following.

THEOREM 2. There is an EREW PRAM algorithm for sorting n items; it uses n
processors and O(n) space, and runs in O(log n) time.

We do not give the elaborations to the merging procedure required to obtain a
small total number of comparisons (as regards constants). We simply remark that it
is not difficult to reduce the total number of comparisons to less than 5n log n com-
parisons; however, as there is no corresponding reduction in the number of other
operations, this complexity bound gives a misleading impression of efficiency (which
is why we do not strive to attain it).

4. A sublogarithmic time CRCW algorithm. References [AAV-86] and [AV-87]
give tight upper and lower bounds for sorting in the parallel comparison model; using
P = n processors to sort n items the bound is @(log n/log 2p/n). In addition, there is
a lower bound of Q(log n/log log n) for sorting n items with a polynomial number of
processors in the CRCW PRAM model [BH-87]. We give a CRCW algorithm that uses
time O(log n/loglog2p/n) for 2n = p =n?. It is not clear which, if any, of the upper
and lower bounds are tight for the CRCW PRAM model.

We describe the algorithm; it is very similar to the CREW algorithm. Let r=p/n.
It is convenient to assume that n is a power of r (the details of the general case are
left to the reader). There are three major changes to the CREW algorithm. First, rather
than use a binary tree to guide the merges, we use an r-way tree. This tree has height
h=1log n/log r. Second, we define the array SUP(v) to comprise every r* item in UP(v),
rather than every fourth item; again, at the external nodes we need a special definition,
namely: SUP(v) comprises every r* item in the first stage v is external, every rth item
in the second stage, and every item in the third stage. Third, the array NEWUP(v) is
defined to be the r-way merge of the SUP arrays at its r children. As before, the
algorithm will have 3h =3 log n/log r stages. But here, rather than use constant time,
each stage will take O(log r/loglog 2r) time.

To obtain the r-way merge we perform 3r(r—1) pairwise merges of the r SUP
arrays. To obtain the rank of an item in the array NEWUP(v) we sum its ranks in
each of the r SUP arrays. We use r processors to compute this sum; they take
O(log r/loglog r) time on a CRCW PRAM using the summation algorithm from
[CV-87].

Before explaining how to perform a single pairwise merge it is useful to prove a
cover property.

LemMMA 7. k intervals in SUP(v) contain at most rk+1 items in NEWSUP(v).

Proof. The proof is very similar to that of Lemma 2; the details are left to the
reader. 0O

CoROLLARY 3. SUP(v) is an (r+1)-cover of NEWSUP(v).

We perform the merges essentially as in the CREW algorithm. Here, at the start
of a stage, we need to assume that for each node u, for each item in UP(u) we have
its rank in the SUP arrays at all r of u’s children. Let v, w be children of u. We proceed
in two steps, as in the CREW algorithm.

In Step 1, we start by dividing each pairwise merge into a collection of merging
subproblems, each of size at most 2(r+1); each subproblem is then solved using
Valiant’s merging algorithm [V-75]. To divide a merge into subproblems, we exploit
the fact that UP(u) is an (r+1)-cover of SUP(v), as follows. For each child v of u,
we label each item in SUP(v) with its rank in UP(u) (this is carried out in constant
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time by providing each item in UP(u) with r(r+1) processors). A subproblem is
defined by those items labeled with the same rank; it comprises two subarrays each
containing at most r+1 items. For the problem of merging SUP(v) and SUP(w), for
any item e in SUP(v) (respectively, SUP(w)) the boundaries of its subproblem can be
found as follows: let f and g be the items in UP(u) straddling e (obtained using the
rank of e in UP(u)); the ranks of f and g in SUP(v), SUP(w) yield the boundaries
of the subproblem. To ensure that the merges performed using Valiant’s algorithm
each take O(loglog2r) time, we need to provide a linear number of processors for
each merge. Since each item in SUP(v) participates in exactly r—1 merges, it suffices
to allocate r—1 processors to each item in each SUP array. This gives us NEWUP(u).

In Step 2, ranking the items from NEWUP(u) —~SUP(v) in NEWSUP(v) for each
child v of u, we proceed as follows. Consider an interval I induced by an item e from
SUP(v). For each such interval I, we divide each collection of items from NEWUP(u) —
SUP(v), contained in I, into sets of r contiguous items, with possibly one smaller set
per interval. Using Valiant’s algorithm, we merge each such set with the at most r+1
items in NEWSUP(v) contained in I If we allocate r processors to each merging
problem, they will take O(log log 2r) time. To allocate the processors, we assign 2(r —1)
processors to each item in NEWUP(u). Each item participates in r —1 merging prob-
lems. In a merging problem, if the item is part of a set of size r, the item uses one of
its assigned processors. If the item is part of a set of size <r, the item takes one
processor from the item e defining the interval I. Each item e contributes at most r—1
processors to a merging problem in the latter manner, thus it suffices to provide 2(r—1)
processors to each item in NEWUP(u).

We conclude the following.

THEOREM 3. There is a CRCW sorting algorithm for the CRCW PRAM that uses
2n = p =n? processors and runs in time O(log n/log log 2p/n).

5. A parametric search technique. The reader is warned that this section is not
self-contained. We recall Megiddo’s parametric search technique [M-83] and its
improvement in many instances in [C-87b]. The improvement was an asymptotic
improvement, but was not practical for it was based on the AKS sorting network. As
we will explain, the role played by the AKS network can be replaced by the EREW
sorting algorithm from § 3.

In a nutshell, the procedure of [C-87b] can be described as follows. A comparison-
based sorting algorithm is executed; however each “comparison™ is an expensive
operation costing C(n) time, where n is the size of the problem at hand. In addition,
the comparisons have the property that they can be “batched”: given a set of ¢
comparisons, one of them can be evaluated, and the result of this evaluation resolves
further ¢/2 comparisons, in an additional O(c) time. Examples of search problems
(called parametric search problems), mostly geometric search problems, for which this
approach is fruitful, include [M-83], [C-87a], [C-87b], [CSS-88]. Megiddo showed
that parallel sorting algorithms, executed sequentially, provide good sorting algorithms
for this type of problem; the reason is that a parallel sorting algorithm naturally batches
comparisons.

In [C-87b] it was shown how to achieve a running time of O(n log n +log nC(n))
for the parametric search problems, when using a depth O(log n) sorting network as
the sorting algorithm. (Briefly, the solution required O(log n) “comparisons” to be
evaluated; the overhead for running the sorting algorithm and selecting the comparisons
to be evaluated was O(n log n) time.) It was also observed that to achieve this result
it sufficed to have a comparison-based algorithm which could be represented as an
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O(log n) depth, O(n) width, directed acyclic graph, having bounded indegree, where
each node of the graph represented a comparator and the edges carried the outputs
of the comparators.

In fact, a slightly more general claim holds. We start by defining a computation
graph corresponding to an EREW PRAM algorithm on a given input. We define a
parallel EREW PRAM computation to proceed in a sequence of steps of the following
form. In each step, every processor performs at most b (a constant) reads, followed
by at most b writes; a constant number of arithmetic operations and comparisons are
intermixed (in any order) with the reads and writes. We represent the computation of
the algorithm on a given input as a computation graph; the graph has depth 2T (where
T is the running time of the algorithm) and width M + P (where M is the space used
by the algorithm and P is the number of processors used by the algorithm). In the
computation graph each node represents either a memory cell at a given step, or a
processor at a given step. There is a directed edge ((m, t), (p, t)) if processor p reads
memory cell m at step t; likewise there is a directed edge ({p, 1), {m, t+ 1)) if processor
p writes to memory cell m at step ¢ If no write is made to memory cell m at step ¢,
there is a directed edge ({m, 1), (m, t+1)).

Suppose we restrict our attention to algorithms such that at the start of the
algorithm, for each memory cell (at step t+1) we know whether the in-edge (in the
computation graph) comes from a processor (at step t) or a memory cell (at step ).
For a sorting algorithm of this type, that runs in time O(log n) on n processors using
O(n) space, we can still achieve a running time of O(nlog n+log nC(n)) for the
parametric search problems. (To understand this, it is necessary to read [C-87b, §§ 1-3].
The reason the result holds is that we can determine when a memory cell is active, to
use the terminology of [C-87b], and thus play the game of §2 of [C-87b] on the
computation graph. In general, if we do not have the condition on the in-edges for
memory cells, it is not clear how to determine if a memory cell is active. As explained
in § 3 of [C-87b], given a solution to the game of § 2, we can readily obtain a solution
to the parametric search problem).

Remark. The computation graph need not be the same for all inputs of size n. In
addition, the graph does not have to be explicitly known at the start of the sorting
algorithm.

Next, we show that the EREW sorting algorithm satisfies the conditions of the
previous paragraph. Each of the five steps for one stage of the EREW algorithm
comprises the computation of the cross-ranks of two arrays. The computation of the
cross-ranks proceeds in two substeps; in the first substep, each processor performs a
constant number of reads; in the second substep, each processor performs a constant
number of writes.

We conclude that the result of [C-87b] can be achieved with a much smaller
constant, thereby making the paradigm less impractical.
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the term cross-rank. Many thanks to Jeannette Schmidt for questions and comments
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Grigni for suggestions that simplified the presentation. Finally, I am grateful to Zvi
Kedem, Ofer Zajicek, and Wayne Berke, all of whom read the penultimate version of
the paper and provided a variety of useful comments. I am also very grateful to the
referee for pointing out a serious error in the original version of § 3.
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