
21

0885-7458/03/0200-0021/0 © 2003 Plenum Publishing Corporation

International Journal of Parallel Programming, Vol. 31, No. 1, February 2003 (© 2003)

Parallel Merge Sort with Load
Balancing
Minsoo Jeon1 and Dongseung Kim1

1 Department of Electrical Engineering, Korea University, Seoul, 136-701, Korea. E-mail:
{msjeon,dkim}@classic.korea.ac.kr

Received August, 2002; revised October, 2002

Parallel merge sort is useful for sorting a large quantity of data progressively.
The merge sort should be parallelized carefully since the conventional algorithm
has poor performance due to the successive reduction of the number of partici-
pating processors by half, and down to one in the last merging stage. The
proposed load-balanced merge sort utilizes all processors throughout the com-
putation. It evenly distributes data to all processors in each stage. Thus every
processor is forced to work in all phases. Significant performance enhancement
has been achieved up to a speedup of (P − 1)/log P where P is the number of
processors. Experimental results demonstrate a speedup of 9.6 (upper bound of
10.7) on 32-processor Cray T3E when sorting 4M 32-bit integers, and a speed
up of 2.3 (upper bound of 2.8) on an 8-node PC cluster.

KEY WORDS: Merge sort; parallel algorithm; load balancing; splitter.

1. INTRODUCTION

Many comparison-based sequential sorts take O(N log N) time to sort N
keys. To speedup the sorting, multiprocessors are employed for parallel
sorting. Several parallel sorting algorithms such as bitonic sort, (1, 2) sample
sort, (3) column sort, (4) and parallel radix sort (5, 6) have been devised. Parallel
sorts usually need a fixed number of data exchange and merging opera-
tions. The computation time decreases as the number of processors grows.
Since sorting time is dependent on the size of the data set each processor
has to compute, good load balancing is important. In addition, if interpro-
cessor communication is not fast such as occurs in distributed memory

computers, the amount of overall data to be exchanged and the frequency
of communication have a great impact on the total execution time.

Merge sort is frequently used in many applications. Parallel merge sort
using the PRAM model was reported to have a faster execution time of
O(log N) for N input keys using N processors. (7) However, distributed-
memory based parallel merge sort is slow because it needs a local sort
followed by a fixed number of merge iterations, which includes lengthy
communication. The major drawback of the conventional parallel merge
sort is the fact that load balancing and processor utilization get worse as it
iterates; in the beginning every processor participates in merging of the list
of N/P keys with their partner’s producing a sorted list of 2N/P keys,
where N and P are the number of keys and processors, respectively; in the
next step and on, only a half of the processors used in the previous stage
participate in the merging process. This results in the low utilization of
resources. Consequently, it lengthens the computation time. This paper
introduces a new parallel merge sort scheme, called load-balanced parallel
merge sort, that forces every processor to participate in merging at every
iteration. Each processor deals with a list of size of about N/P at every
iteration, thus the load of processors is kept balanced to reduce the execu-
tion time.

The paper is organized as follows. In Section 2 we present the con-
ventional and improved parallel merge sort algorithms together with an
explanation of how more parallelism is obtained. Section 3 reports exper-
imental results performed on a Cray T3E and a PC cluster. We conclude in
the last section followed by performance analysis in the appendix.

2. PARALLEL MERGE SORT

2.1. Simple Method

Parallel merge sort goes through two phases: a local sort phase and a
merge phase. The local sort phase produces keys in each processor sorted
locally. Then in the merging phase, processors merge them in log P steps as
explained below. In the first step, processors are paired (sender, receiver).
Each sender sends its list of N/P keys to its partner (the receiver), then the
two lists are merged by each receiver to make a sorted list of 21N/P keys.
Half of the processors work during the merge, and the other half sit idling.
In the next step only the receivers in the previous step are paired as (sender,
receiver), and the same communication and merge operations are per-
formed by each pair to form a list of 22N/P keys. The process continues
until a complete sort list of N keys is obtained (Fig. 1). The detailed algo-
rithm is given in Algorithm 1.

22 Jeon and Kim

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
0

P
1

P
2

P
3

P
0

P
1

P
0

locally

sorted list

step 1

step 2

step 3

N/8 keys

each

N/4 keys

each

N/2 keys

each

N keys
a complete

list

Fig. 1. Conventional parallel merge sort with 8 processors.

As mentioned earlier, the algorithm does not fully utilize all proces-
sors. A simple calculation reveals that only P/log P (=(P/2+P/4+
P/8+ · · · +1)/(log P steps)) processors out of P processors are used on
average. Therefore, it must have inferior performance to an algorithm that
makes a full use of the processors.

Algorithm 1. Simple parallel merge sort

P: the total number of processors (assume P=2k for simplicity.)
Pi: a processor with index i
h: the number of active processors

begin
h :=P
1. forall 0 [i [P − 1

Pi sorts a list of N/P keys locally.
2. for j=0 to (log P) − 1 do

forall 0 [i [h − 1
if (i < h/2) then

2.1. Pi receives N/h keys from Pi+h/ 2

2.2. Pi merges two lists of N/h keys into a sorted list of 2N/h
else

2.3. Pi sends its list to Pi − h/2

h :=h/2
end

Parallel Merge Sort with Load Balancing 23

2.2. Load-Balanced Parallel Merge Sort

To keep each list of sorted data in one processor is relatively simple.
However, as the size of the lists grows, sending them to other processors
for merging is time consuming, and processors that no longer keep lists
after transmission sit idling until the end of the sort. The key idea in our
parallel sort is to distribute each (partially) sorted list onto multiple pro-
cessors such that each processor stores an approximately equal number of
keys, and all processors take part in merging throughout the execution.
Figure 2 illustrates this idea for a merge with 8 processors, where each rec-
tangle represents a list of sorted keys, and processors are shown in the
order that they store and merge the corresponding list. It would invoke
more parallelism, and thus shorten the sort time. One difficulty in this
method is to find a way to merge two lists, each of which is distributed in
multiple processors, rather than store them on a single processor. Our
design for minimizing key movement is described below.

A group is a set of processors that are in charge of one sorted list.
Each group stores a sorted list of keys by distributing them evenly to all
processors. It also computes a histogram of its own keys. The histogram
plays an important role in determining the minimum number of keys to be
exchanged during the merge. Processors keep nondecreasing (or non-
increasing) order for their keys. In the first merging step, all groups have a
size of one processor, and each group is paired with another group called
its partner group. In this step, there is only one communication partner per
processor. Each pair exchanges its two boundary keys (a minimum and
a maximum keys) and determines the new order of the two processors

P
0

P
1

P
2

P
3

locally

sorted list

step 1

step 2

step 3

N/8 keys /

processor

P P P P

P
4

P
5

P P

P
6

P
7

P P

P P P P P P P P

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

N/8 keys /

processor

N/8 keys /

processor

N/8 keys /

processor

G0(0) G0(1)

G1(0) G1(1) G2(0) G2(1) G3(0) G3(1)

G1(2) G1(3)G1(0) G1(1)G0(2) G0(3)

G0(0) G0(1)

a complete

list

Fig. 2. Load-balanced parallel merge sort.

24 Jeon and Kim

according to the minimum key values. Now each pair exchanges group
histograms and computes a new one that covers both. Each processor then
divides the intervals (histogram bins) of the merged histogram into two
parts (i.e., bisection) so that the (half) lower indexed processor will keep the
smaller half of the keys, and the higher will keep the larger half. Now each
processor sends out the keys that will belong to other processor(s) (for
example, those keys in the shaded intervals are transmitted to the other
processor in Fig. 3). Each processor merges the keys with those arriving
from its paired processor. Now each processor holds N/P ± D keys because
the bisection of the histogram bins may not be perfect (we hope D is rela-
tively small compared to N/P). The larger the number of histogram
bins, the better the load balancing. In this process, only the keys in the
overlapped intervals need to merge. It implies that keys in the non-
overlapped interval(s) do not interleave with keys of the partner processor’s
during the merge. They are simply placed in a proper position in the
merged list. Often there may be no overlapped intervals at all, and there-
fore no keys are exchanged.

From the second step and on, the group size (i.e., the number of
processors per group) doubles. The merging process is the same as
before except that each processor may have multiple communication
partners up to the group size in the worst case. Now boundary values
and group histograms are again exchanged between paired groups, then
the order of processors is decided and the histogram bins are divided
into 2 i parts (at the i th iteration). Keys are exchanged between partners,
then each processor merges the received keys with its own. One cost
saving method is used here called index swapping. When a processor has
to send most of its keys to its partner and also receive the equal amount
from it, we rather swap the logical ids of the two, instead of moving a
large amount of keys among them. Thus, index swapping minimizes the
number of key exchange. The procedure of the parallel sort is summa-
rized in Algorithm 2.

Algorithm 2. Load-balanced parallel merge sort

1. Each processor sorts a list of N/P keys locally and obtains local
histogram.

2. Iterate log P times the following computation

2.1. Each group of processors exchanges boundary values
between its partner group and determines the logical ids of
processors for the merged list.

Parallel Merge Sort with Load Balancing 25

5

7

10

8
7

8

3

5

7
8

3

7
8

7

9
8

3

15

11
12

P
1
's histogram

merged histogram

P
0

(41)

P
1

(40)

P
0

(40)

P
1

(39)

P
0
's histogram

9

(a)

(b)

bisection boundary

count

key values

Fig. 3. Example of exchanging and merging keys by using his-
togram at first iteration (Processors P0,P1 both have 40 keys
before merge, and 41 & 39 after merge, respectively.) [(a) before
merge, (b) after merge].

26 Jeon and Kim

2.2. Each group exchanges histograms with its paired group and
computes a new histogram, then divides the bins into 2 i − 1

equal parts.
/* At ith iteration, there are P/2 i − 1 groups, each of which
includes 2 i − 1 processors */

2.3. Each processor sends keys to the designated processors that
will belong to others due to the division.

2.4. Each processor locally merges its keys with the received
ones to obtain a new sorted list.

2.5. Broadcast logical ids of processors for the next iterations.

Rather involved operations are added in the algorithm in order to
minimize the key movement since the communication in distributed
memory computers is costly. The scheme has to send boundary keys and
histogram data at each step, and a broadcast of the logical processor ids is
needed before a new merging iteration. If the size of the list is fine grained,
the increased parallelism may not contribute to shortening the execution
time. Thus, our scheme is effective when the number of keys is not too
small to overcome the overhead.

3. EXPERIMENTAL RESULTS

The new parallel merge sort has been implemented on two different
parallel machines: a Cray T3E and a Pentium III PC cluster. The T3E
consists of 450 MHz Alpha 21164 processors and a 3-D torus network.
Pentium III PC cluster is a set of 8 PCs with 1 GHz Athlon CPUs inter-
connected by a 100 Mbps Fast Ethernet switch. The maximum number of
keys is limited by the capacity of the main memory of each machine. Keys
are synthetically generated with two distribution functions (uniform and
gaussian) with 32-bit integers for PC cluster, and 64-bit integers for T3E.
Code is written in the C language with the MPI communication library.

Table I. Comparison of Predicted and Measured Speedups on T3E and PC Cluster

with 4M Keys

P 2 4 8 16 32

T3E gpredicted 1.73 2.58 4.02 6.46 10.68
gmeasured 1.69 2.66 3.66 6.38 9.60

PC cluster gpredicted 1.18 1.78 2.76 – –
gmeasured 1.14 1.60 2.30 – –

Parallel Merge Sort with Load Balancing 27

The parameters of the computation and communication performance
of individual systems were measured. K1 and K2 are the average time to
transmit one key and the average time per key to merge N keys, respec-
tively. For the T3E, K1 and K2 are 0.048 and 0.125 msec/key respectively,
and C is calculated to be 1.732 according to Eq. (9) in the Appendix. For
the PC cluster, K1 and K2 are 0.386 and 0.083 msec/key, and C is 1.184.

Fig. 4. Speedups of merge time on two machines with uniform distribution [(a) T3E, (b) PC
cluster].

28 Jeon and Kim

Notice that T3E is expected to achieve the greater performance enhance-
ment due to having the bigger C introduced in Eq. (9) in the Appendix. The
predicted and measured speedups of the T3E and the PC cluster are
recorded in Table I. Most of the results are close to the predicted ones. The
speedups in merge time only of the load-balanced merge sort over the

Fig. 5. Speedups of merge time on two machines with gaussian distribution [(a) T3E, (b) PC
cluster].

Parallel Merge Sort with Load Balancing 29

conventional merge sort are shown in Figs. 4 and 5. The speedups with
gaussian distribution are smaller than those with uniform distribution since
D in Eq. (7) is larger in the gaussian distribution than in the uniform distri-
bution. The improvement gets better as the number of processors increases.
The measured speedups are close to the predicted ones when N/P is large.
When N/P is small, the performance suffers due to the relatively large

Fig. 6. Both the local (sequential) sort time and the parallel merge time are shown for the
two machines with uniform distribution [(a) T3E, (b) PC cluster].

30 Jeon and Kim

overhead in exchanging boundary values and histogram information, and
broadcasting processor ids. Experimental results on the T3E demonstrates
higher speedup, which matches the analytic result given in Eq. (8). The
comparisons of the total sorting time and distribution of the load balanced
merge sort with the conventional algorithm are shown in Fig. 6. The
execution time for the merging phase is significantly shortened, whereas
the local sort time for both methods remains the same as on one machine.
The best speedups of 9.6 and 2.3 for the merging phase are achieved on the
Cray T3E with 32 processors and an 8-node PC cluster respectively.

4. CONCLUSION

We have improved parallel merge sort by distributing and computing
approximately equal number of keys in all processors throughout the
merging phases. Using the histogram information, keys can be divided
equally regardless of their distribution. We have achieved a maximal
speedup of 9.6 when merging 4M keys on a 32-processor Cray T3E, which
is about 90% of the upper bound. We have also reached a maximal
speedup of 2.3 for 4M keys on an 8-node PC cluster, which is about 83%
of the upper bound. This scheme can be applied to a parallel implementa-
tion of similar merging algorithms such as parallel quick sort.

APPENDIX

The upper bound of the speedup of the new parallel merge sort will
now be estimated. Let Tseq(N/P) be the time for the initial local sort to
make a sorted list. Tcomp(N) represents the time for merging two lists, each
with N/2 keys, and Tcomm(M) is the interprocessor communication time to
transmit M keys. For the input of N keys, Tcomm(M) and Tcomp(M) are
estimated as follows: (8)

Tcomm(N)=S+K1 · N (1)

Tcomp(N)=K2 · N (2)

where K1 and K2 are the average time to transmit one key and the average
time per key to merge N keys, respectively, and S is the startup time. The
parameters Ks and S are dependent on machine architecture.

For Algorithm 1, step 1 requires Tseq(N/P). Step 2 repeats log P times,
so execution time of the simple parallel merge sort (SM) is estimated as
below:

Parallel Merge Sort with Load Balancing 31

TSM(N, P)=Tseq
1N

P
2+ C

log P

i=1

3Tcomm
12 i − 1N

P
2+Tcomp

12 iN
P

24

% Tseq
1N

P
2+3Tcomm

1N
P

+
2N
P

+ · · · +
P
2 N
P

2

+Tcomp
12N

P
+

4N
P

+ · · · +
PN
P

24

=Tseq
1N

P
2+3Tcomm

1N
P

(P − 1)2+Tcomp
12N

P
(P − 1)24 (3)

In Eq. (3) the communication time was assumed proportional to the size of
data by ignoring the startup time (Coarse-grained communication in most
interprocessor communication networks reveal such characteristics).

For Algorithm 2, step 1 requires Tseq(N/P). The time required in
steps 2.1 and 2.2 is ignorable if the number of histogram bins is small
compared to N/P. Since the maximum number of keys assigned to each
processor is N/P, at most N/P keys are exchanged between paired proces-
sors in step 2.3. Each processor merges N/P+D keys in step 2.4. Step 2.5
requires O(log P) time. The communication of steps 2.1 and 2.2 can be
ignored since the time is relatively small compared to the communication
time in step 2.3 if N/P is large (coarse grained). Since step 2 is repeated
log P times, the execution time of the load-balanced parallel merge sort
(LBM) can be estimated as below:

TLBM(N, P)=Tseq
1N

P
2+log P ·3Tcomm

1N
P
2+Tcomp

1N
P

+D24 (4)

To observe the enhancement in the merging phase only, the first terms
in Eqs. (3) and (4) will be removed. Using the relationship in Eqs. (1) and
(2), merging times are rewritten as follows:

TSM(N, P)=K1 ·
N
P

(P − 1)+K2 ·
2N
P

(P − 1) (5)

TLBM(N, P)=K1 ·
N
P

log P+K2 ·1N
P

+D2 log P (6)

A speedup of the load-balanced merge sort over the conventional
merge sort, denoted as g, is defined as the ratio of TSM to TLBM:

g=
TSM(N, P)
TLBM(N, P)

=
K1 · N

P (P − 1)+K2 · 2N
P (P − 1)

K1 · N
P log P+K2 · (N

P+D) log P
(7)

32 Jeon and Kim

If the load-balanced merge sort keeps load imbalance small enough to
ignore D, and N/P is large, Eq. (7) can be simplified as follows:

g=
K1 · N

P (P − 1)+K2 · 2N
P (P − 1)

K1 · N
P log P+K2 · N

P log P
=

K1+2K2

K1+K2
·
P − 1
log P

=C ·
P − 1
log P

(8)

where C is a value determined by the ratio of the interprocessor communi-
cation speed to computation speed of the machine as defined below

C=
K1+2K2

K1+K2
=1+

K2

K1+K2
=1+

1
K1/K2+1

(9)

ACKNOWLEDGMENTS

This research was supported by KOSEF Grant (No. R01-2001-00341).

REFERENCES

1. K. Batcher, Sorting Networks and Their Applications, Proceedings of the AFIPS Spring
Joint Computer Conference 32, Reston, VA, pp. 307–314 (1968).

2. Y. Kim, M. Jeon, D. Kim, and A. Sohn, Communication-Efficient Bitonic Sort on a Dis-
tributed Memory Parallel Computer, International Conference on Parallel and Distributed
Systems (ICPADS’2001) (June 2001).

3. J. S. Huang and Y. C. Chow, Parallel Sorting and Data Partitioning by Sampling,
Proceedings of 7th Computer Software and Applications Conference, pp. 627–631 (November
1983).

4. A. C. Dusseau, D. E. Culler, K. E. Schauser, and R. P. Martin, Fast Parallel Sorting under
Log P: Experience with the CM-5, IEEE Transactions on Computers, Vol. 7 (August 1996).

5. S. J. Lee, M. Jeon, D. Kim, and A. Sohn, Partitioned Parallel Radix Sort, J. Parallel Distr.
Comput. (JPDC), 62:656–668 (2002), also in 3rd International Symposium on High Perfor-
mance Computing (ISHPC’2000), Tokyo, Japan, pp. 160–171 (October 2000).

6. A. Sohn and Yuetsu Kodama, Load Balanced Parallel Radix Sort, Proceedings of the 12th
ACM International Conference on Supercomputing (July 1998).

7. R. Cole, Parallel Merge Sort, SIAM J. Comput., 17(4):770–785 (1998).
8. R. Hockney, Performance Parameters and Benchmarking of Supercomputers, Parallel

Computing, 17(10/11):1111–1130 (December 1991).

Parallel Merge Sort with Load Balancing 33

	1. INTRODUCTION
	PARALLEL MERGE SORT
	3. EXPERIMENTAL RESULTS
	4. CONCLUSION
	APPENDIX
	ACKNOWLEDGMENTS

