
Outerjoin Simplification and Reordering for
Query Optimization
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properties of join to implement efficient and powerful optimizations on select/project/join
queries. However, only limited optimization is performed on other binary operators. In this
article, we present the theory and algorithms needed to generate alternative evaluation orders
for the optimization of queries containing outerjoins. Our results include both a complete set
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1. INTRODUCTION

1.1 Motivation for Outerjoin Optimization

Relational join combines information from two tables by creating pairs of
matching tuples. If a tuple in one relation has no corresponding tuple in the
other, data in this tuple does not appear in the join result. Outerjoin is a
modification of join that preserves all information from one or both of its
arguments [Codd 1979; Lacroix and Pirotte 1976]. For instance, the left
outerjoin of tables R1, R2 contains the join of those tables, plus the
unmatched tuples of R1. Since they have no corresponding R2 tuples,
unmatched tuples from R1 are padded with null values on R2 columns.
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Outerjoins are available today in a number of implementations of SQL,
and they are included in the ISO-ANSI standard draft for SQL2 [ANSI
1992]. Among the systems that currently support outerjoin are Sybase,
SQL Server, NonStop SQL of Tandem, SSQL of ShareBase, and ORACLE/
SQL.

As with joins, changing the order of evaluation of outerjoins can improve
the performance of query execution dramatically. However, associativity
properties of outerjoin are limited, which makes the generation of alterna-
tive evaluation plans a much more difficult task. Below, we discuss three
topics: applications of outerjoins, difficulties in outerjoin reordering, and
the potential cost reduction attained by such reordering.

Example 1. For a database with tables containing information about
CUSTOMERS and ORDERS, we want to find customers who live in New
York, and their current orders. Outerjoin is used to retain tuples for New
York customers who have no orders

Select All
From CUSTOMERS Left Outerjoin ORDERS

on CUSTOMERS.cust# 5 ORDERS.cust#
Where CUSTOMERS.city 5 “New York”

The keyword Left specifies which relation must be preserved.

Outerjoins can be directly specified by a user, as in the query of the
example above, or they can be introduced by a processor as part of a query
evaluation strategy. Our examples are relational, but the ideas also apply
to object-oriented databases—a specific case is mentioned in Section 5.5.
Outerjoins are used in the following applications:

Database merging. In large companies, it is common to find that groups
have developed independent databases. The goal of federated databases is
to provide a global view that combines all information from these
independent databases. The subject is an active, complicated research
topic [Sheth 1991; Sheth and Larson 1990]. For query processing, tables
from different databases must be combined via two-sided outerjoins,
rather than joins [Dayal and Hwang 1984; Wang and Madnick 1990].

Hierarchical views. Sometimes it is convenient to think of parent objects as
having an associated set of children. For instance, each department in a
company has an associated set of employees. If a join combines tables,
DEPT and EMP, departments with no employees are discarded. In
general, to construct hierarchical views that preserve objects with no
children, we need outerjoin rather than join [David 1991; Lee and
Wiederhold 1994; Rosenthal and Galindo-Legaria 1990; Roth et al. 1989;
Scholl et al. 1987].

Nested queries. Both SQL and Object Query Languages allow query nest-
ing—that is, to test a predicate on a single outer object, one evaluates a
subquery. But straightforward evaluation would correspond to using the
nested loops method for a series of joins, and may be very inefficient. To
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give the query optimizer some freedom, the query must be represented
algebraically [Kim 1982]. In the general case, outerjoin is necessary for
this algebraic representation [Dayal 1987; Muralikrishna 1989].

Universal quantifiers. Queries with universal quantifiers can be translated
into algebraic expressions with relational division, using Codd’s proof of
equivalence between calculus and algebra [Ullman 1982]. But this strat-
egy introduces large intermediate results of Cartesian products. An
alternative strategy using outerjoins reduces significantly the size of
intermediate results [Dayal 1983].

For select/project/join queries, changing the order of evaluation of joins is
a powerful and commonly used optimization technique, which often im-
proves execution time by orders of magnitude. Joins can be evaluated in
any order due to associativity and commutativity properties of the operator,
so generating alternative query evaluation orders is relatively easy. How-
ever, when both joins and outerjoins are present in a query, changing the
order of evaluation is complicated in two ways: First, instead of always
using join, we need to determine which operator to apply at each step of the
new evaluation order. Second, join and outerjoin are not always associative
with respect to each other, so not all orders of evaluation may be possible.
The following example illustrates the associativity problem.

Example 2. Consider the database of CUSTOMERS and ORDERS used
in Example 1, and assume there is another table, ITEMS, with the items in
stock. If CUSTOMERS_NY denotes the view consisting of New York
customers, the following query returns these customers and their orders for
items in stock (join predicates are straightforward equalities, and are
omitted for readability).

Select All
From CUSTOMERS_NY Left Outerjoin (ORDERS Join ITEMS)

If the query is evaluated directly as stated, it produces a huge interme-
diate result, (ORDERS Join ITEMS). And if New Yorkers account for a
relatively small fraction of ORDERS, most of the tuples in this intermedi-
ate are irrelevant. A better evaluation order would first eliminate these
irrelevant tuples as early as possible, by combining CUSTOMERS_NY with
ORDERS. Since we need to preserve all New York customers in the result,
the operator to combine them must be the following outerjoin:

Select All Into CUST_NY_ORDER
From CUSTOMERS_NY Left Outerjoin ORDERS

But we can use neither join nor outerjoin to combine CUST_NY_ORDER
with ITEMS, to produce the result of the original query. Computing
(CUST_NY_ORDER Join ITEMS) wrongly eliminates customers without
orders in CUST_NY_ORDER, because they do not join with ITEMS. On the
other hand, computing (CUST_NY_ORDER Left Outerjoin ITEMS)
wrongly preserves orders in CUST_NY_ORDER for out-of-stock items,
which do not join with ITEMS.
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Note, however, that if we had available an efficient operator to compute
the original query from CUST_NY_ORDER and ITEMS, the second order of
evaluation is arbitrarily superior to the original—the smaller the fraction
of ORDERS for New York customers, the larger the improvement of the
second evaluation order. In this article we show how to exploit this
potential.

1.2 Relational Definitions and Notation

Our theorems require that base relations be duplicate-free. In Section 3.1,
we discuss how to handle duplicates. Also, we assume base relations have
no tuple with nulls in every column; they may contain tuples with nulls in
some columns.

Operators. We use relational operators selection on a predicate (spR),
duplicate-removing projection on a set of attributes (pa), Cartesian product
of relations with disjoint schemas (R1 3 R2), and set union and difference
of relations with identical schemas (R1 ø R2, R1 2 R2) [Ullman 1982].
Relational join (îì) applies a match predicate p on the product of two
relations.

We use the outerunion (]) operator [Codd 1979] to introduce null-
padding, necessary in outerjoins. Assume the schema S1 of R1 is different
from S2 5 sch(R2), but they may have some attributes in common. The
outerunion R1 ] R2 delivers tuples in R1 plus tuples in R2, null-padded to
the schema S1 ø S2:

R1 ] R2 5 ~R1 3 $nullS22S1%! ø ~R2 3 $nullS12S2%!,

where nullA is a tuple with null values in all attributes of A.
The outerjoin of two relations includes the result of join, plus all

unmatched tuples from one or both of its arguments [Codd 1979; Lacroix
and Pirotte 1976]. Left outerjoin (3) and full outerjoin (7) are defined,
respectively, as follows:

R1O
p

R2 5 ~R1 îì
p

R2! ] ~R1 2 psch~R1!~R1 îì
p

R2!!.

R1O
p

R2 5 ~R1 îì
p

R2! ] ~R1 2 psch~R1!~R1 îì
p

R2!! ] ~R2

2 psch~R2!~R1 îì
p

R2!!.

The right outerjoin is R1 4
p R2 5 R2 3

p R1. Each outerjoin variety
preserves the relation on the side opposite an arrow, and introduces nulls in
the attributes of the relation on the arrow side. If an operator introduces
nulls in attributes A it also introduces nulls in any subset of A.

Left and right outerjoin each preserves only one of its arguments, so they
are called one-sided outerjoins. Except for associative identities, where it is
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convenient to use right outerjoins, we assume without loss of generality
that expressions do not use right outerjoins, only left. Full outerjoin is also
called two-sided outerjoin, because it preserves information from both
arguments. We use combine operator as a generic term for join or outerjoin.
Figure 1 shows examples of combine operators. A dash (“—”) is used for
null values.

Null-rejection. We say a predicate p rejects nulls in attribute set A if it
evaluates to FALSE or UNDEFINED on every tuple in which all attributes
in A are null. An operator rejects nulls if tuples in which all attributes in A
are null do not affect the operator’s result. For example, in

sCity5“New York”CUSTOMERS

both the predicate and the selection operator reject nulls on City, and on
any superset of {City}, (e.g., sch(CUSTOMERS)).

For selection and join, the operator rejects nulls if the predicate rejects
nulls. For one-sided outerjoin, (R1 3 R2) rejects nulls on A if p rejects null
on A and A # R2. Full outerjoin never rejects nulls, because it lets through
all tuples from its inputs.

In the three-valued logic of SQL, the result of comparing a NULL value is
UNDEFINED [ANSI 1992; Melton and Simon 1993]. Logical connectives
(e.g., AND, NOT) produce UNDEFINED whenever any of its arguments is
UNDEFINED. The net result is: If a null-valued attribute is compared in
the predicate of a Where clause that contains no OR connectives, the
predicate evaluates to UNDEFINED, and the tuple is rejected. Therefore,
conjunctive SQL predicates usually reject nulls in every attribute they
reference. The SQL IsNull primitive is used to avoid such rejection. The
following query finds customer orders that can most easily be deferred; it
rejects nulls on ORDERS.priority, but not on due date.

Fig. 1. Join and outerjoin operators.
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Select All
From ORDERS
Where ORDERS.priority 5 “low” or IsNull(ORDERS.duedate)

The set of attributes referenced by a predicate p is called the schema of
p, and denoted sch( p).1 As a notational convention, we annotate predicates
to reflect their schema. If sch( p) includes attributes of both Ri, Rj and only
those relations, we can write the predicate as pRiRj, or simply pij, when the
relations are clear from the context.

1.3 Summary of Results and Comparison with Previous Work

This article focuses on the problem of changing the order of evaluation of
queries containing both joins and outerjoins. Query graphs represent
nonnested Select/Project/Join queries unambiguously, but are generally
insufficient to express queries involving outerjoins (or even nesting). We
therefore assume that the initial query is available as an unambiguous
operator tree.

We present four major results:

(1) A simplification algorithm that allows the replacement of outerjoins by
joins, in some cases.

(2) Associative identities that justify changing the order of evaluation. New
evaluation orders sometimes require a generalized outerjoin operator,
in addition to join and outerjoin (e.g., to deal with cases such as that of
Example 2).

The next two results depend on additional assumptions that predicates
reject null tuples, and that no outerjoin predicate references more than two
base relations.

(3) A proof that our list of identities is complete, in the sense that they can
generate any query reordering consistent with the connectivity heuris-
tic.

(4) Instructions for extending conventional optimizers to handle joins and
outerjoins, including the logic to choose the correct operator in each
step of the bottom-up construction of execution trees.

The results presented here consolidate and simplify partial results re-
ported earlier by the authors in Galindo-Legaria [1992]; Galindo-Legaria
and Rosenthal [1992]; Rosenthal and Galindo-Legaria [1990]. Prior to those
papers, results on outerjoin reordering were fragmentary, and insufficient
to guide optimizer builders. For example, Rosenthal and Reiner [1984]
describe a theory that allows reassociation, but use excessively low-level
operators that do not match strategy enumeration optimizers such as

1Semantically, the schema of a predicate is the set of attributes it depends on, i.e. for any two
tuples t1, t2 that coincide in attributes sch( p) we have p(t1) 5 p(t2). This “semantic
definition” is difficult to test, in the general case, so we rely on the more conservative
“syntactic definition.”
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System R. And in rule-driven optimizers, generating reassociations would
require a large number of rules to be applied in the proper sequence.

Other papers deal with outerjoins in the context of specific applications.
Though focused on universally quantified queries, Dayal [1983] gives some
initial rules on valid evaluation orders for joins and one-sided outerjoins.
Dayal [1987] points out that one-sided outerjoin—and other operators
useful for nested subqueries—can be implemented by minor modifications
to join algorithms. The paper also gives some rules to change the order of
processing for joins and one-sided outerjoin, but those rules have glitches
and do not generate all processing orders. Muralikrishna [1989] gives a
pipelining algorithm to evaluate one-sided outerjoins, in the context of
nested SQL. The paper expands on how to use outerjoin to model not only
linear-nesting but also tree-nesting in SQL, but its treatment on how to
change the evaluation order is limited. Basically, it follows the rule of
performing first all joins and then all outerjoins, as outlined in Dayal
[1983; 1987]. Ozsoyoglu et al. [1989] gives some identities for processing
natural outerjoins, as part of the optimization strategies used by a system
that stores and computes statistical information.

Papers that use outerjoins to evaluate nested SQL usually proceed in two
steps: They first map the SQL query into a query graph with directed and
undirected edges, and then define permissible orders of evaluation of the
operators represented as graph edges. But query graphs do not posses a
natural evaluation rule, and do not denote a unique result, in general. For
this reason, one cannot separate the two steps when understanding the
algorithms. Two orthogonal issues (modeling nested SQL with outerjoins,
and selecting an order of evaluation) often intertwine, and typically one
gets an incomplete treatment of each issue. In contrast, we focus on the
generation of new evaluation orders, starting with an initial operator tree
that unambiguously specifies the desired query.

Canonical declarative forms for expressing outerjoin queries were de-
scribed in Galindo-Legaria [1994]. These canonical forms led to simpler
proofs of our many identities, but the focus of that work was not query
optimization. Recently, Bhargava et al. [1995] studied how to relax our
assumptions for points 3 and 4 above. We briefly summarize their results
in Section 3.1.

Section 2 presents our outerjoin simplification algorithm, associative
identities for joins and outerjoins, and the generalized outerjoin operator.
Section 3 establishes a framework for reordering, based on query graphs
and operator trees, and states our main results. Section 4 describes how to
build reorderings of join/outerjoin queries bottom-up. Section 5 discusses
how to integrate our algorithms in current systems, and Section 6 presents
our conclusions.

2. TACTICS FOR OUTERJOIN OPTIMIZATION

In this section we describe modifications that can be done on queries
containing outerjoins. Subsections deal with outerjoin simplification,
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associativity of joins with outerjoins, and finally reassociation using a
generalized outerjoin operator that enables the optimization suggested in
Example 2.

2.1 Outerjoin Simplification

It is helpful to rewrite outerjoins as joins, whenever possible, for several
reasons. First, the rewritten query often has smaller intermediate results.
Second, the set of candidate implementations is largest for join, smaller for
outerjoin, and smallest for full outerjoin. For example, the optimizer is free
to choose the inner and outer relations for joins. Simplification based on
null rejection is our first step.2

The simplification idea is that if a later operator discards the null-padded
tuples introduced by an outerjoin, such outerjoin can be rewritten as
regular join without altering the result. For example,

sORDERS.date,1/1/95(CUSTOMERS 3 ORDERS)

5 sORDERS.date,1/1/95(CUSTOMERS îì ORDERS).

Our development of this approach begins with identities that apply to all
selections:

R1O
p1`p2

R2 5 R1O
p1

~sp2 R2!, if sch~ p2! # sch~R2!. (1)

sp1~R1O
p2

R2! 5 ~sp1 R1!O
p2

R2 , if sch~ p1! # sch~R1!. (2)

Note that we could not push down a selection on the arrow side of an
outerjoin (either side of full outerjoin). However, if the predicate p rejects
nulls, then the following straightforward identities simplify by removing an
arrow.

sp1~R1O
p2

R2! 5 sp1SR1

p2

îì R2D , if p1 rejects nulls on sch~R2!. (3)

sp1~R1O
p2

R2! 5 sp1~R1O
p2

R2!, if p1 rejects nulls on sch~R2!. (4)

To simplify an entire operator tree, it is convenient to rewrite a predicate
p that rejects nulls on attribute a as p 5 p ` ¬IsNull(a). Now ¬IsNull(a)
can simplify an outerjoin using identities (3) and (4). It can then be moved

2Simplification based on null rejection was first introduced in Galindo-Legaria and Rosenthal
[1992], and later used for a specific application in Lee and Wiederhold [1994]. Simplification
based on integrity constraints and projection are described in Chen [1990]; Lee and Wieder-
hold [1994] and Rosenthal and Galindo-Legaria [1990].
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down the tree to the child that supplied a, using identities (2) and (1), plus
the familiar rewrite for selection and join. When the process completes, the
redundant predicates are removed.

Algorithm A below more directly produces the simplifications that would
be obtained by creating ¬IsNull¼ predicates, pushing them down the tree,
and simplifying outerjoins.

Algorithm A. Outerjoin simplification using null rejection.
Input. An operator tree Q with joins and outerjoins.
Output. A simplified query Q9 equivalent to Q.
Procedure. Traverse the operator tree top-down; for each operator J1 do

For each operator J2 descended from J1 do
— If, for some R, J1 rejects nulls on sch(R) and J2 introduces nulls in

sch(R), then remove the arrow from outerjoin J2, on the side of R, to
convert it either to a one-sided outerjoin or to a join.3

Algorithm A performs all simplifications resulting from null-rejection. A
second pass of the algorithm will not produce further simplifications.

Example 3. Figure 2(b) shows the result of the simplification algorithm
on the query of Figure 2(a). The root operator3p

AB

rejects nulls on sch(B),
so it simplifies7p

BC

to3p
BC

; it also simplifies4p
BE

to îì
pBE

. The newly obtained
J 53

pBC

rejects nulls on sch(C), so it simplifies4p
CD

to îì
pCD

.

2.2 Join/Outerjoin Associativity

In addition to simplification, a primary tool for query processing is the
ability to change the order of operations, using some form of associativity.
Associative identities for join, outerjoin, and full outerjoin are the following
(for detailed proofs, see Galindo-Legaria [1992]):

~R1 îì
p12

R2! îì
p13`p23

R3 5 R1 îì
p12`p13

~R2 îì
p23

R3!. (5)

3For a full outerjoin, the test is applied to each side separately, and in some cases may remove
arrows on both sides. The simplification is valid for any set of attributes satisfying the
conditions, not just for relation schemes.

Fig. 2. Query simplification.
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~R1 îì
p12

R2!O
p23

R3 5 R1 îì
p12

~R2O
p23

R3!. (6)

~R1O
p12

R2!O
p23

R3 5 R1O
p12

~R2O
p23

R3!,

if p23 rejects nulls on sch~R2!. (7)

~R1O
p12

R2!O
p23

R3 5 R1O
p12

~R2O
p23

R3!. (8)

~R1O
p12

R2!O
p23

R3 5 R1O
p12

~R2O
p23

R3!,

if p12 and p23 reject nulls on sch~R2!. (9)

~R1O
p12

R2! 3
p23

R3 5 R17
p12

~R23
p23

R3!,

if p23 rejects nulls on sch~R2!. (10)

Example 4. Predicates that do not reject nulls as required by specific
associative identities probably occur in a small fraction of queries, but they
do violate those identities. For example, consider the case shown in Figure
3. Predicate pST does not reject nulls on sch(S). Then, associative identity
7 does not hold, and in fact (R 3

pRS

S) 3
pST

T Þ R 3
pRS

(S 3
pST

T).

2.3 Generalized Outerjoin

The identities listed in Section 2.2 do not allow all join/outerjoin expres-
sions to be reassociated. Example 2 in Section 1 showed that R1 3

p12

(R2 îì
p23

R3) is equal to neither (R1 3
p12

R2) îì
p23

R3 nor to (R1 3
p12

R2) 3
p23

R3. Yet,
if (R2 îì

p23

R3) is large, first combining R1 with R2 can greatly reduce the
execution cost. Generalized outerjoin is used to reorder in this case.

Fig. 3. Effect of a predicate that does not reject nulls.
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Generalized outerjoin preserves projections of its operands, much as
outerjoin preserves complete operands. The operator was first defined in
Rosenthal and Galindo-Legaria [1990], repairing a small error in the
generalized join from Dayal [1987]. Then it was extended to deal with full
outerjoins in Galindo-Legaria and Rosenthal [1992].

The generalized outerjoin on p of relations R1, R2, preserving attributes
A # R1 is defined as:

R1 GOJ@ p, A#R2 5 ~R1 îì
p

R2! ] ~pAR1 2 pA~R1 îì
p

R2!!.

Figure 4 shows an example of outerjoin and generalized outerjoin. The
first of these identities (see Galindo-Legaria [1992] for their proofs) allows
early evaluation of one-sided outerjoins:

R1O
p12

~R2 îì
p23

R3! 5 ~R1O
p12

R2! GOJ@ p23, sch~R1!#R3 ,

if p23 rejects nulls on sch~R2!. (11)

R1O
p12

~R2 îì
p23

R3! 5 ~R1O
p12

R2! GOJ@ p23, sch~R1!#R3 ,

if p23 rejects nulls on sch~R2!. (12)

Example 5. Returning to Example 2 of Section 1.1, assume CUSTOM-
ERS_NY has 3 tuples, each with two orders, and ORDERS has 1 million
tuples, most of them for items in stock. Using identity 11, the original
query can be rewritten as

CUSTOMERS_NY 3 (ORDERS îì ITEMS) 5
(CUSTOMERS_NY 3 ORDERS) GOJ[sch(CUSTOMERS_NY)] ITEMS.

Fig. 4. Generalized outerjoin.
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The GOJ expression produces an intermediate result of cardinality 6, while
the intermediate result of the original expression has cardinality close to 1
million. The query is evaluated more efficiently using the GOJ reordering.

What GOJ does is deliver the join of (CUSTOMERS_NY 3 ORDERS)
with ITEMS, plus those customers in (CUSTOMERS_NY 3 ORDERS) that
do not appear in the join with ITEMS, without duplication. A customer that
appears padded with nulls in the result does not appear also with a
matching order and item.

Implementation of GOJ. To show that GOJ is practical, we describe a
simple execution algorithm. It is an open problem to find more efficient
algorithms.

GOJ can be implemented using two simpler primitives: A modified
one-sided outerjoin algorithm, plus a modified duplicate elimination algo-
rithm.

Say we want to compute R1 GOJ[ p, A] R2, with A , sch(R1). A left
outerjoin algorithm will take every tuple t1 in R1, and if it has no matching
R2 tuple then t1 is output padded with nulls on R2 attributes. Modify the
algorithm so that for such tuples, only the A-attributes of t1 are output,
instead of the whole t1.

On the result of the modified outerjoin, use a modified duplicate-elimina-
tion algorithm to eliminate subsumed tuples. For example, sort the table
using A-columns as primary key, and non-A-columns as secondary key.
Then for each group with common A values, eliminate padded tuples if
there is a non-padded tuple in the group. Otherwise, output a single padded
tuple.

GOJ preserving multiple sets. Early evaluation of full outerjoins can
require preserving multiple sets of attributes. The operator definition is
rather daunting; in Section 5.4 we consider optimizers that do not support
this construct.

The generalized outerjoin on p of relations R1, R2, preserving disjoint
sets of attributes A11, . . . , A1n, A21, . . . , A2m, such that A1i # sch(R1),
A2j # sch(R2) is

R1 GOJ@ p, A11 , . . . , A1n , A21 , . . . , A2m#R2 5

~R1 îì
p

R2! ]

~pA11R1 2 pA11~R1 îì
p

R2!! ] · · · ]~pA1nR1 2 pA1n~R1 îì
p

R2!! ]

~pA21R2 2 pA21~R1 îì
p R2!! ] · · · ] ~pA2mR2 2 pA2m~R1 îì

p
R2!!.

We can now reorder the following join/outerjoin/GOJ cases (again, see

54 • C. Galindo-Legaria and A. Rosenthal

ACM Transactions on Database Systems, Vol. 22, No. 1, March 1997.



Galindo-Legaria [1992] for proofs):

R1O
p12

~R2O
p23

R3! 5 ~R1O
p12

R2! GOJ@ p23, sch~R1!, sch~R3!# R3 ,

if p23 and p12 reject nulls on sch~R2!. (13)

Finally, if p23 rejects nulls on sch(R2), and p12 rejects nulls on a set of
attributes As # sch(R2), which is disjoint from A21, . . . , A2n, we have

R1O
p12

~R2 GOJ@ p23, A21 , . . . , A2n , A31 , . . . , A3m#R3!

5 ~R1O
p12

R2! GOJ@ p23, sch~R1!, A21 , . . . , A2n , A31 , . . . , A3m#R3 .

(14)

3. TREES, GRAPHS, AND QUERY REORDERING

In Section 2 we gave identities to reorder queries, and showed that they are
useful to reduce query execution cost. However, it is not obvious from this
list of associative identities what are the reorderings allowed on a given
query—or which reorderings cannot be obtained. In this section we present
reordering properties of entire queries, based on our set of associative
identities.

3.1 Notation and Restrictions

If we can obtain some query Q9 from Q using associative identities (5)
through (14), we say that Q9 is I-equivalent to Q. QI denotes the set of all
queries I-equivalent to Q.

Outerjoin simplification and associativity identities of Section 2 apply to
all queries, but we examine the extent of reordering achievable (i.e., the set
QI) only for simple join/outerjoin queries. A join/outerjoin query Q is simple
if it satisfies the following:

(1) Q cannot be further simplified using Algorithm A. In practice, Q will
usually be obtained by the idempotent Algorithm A.

(2) Predicates reject nulls on the scheme of every relation they reference.
(3) There are no Cartesian products.
(4) All input relations are free of null tuples and duplicates.
(5) All outerjoins are binary—i.e., outerjoin predicates reference attributes

of exactly two base relations.

Restriction 2 is present because some associative identities required that
certain predicates reject nulls. While we expect that predicates for most
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practical queries will indeed reject nulls,4 queries that coalesce values from
multiple sources into a single column (e.g., natural outerjoin, [Date 1986])
and then compute predicates on the coalesced column will violate the
assumption. Restriction 3 arises because we would need to represent
Cartesian product as join with a TRUE predicate, which does not reject
nulls. Even with violations of these two conditions, reorderings may be
possible, but we are unsure whether the benefits will repay the extra
complexity, and do not investigate further in this article.

Restriction 4 is normally satisfied by base relations, but might not be
satisfied if the join-outerjoin query receives input from some other query.
The problem can be solved by extending tuples by adding (and later discard-
ing) a system-generated unique identifier. Then our results can be applied.

Restriction 5 also comes from the known reordering identities. Take, for
example, identity (6), and modify the outerjoin predicate on the left-hand
side to be nonbinary, e.g., (R1 îì

p12

R2) 3p
13`p23

R3. Reassociating naively we
would obtain R1 îì

p12`p13

(R2 3
p23

R3), which simplifies—with the usual
null-rejection assumption—to R1 îì

p12`p13

(R2 îì
p23

R3), and is not equivalent
to the original expression.

It would be desirable to remove the restrictions, both to remove loose
ends and to improve performance. It is difficult for us to judge the kinds of
queries that application development environments will produce, but we
strongly suspect that most queries will satisfy our restrictions. Some
progress has already been made. Recently, Bhargava et al. [1995] adapted
our framework to deal with nary outerjoin predicates. Instead of consider-
ing all evaluation orders consistent with the connectivity heuristic, they
identify a subset of topologies such that reorderings require only join,
outerjoin, and generalized outerjoin. They also discuss the issue of dupli-
cates in base relations. Although their approach is basically that of extend-
ing tuples with an extra column, the details are somewhat more compli-
cated.

3.2 Extending Query Graphs for Simple Join/Outerjoin Queries

In Section 2 we assumed queries were represented as fully parenthesized
operator trees (as SQL2 does for outerjoins), which define a unique result.
As in most optimizers, it is convenient to show connections by deriving a
query graph consisting of base relations as nodes, plus edges for predicates.
The difficulty with outerjoins is that, unlike joins, a query graph without
information on evaluation order is ambiguous, i.e., no longer denotes a
unique result. We first extend the common query graph representation for
outerjoins, and then show how to overcome the ambiguity problem for
simple queries.

In the query graph of a simple join/outerjoin query, join conjuncts are
represented, as usual, by undirected edges; one-sided outerjoin predicates

4See Galindo-Legaria [1994] for “intuitive specifications” of join/outerjoin queries, which are
valid only when predicates reject nulls.

56 • C. Galindo-Legaria and A. Rosenthal

ACM Transactions on Database Systems, Vol. 22, No. 1, March 1997.



are represented by directed edges, pointing towards the relation on whose
scheme nulls are introduced; and full outerjoin predicates are represented
by bidirected edges.

For simplicity, we consider only join conjuncts that are binary. Conjuncts
referencing more than two relations can be handled with hyperedges
[Ullman 1982] and do not affect our results.

Formally, for an operator tree Q, a query graph G 5 (V, E) 5 graph(Q)
is constructed as follows:

—The set of nodes V 5 leaves(Q).
—Labeled edges correspond to predicate conjuncts. Take a subtree (Qj J

p

Qk), where p 5 p1
Rj1Rk1 ` . . . ` pn

RjnRkn, and Rji (respectively Rki) is a
leaf of Qj (respectively Qk). For each pi

RjiRki there is an edge (Rji, Rki) [
E labeled by pi. Also,

if the operator is join, i.e., J 5îì, then the edge is undirected ~RjiORki!;

if one-sided outerjoin, i.e., J 5 3 , then the edge is directed ~Rji3 Rki!;

if full outerjoin, i.e., J 57, then the edge is bidirected ~Rji 7 Rki!.

Example 6. Figure 5 shows the query graph of the simplified query of
Example 3. Note that the query graph does not indicate, for example,
whether outerjoin 3p

AB

should be evaluated before or after join îì
pBE

. And
different evaluation orders produce different results.

Query graphs abstract away all information about order of evaluation.
The concept of free-reorderability was first introduced in Rosenthal and
Galindo-Legaria [1990] to replace the loosely-used term “associativity” in
the context of combine operators. Although join is conventionally said to be
associative, the assertion is not strictly true. Observe that when we change
the order of evaluation of a query ((R1 îì

p12

R2) îì
p13`p23

R3) to obtain
(R1 îì

p12`p13

(R2 îì
p23

R3)), predicate conjuncts move between operators, thus,
in a sense, modifying the operators themselves. We call a query Q freely-
reorderable if any other query with the same query graph evaluates to the
same result, i.e., the information on order of evaluation in Q is irrelevant

Fig. 5. A simple query and its graph.
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for its semantics. We say that joins are freely-reorderable (rather than
associative) because queries containing only joins are freely-reorderable, in
the sense defined. Outerjoins are not, in general, freely reorderable.

3.3 Completeness of Identities for Simple Queries

Monotonic Queries. We order the three generic operators based on their
restrictiveness, defined as the number of operands for which unmatched
tuples are discarded (i.e., the nonarrow end of the symbol). Join is most
restrictive, then one-sided outerjoin, then full outerjoin. We call a query
monotonic if no parent is more restrictive than its child. That is, all joins
are executed first, then one-sided outerjoins, and finally full outerjoins. For
example, the query in Figure 5a is monotonic.

Examination of our associative identities shows that in a simple query,
any operator can be pushed down past other operators that are equally or
less restrictive, without introducing generalized outerjoin. Such reordering
is the basis of the following theorem, proved in the appendix.

THEOREM 1. Let Q be a simple query. Any monotonic query Q9 such that
graph(Q) 5 graph(Q9) is in QI.

In other words, if we are told that a query graph was obtained from a
simple query, then we can compute the result of the original query by
evaluating all joins in the query graph first, in any order, then one-sided
outerjoins, in any order, and finally full outerjoins. This evaluation rule can
help users formulate and understand queries. Of course the optimizer is
free to (and often will) select a different evaluation order for actual
execution.

Evaluations Consistent with the Connectivity Heuristic. The well-known
connectivity heuristic restricts the search space of optimizers, avoiding
Cartesian products in favor of joins [Ono and Lohman 1990; Selinger et al.
1979; Tay 1990]. Given a query graph G 5 (V, E), an operator tree T
satisfies the connectivity heuristic if for every subtree T9, leaves(T9)
induces a connected subgraph of G.5 Topologies that satisfy the connectiv-
ity heuristic (i.e., binary trees providing an order of evaluation but not the
operator to use at each step) are called here association trees. assoc(G)
denotes association trees of G. The following theorem, proved in the
appendix, states the completeness of our set of identities.

THEOREM 2. Let Q be a simple query. For any association tree T in
assoc(graph(Q)), there is a query Q9 in QI whose topology matches T.

In other words, starting with a simple query, our associative identities
can generate every order of evaluation consistent with the connectivity
heuristic.

5Given a graph G 5 (V, E) and a set of nodes V9 # V, we denote the induced subgraph as
G uV9 5 (V9, E9), where E9 5 {(u, v) u(u, v) [ E, u [ V9, v [ V9}.
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4. BOTTOM-UP ENUMERATION OF OPERATOR TREES

In this section we describe how to generate evaluation orders bottom-up,
for simple join/outerjoin queries. First we present a general form of the
algorithm to construct operator trees bottom-up. Then, based on an analy-
sis of query graphs and reordering identities, we present a decision table to
choose the operator to use at each step of the bottom-up tree construction.

4.1 Algorithm to Construct Operator Trees

Conventional optimizers in the style of System R [Selinger et al. 1979]
enumerate operator trees directly, as alternative strategies for evaluating a
query. Trees are built incrementally, bottom-up, from the query graph.
Each step combines two subtrees, using a join node as the new root.
Dynamic programming is used to prune the space of alternatives. The
algorithm for enumerating all association trees of a query graph takes the
following general form:6

Algorithm B. Enumeration of operator trees.
Input. A query graph G with n relations.
Output. A set of operator trees for G.
Procedure.

B-1. For each node in G create a 1-leaf tree.
B-2. For k 5 2, . . . , n: Choose Tl, Tr such that

leaves(Tl) ù leaves(Tr) 5 À.
uleaves(Tl)u 1 uleaves(Tr)u 5 k.
Guleaves(Tl) ø leaves(Tr)

is connected.
B-2.1. Create a tree Ts 5 (Tl J Tr).

B-3. Output trees with n leaves.

Some optimizers impose restrictions on the trees to be generated; these
can be added straightforwardly to tree generation in our algorithm. For
example, for “left-leaning trees,” Tr in step B-2.1 is always a one-leaf tree.
Following the connectivity heuristic, most optimizers insist that every join
involve an edge in G. In our proofs of join/outerjoin reordering, connectivity
is unfortunately a required assumption, rather than just a search-pruning
mechanism.

Step B-2.1 has to determine the operator to use to combine subtrees Tl,
Tr, in every step. When the original query uses only join to combine
relations, then the operator to use at each step is join. But when the
original query contains both joins and outerjoins, it is not obvious which
operator should be used at each step—join, outerjoin, or generalized
outerjoin?

4.2 How Does GOJ Appear During Transformations?

To obtain an arbitrary reordering of a simple query, we can start with a
convenient monotonic evaluation, and then apply transformations to move

6Actually, the implementation of the algorithm would produce a graph that embeds all the
trees, rather than a set of trees.
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up an operator until it reaches the root of the tree. As a result, the new root
may become a GOJ, but it turns out its subtrees always remain simple
queries. This process of placing a new root can be continued recursively on
the subtrees to obtain a desired topology.

Generalized outerjoin is introduced when an operator is moved above
past a less restrictive parent, in the cases shown in identities (11), (12) and
(13). We now illustrate the process of moving an operator up to the root,
and show how GOJ is introduced.

Example 7. Take the query shown with its query graph in Figure 5, and
consider an evaluation order in which join predicate pCD is applied last.
Such evaluation is achieved by moving operator îì

pCD

to the root.
In the query of Figure 5a, there are two operator operators above îì

pCD

. A
more convenient starting monotonic query to move up îì

pCD

is that shown in
Figure 6a, where the join of interest has only one ancestor. Application of
identity (11) obtains the desired root, as shown in Figure 6b.

Now, suppose we want to move operator îì
pBF

to the root. It has two
ancestors in the query of Figure 5a as well as that of Figure 6a. But the
order of the ancestors is different. The query in Figure 5a is more
convenient, because the îì

pBF

can be moved past its first ancestor without
introducing GOJ, using identity (6); then, a second transformation places
the desired new root, this time introducing GOJ.

The critical information about the convenient monotonic query and the
attributes preserved by the resulting GOJ at the root can be detected
directly from the query graph.

Example 8. Note that maximal join subtrees in monotonic queries
correspond to maximal connected subgraphs with undirected edges only. In
the query graph in Figure 5b, there is a maximal connected, undirected
subgraph that contains edge COD. There is one directed edge, B 3 C,
adjacent to a node in such subgraph. This implies that outerjoin3p

BC

is an

Fig. 6. Moving an operator to the root.
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ancestor of join îì
pCD

in every monotonic operator tree for this query. In
addition the directed edge points towards the undirected subgraph. Then,
moving the join îì

pCD

up past the outerjoin3p
BC

requires the introduction of
GOJ. Finally, the attributes preserved by the new GOJ must be those
preserved originally by the outerjoin, i.e., in the query graph, those of
relations on the other side of B 3 C, away from COD. Such GOJ is the
root of the operator tree in Figure 6b.

For the edge BOF, there are two directed edges adjacent to the maximal
connected, undirected component, and therefore the two corresponding
outerjoins are ancestors of join îì

pBF

in every monotonic evaluation. Now,
only one of the two edges, A 3 B, points towards the maximal undirected
subgraph. When the join is moved up past the outerjoins that corresponds
to that edge, a GOJ is introduced. The preserved attributes are again those
on the other side of A 3 B, away from BOF.

4.3 Query Graph Analysis

The intuition provided in the above examples is now formalized and
generalized. We use the following terms and notation. Let G 5 (V, E) be a
query graph. For an edge e [ E, the removal of e from G is abbreviated as
G 2 e 5 (V, E 2 {e}). A path in G is a sequence of edges, per the usual
definition, which can be traversed in either direction, and does not include
the same edge more than once. A directed edge in a path appears either as
“3”, if traversed in the direction of the arrow, or as “4”, if traversed
opposite the arrow. Graph connectivity ignores the direction in which edges
are traversed.

LEMMA 3. Let G be the query graph of a simple query. Assume e is a
directed or bidirected edge in G. Then G 2 e is disconnected (and it has two
connected components).

Observation 4. Let G be the query graph of a simple query, and e1, e2 be
any two edges of G. Then any two paths from e1 to e2 include the same set
of directed and bidirected edges, traversed in the same direction (including
e1, e2). That is, only the undirected edges may differ.

Observation 4 follows from Lemma 3. Next, define a restrictiveness
ordering for edges: Undirected edges are more restrictive than directed
edges, which are in turn more restrictive than bidirected edges. Now,
consider a path P 5 eM

. . . eL, where eM is more restrictive than eL. We
say eM conflicts with eL, and call P a conflict path, if the following holds
(with arrow directions exactly as shown):

—eL is either 4 or 7; and
—all other edges in P are either O or 3.

The set of conflicting edges for a given edge are

conf~eM! 5 $eLueM · · · eL is a conflict path%.
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Also define

awayeM
(eL) 5 {attributes of relations in the connected component

of G 2 eL that does not contain eM}.

In a monotonic evaluation, with the operator for eL done last, all
attributes in awayeM

(eL) are preserved. If e9L, e 0L, . . . , are also in conf(eM),
their away sets also need to be preserved when the operator of eM moves
upward. That is, every edge in conf(eM) whose operator is moved below that
of JM adds a set of attributes to the GOJ’s preservation list.

Example 9. Figure 7 shows the result of analyzing the query graph of
the monotonic query of Figure 5, to obtain both conf¼ and away¼ informa-
tion. We assume that each relation A through F has a single attribute,
whose name is the lower case letter of the relation name.

To compute conflict sets, it is useful to note that, by Observation 5, if
eM

. . . eL is a conflict path, then every path from eM to eL is a conflict path.
One can compute conf(eM) and each awayeM

(eL) straightforwardly by depth
first traversal from eM. Devising an efficient way to mass produce all
conflict sets and away sets is left as an open problem.

4.4 Choosing an Operator in the Bottom-Up Construction

To generate arbitrary reorderings of simple queries, consistent with the
connectivity heuristic, Algorithm B is modified to take advantage of the
information provided by the query graph analysis. The needed modification
to step B-2.1 is shown in Figure 8. The idea is that when Algorithm B
constructs association trees for the graph G of a simple query, each time a
graph edge is used in combining two existing subtrees, we check if conflict-
ing, less restrictive edges have already been used in the construction of the
subtrees. In that case, the subtrees must be combined with GOJ, and the
attributes to preserve are determined by the conflicting edges used in the
subtrees.

In Figure 8, line 5 determines the conflicting, less restrictive edges
{e1, . . . , en} that have already been used in the construction of the
subtrees Tl, Tr. It is sufficient to use conf(e0), for any e0 [ E9, chosen in

Fig. 7. A graph and its analysis.
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line 3. Observe that if E9 is not a singleton then the edges in E9 are all part
of some cycle in G, because leaves(Tl) and leaves(Tr) each induces a
connected subgraph of G. Then, by Lemma 4 all edges in E9 are undirected.
From the definition of conflicting edges, any two edges e1, e2 in a cycle have
conf(e1) 5 conf(e2), so, all edges in E9 have the same set of conflicting
edges.

For correctness, the clauses for n 5 0 (i.e., no conflicting, less restrictive
edges used earlier) are not necessary, as they are a particular case of the
general GOJ expressions. We include these clauses explicitly because an
optimizer should recognize these cases and issue simpler operators than
the general GOJ.

The bottom-up construction we have outlined is based on the application
of associative identities of Section 2, as described in the next theorem.

THEOREM 5. Let G be the graph of a simple query Q. Let Q9 be an
operator tree generated by Algorithm B using the rule of Figure 8. Then Q9
is in QI.

Example 10. The bottom-up construction of an operator tree for the
query graph of Figure 7a is illustrated in Figure 9. The example constructs
a single operator tree (greedily); an optimizer doing join enumeration would
actually generate many alternatives. To illustrate the gains from reorder-
ing, we qualitatively estimate sizes of intermediate results, under the
following assumptions: Relations A and D are qualitatively small com-
pared to the other relations, and join predicates are equalities on keys.

Fig. 8. New step B-2.1, to reorder simple join/outerjoin queries.
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First, we build subtrees with two leaves that combine the small relations
A and D. Results of these two trees are small. Then, combine the A-B
subtree with the one-leaf E subtree. The edge between subgraphs {A, B}
and {E} is undirected, eM 5 (BOE), so Step 6.3 will determine the
operator for the corresponding node in the operator tree. The only conflict-
ing edge for (BOE) is ( A 3 B), which connects relations within a subtree,
so its operator has been applied earlier. Therefore the operator to use is
GOJ[ pBE, away(BOE)( A 3 B) ù {a, b, e}]. Since the attributes preserved
by GOJ belong to the small relation, the GOJ result is small.

Now, combine the A-B-E subtree with the F subtree. In this case, eM 5
(BOF), and again its conflicting edge conf(eM) 5 {( A 3 B)} connects
relations within a subtree. The operator to use is GOJ[ pBE, away(BOF)
( A 3 B) ù {a, b, e, f }]. The result of the new subtree is small.

Finally, combine subtrees A-B-E-F and C-D. Now eM 5 (B 3 C) and
conf(eM) 5 À. The operator to combine the two trees is outerjoin. All
intermediate results are small in the operator tree we have built.

5. SPECIFYING AND OPTIMIZING OUTERJOINS IN DATABASE SYSTEMS

The previous sections addressed the difficult, detailed technical problems.
This section exploits their results. First, we describe how to apply our
results of Sections 2 and 4 within the architecture of current database
optimizers. Section 5.1 applies our results to rule-based optimizers, and
Section 5.3 considers more conventional enumerative approaches. Then, in
Section 5.5 we describe particular applications and restricted query lan-
guages that are particularly easy to reorder. Under such restrictions, both
query language and optimization are simpler than the general case.

Fig. 9. Bottom-up construction of an operator tree.
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5.1 Rule-Based Optimizers

Rule-based query optimizers have been proposed as configurable modules
that explore a space of execution plans, based on rules for transformation of
expressions and cost estimation [Graefe and DeWitt 1987; Galindo-Legaria
1987; Graefe 1990; Haas et al. 1990; Rosenthal and Helman 1986]. Our
processing tactics of Section 2—outerjoin simplification and associative
identities—provide the necessary transformation rules to handle outer-
joins.

Simplification identities are always beneficial, and we wish to apply
them before exploring reassociations. Associative identities may be applied
in either direction, and cost estimation is necessary to compare the alter-
natives. Most rule-based optimizers should accept such advice.

The completeness result of Theorem 2 guarantees that if predicates of the
original query satisfy the conditions of Section 3.1, then our transformation
rules can generate the complete space of evaluation orders consistent with
the connectivity heuristic. That is, all reorderings of the query are within
the reach of the optimizer.

5.2 Selections and Projections

Previous sections assumed that queries contained only joins and outerjoins.
We now briefly examine projections and arbitrary selections, which are
treated roughly as in join queries. The adaptation to join-enumeration
optimizers also appears relatively similar to the conventional treatment.

Projections are straightforward. As in join queries, they can be either
pushed down the operator tree to the earliest possible time, or done at the
end.

Selections are used to remove arrows, as in Algorithm A, then pushed
down past joins, and past outerjoins using identities (3) and (4). Selection
predicates that reject nulls are eventually pushed into either base relations
or match predicates. Then our join/outerjoin reordering technique can be
applied.

Unfortunately, if selection predicates do not reject nulls, there is no
guarantee they will be absorbed into base relations or match predicates.
For example, take an outerjoin that introduces nulls on sch(R1). A later
selection that references columns in sch(R1) but does not reject nulls can be
pushed neither into the outerjoin match predicate, nor below the outerjoin.
Pending further research, nonnull-rejecting predicates, in selects as well as
in combine operators, force us to split the query into separately-optimized
pieces.

5.3 Join-Enumeration Optimizers

This section describes a general structure for a join-enumeration optimizer
that handles many outerjoin queries. It also indicates ways to reduce
implementation effort by generating fewer reorderings.

The generation of evaluation orders in enumerative optimizers is ab-
stracted by Algorithm B of Section 3.3. Section 4.4 refined the algorithm to
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handle simple join/outerjoin queries. This algorithm is an ingredient in a
larger process that handles queries (or subqueries) that may not be simple
but do satisfy the restrictions of binary and null-rejecting predicates of
Section 3.1. In this case, the optimizer must perform the following steps:

—First, simplify the original query Q1 using Algorithm A of Section
2.1—and any other simplification algorithms available—to obtain Q2.

—Next, construct the query graph G of Q2, and compute edge conflicts and
away sets for each edge—functions conf¼ and away¼ defined in Section
4.3.

—Finally, apply Algorithm B on G to enumerate trees, using the logic of
Figure 8 to choose the root operator of each subtree created in step B-2.

5.4 Generating Restricted Reorderings

To reduce the implementation effort in the execution engine, one might
choose to implement a restricted set of GOJ operators. This section dis-
cusses the apparently modest importance of preserving multiple sets, and
then considers how enumeration can be modified not to use the general
case of GOJ.

Preserving multiple sets is necessary for completeness, to reorder full
outerjoins. As with Cartesian product [Ono and Lohman 1990], there are
special cases where an early placement is somewhat beneficial. However,
the benefit from early evaluation of full outerjoins seems much smaller and
less frequent than that of one-sided outerjoins. For example, consider R1

7
p12

(R2 4
p23

R3), where R1 and R2 are tiny, but R3 is huge. Early evaluation
of full outerjoin, using identity (13), can yield an improved strategy because
a huge intermediate result is avoided. But since full outerjoin preserves all
tuples in both inputs, the result of the query is huge, and the impact of
evaluating full outerjoin early seems marginal. Contrast this case with that
of Example 5, where early evaluation of one-sided outerjoin can produce a
dramatic performance improvement.

Delaying evaluation of full outerjoins guarantees that any GOJ in the
reordered query preserves only one set of attributes, thus excluding the
more complicated, general case of GOJ. The following lemma is proved in
the appendix.

LEMMA 6. Let Q be an operator tree generated by Algorithm B using
Figure 8 to choose operators. Assume ancestors of full outerjoins in Q are all
full outerjoins. Then operators in Q may be join, one-sided outerjoin, full
outerjoin, and GOJ preserving only one set of attributes.

Lines 6.2 and 6.3 of Figure 8 can easily be modified so the tree enumer-
ation algorithm refuses to combine subtrees that require a certain operator.
It is possible to improve on this, modifying the algorithm to look ahead and
refrain from creating subtrees that force the inclusion of undesired opera-
tors later on. To avoid general GOJ, a lookahead can be accomplished by
modifying the rule in Figure 8 so that no bidirected edge is used to combine
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subtrees, unless those subtrees have already used all directed and undi-
rected edges in the graph.

The algorithm can be modified similarly to avoid generating trees that
use any form of GOJ, based on conflicting edge information conf¼. The
scheme to generate restricted reorderings allows the optimizer to be easily
upgraded by modifying (or discarding) lookahead code, to generate more
reorderings when new operators are implemented in the execution engine.

5.5 Important Special Cases

We now describe restricted classes of join/outerjoin queries whose proper-
ties allow easier query languages and optimization algorithms. The motiva-
tion is that queries that do not specify an evaluation order are much easier
to write than fully-parenthesized queries. As an example, compare the
relative simplicity of an SQL “select-from-where” block versus a corre-
sponding operator tree, written in whatever syntax.

“Simple” Queries. Users could provide a query graph rather than an
operator tree, with the proviso that the graph be interpreted as a “simple”
query—recall from Section 3.3 that a query graph with no information
about processing order is an adequate specification of any simple query.

Users may think of a monotonic order of evaluation as performing first
all joins, then one-sided outerjoins, and finally full outerjoins, and simply
specify the operators of each type. Clearly, the optimizer is free to choose
any other order of evaluation following the approach we have shown.

Hierarchic Queries. Hierarchic queries are used to collect parent-child
information, preserving parents with no children. This pattern seems to be
a frequent use of one-sided outerjoin in current SQL implementations
[David 1991]. Examples 1 and 2 in the introduction show such queries, with
New York customers as “parents” of a set of “children” orders.

From the query optimization perspective, hierarchic queries have two
relevant properties: They have no full outerjoins, and they are simplified—
i.e., their topology does not allow arrow removals by Algorithm A. Exploit-
ing these properties, our optimization strategy becomes simpler in three
ways:

—There is no need to apply Algorithm A for simplification.
—Query graph analysis is easier because there are no bidirected edges (and

undirected edges conflict with at most one directed edge).
—No reordering requires GOJs that preserve more than one set of at-

tributes.

Also, since hierarchic queries are simplified, they can be specified using
only a query graph. David [1991] uses a graph as a conceptual visualization
for parenthesized SQL2 outerjoins. Such graph does not specify an evalua-
tion order, although it does suggest a monotonic evaluation.

Conflict-Free Queries. Queries whose graphs have no conflicting
edges are easier to handle than hierarchic queries. The conflict sets conf¼
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are always empty, so there is no need to compute and check these sets, and
reordered queries will never require generalized outerjoin. Hence graphs
are unambiguous query specifications, and there is no need to analyze the
graph. A trivial class of conflict-free queries are those that combine
relations using only joins.

A conflict-free class of join/outerjoin queries is presented in Rosenthal
and Galindo-Legaria [1990]. This class is characterized by a query graph
whose topology consists of a subgraph of undirected edges, from which
directed trees grow outward. This class can handle an extended form of
Select-From-Where blocks, for a data model with entity- and set-valued
attributes. Attribute dereference and unresting is specified in the Select
clause, and represented algebraically by means of outerjoins.

Another conflict-free class, which may arise when databases are merged,
is characterized by query graphs consisting of a subgraph of bidirected
edges from which directed trees grow outward.

From the definition of conflicting edges, simple queries that contain both
joins and full outerjoins always have conflicts, regardless of the topology of
their query graph.

6. CONCLUSIONS

Outerjoins are an important SQL2 operation, but are handled poorly by
current optimizers. In this article, we provided a theory that allows
join/outerjoin queries to be reordered so that inexpensive combinations can
be performed before expensive ones. Equally important, we described how
the theory can be adapted to fit within existing optimizers, both conven-
tional—in the enumerative style of System R—and rule-based. The results
were presented modularly, so that system designers are free to choose the
techniques that are suitable for their environment, and to build incremen-
tally.

We first presented a set of identities for simplifying queries composed of
one- and two-sided outerjoins, joins, and selections. These rules can readily
be implemented in a query preprocessor, so federated database systems
that merge information using full outerjoin can benefit easily from this
technique.

We next presented a set of algebraic identities that justify reassociation
of pairs of joins and outerjoins. This set of identities was shown to be
complete for simple queries (defined in Section 3.1). For those queries, our
identities can generate any evaluation order consistent with the connectiv-
ity heuristic. We also described classes of queries where reassociations use
solely the operators in the original query, so there was no need to introduce
generalized outerjoin. For those queries, the result is independent of the
query’s association—i.e., parenthesization—so the query language syntax
and query optimization algorithms can be simplified.

A major practical contribution of this article is the query enumeration
algorithm to generate candidate evaluation orders for joins and outerjoins.
We expect that the join enumeration component of traditional optimizers
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can be extended, without major redesign, to use the logic for operator
selection we have described. The result will be an optimizer that generates
good strategies for most outerjoin queries.

Further research is needed on how to relax the restrictions we have
assumed (see Section 3.1) while preserving complete reorderability free-
dom, and on how to exploit the limited freedom allowed in more general
classes. As mentioned in Section 3.1, some steps in this direction have been
taken recently by Bhargava et al. [1995]. A problem we did not consider is
how to choose operators when the bottom-up enumeration does not follow
the connectivity heuristic, so that Cartesian products are required. Finally,
more work is necessary on the efficient implementation of query simplifica-
tion, query graph analysis, and generalized outerjoins.

We continue our work on declarative outerjoin specifications, to simplify
reasoning about outerjoins, and to explore its use in logic languages (see
Galindo-Legaria [1994]). Another unexplored and, we believe, promising
research direction is the application of our framework of operator tree /
query graph / association tree to reorder other operators that combine
relations, such as semijoin and antijoin.

A. PROOFS OF LEMMAS AND THEOREMS

To prove the results presented in the body of the article we rely on a
sequence of claims, numbered independently from the main lemmas and
theorems. The terms “associative identities” and “associative transforma-
tions” refer to the identities in Section 2. More complete but somewhat less
intuitive proofs can be found in Galindo-Legaria [1992].

In both Theorem 1 and Theorem 5, we seek to transform a given operator
tree to a more desirable topology. In both cases, our strategy is to place the
new root first, and then (recursively) to transform the subtrees. Transfor-
mation steps are supported by associative identities. Assume the goal
topology is of the form (Tl J Tr). Then placing the correct root in an
operator tree implies sorting the leaves in two groups, left and right
subtree, so they coincide with the leaves of Tl, Tr, respectively. In every
case, the subtrees will remain simple queries, so we can apply the proce-
dure recursively to transform them to match Tl, Tr.

Claim 1. Simple queries are closed under associative transformations.

PROOF SKETCH. For property 1, if a query has been simplified by
Algorithm A, then reassociating its operators does not lead to further
simplifications. Properties 2 through 5 of simple queries (see Section 3.1)
are trivially invariant under associative transformations. e

PROOF SKETCH OF THEOREM 1. We show how to transform simple query
Q into monotonic query Q9 5 Q9l J Q9r. If Q has only one operator, then,
after commuting the operands, if necessary, Q is identical to Q9. Other-
wise, move up operator J in Q to the root, then subtrees can be trans-
formed into Q9l and Q9r. To move this operator upward, observe that in
simple queries, the associative identities always permit less restrictive
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operators to be moved up past equal or more restrictive operators. For
example, if the ancestor of a full outerjoin is a one-sided outerjoin but
identity (10) is not applicable, then we either have a predicate that does not
reject nulls, or else a simplification by Algorithm A is possible—and Q
would not be simple. e

The proof of Theorem 2 is presented after Theorem 5.

Claim 2. Let G be the query graph of a monotonic, simple query Q. All
cycles in G consist of undirected edges.

PROOF. By induction on the structure of monotonic operator trees.

Base. For 1-node trees the lemma is trivially true.

Induction. Assume Q 5 (Ql J
p

Qr). Then G is obtained by adding
edge(s) corresponding to p to the union of Gl 5 graph(Ql), Gr 5 graph(Qr).
If J is join then because Q is monotonic, all operators in Ql, Qr are joins.
Thus all edges in G are undirected, including all cycles. Otherwise, if J is
outerjoin, then p is a binary predicate, so only one edge connecting Gl with
Qr is added. All cycles in G are already present in Gl or Gr and, by
induction hypothesis, they consist of undirected edges. e

PROOF OF LEMMA 3. There is a monotonic query Q with graph G. Then,
by Claim 2, e is not part of a cycle in G, and therefore G 2 e is
disconnected. Since G is connected, G 2 e has two connected components.

e

Claim 3. Let G be the query graph of a simple query, and eM be an edge
in G. In any monotonic query Q for G, operators associated to conf(eM) are
ancestors of the operator associated to eM.

PROOF SKETCH. Suppose eM is a directed edge. Because Q is monotonic
and obeys the connectivity heuristic, a maximal subtree of Q having only
joins and one-sided outerjoins corresponds to a maximal connected sub-
graph of G having only directed and undirected edges. Call QM the
maximal join/one-sided outerjoin subtree of Q that includes the operator for
eM. Edges in conf(eM) are all bidirected, and each points to a node in the
maximal such subgraph that contains eM. So, full outerjoins corresponding
to edges in conf(eM) must be ancestors of a relation in subtree QM. Since
there are no full outerjoins in QM, they must be ancestors of the root of QM,
and therefore of every operator in QM including the operator of eM.

When eM is an undirected edge, the situation is analogous. e

Claim 4. Let G be the query graph of a simple, monotonic query Q, and
eM be an undirected edge in G. Then conf(eM) contains at most one directed
edge.

PROOF SKETCH. Suppose there are two different directed edges in
conf(eM). By Claim 3, there are two different one-sided outerjoins ancestors
of some join operator. But one of those one-sided outerjoins introduces null
on some attributes, say A, while the other one-sided outerjoin, higher up,
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rejects nulls on those attributes. Simplification by Algorithm A is possible,
contradicting the assumption that Q is simple.

Claim 5. Let G be the query graph of a simple, monotonic query Q.
Assume e0 5 Ri 7

p Rj is a bidirected edge whose removal from G leaves
connected components Gl, Gr. Using associative identities, Q can be
transformed into Ql 7

p Qr such that Ql, Qr are simple, graph(Ql) 5 Gl
and graph(Qr) 5 Gr.

PROOF. Pick any monotonic tree Q9 that evaluates outerjoin 7
pR1Rj last.

By Theorem 1, Q can be transformed into Q9. e

Claim 6. Let G be the query graph of a simple, monotonic query Q.
Assume e0 5 Ri 3

p Rj is a directed edge whose removal from G leaves
connected components Gl, Gr, with Ri in Gl. Let Al be the union of
attribute sets of all relations in Gl. Using associative identities, Q can be
transformed into Ql GOJ[ p, Al, prese0

(e1), . . . , prese0
(en)] Qr, where {e1,

. . . , en} 5 conf(e0). Ql, Qr are simple, graph(Ql) 5 Gl and graph(Qr) 5
Gr.

PROOF SKETCH. First, note that G has a monotonic query Q1 such that:
(1) Outerjoin3

pRiRj is the root of a maximal subtree of one-sided outerjoins
and joins. (2) Every ancestor of 3

pRiRj, say there are m, is a full outerjoin
whose predicate references some relation below3

pRiRj. That is, full outerjoins
unrelated to e0 have been moved aside, to be performed independent of this
subtree). (3) Full outerjoin ancestors are ordered so that those correspond-
ing to edges in conf(e0) appear last in the tree. By Theorem 1, Q can
be transformed into query Q1. Now the first m 2 n ancestors of 3

pRiRj

reference relations in the preserved subtree of the one-sided outerjoin, so
3
pRiRj can be moved up using identity (10) without introducing GOJ. Then,
move the operator up to the root using identity (13) once and (14) n 2 1
times. The resulting query is that stated in the claim.

Claim 7. Let G be the query graph of a simple, monotonic query Q.
Assume E9 is a minimal set of undirected edges whose removal from G
leaves connected components Gl, Gr. Let p1, . . . , pk be the predicates
labeling edges in E9 and p 5 p1 ` . . . ` pk. Let e0 [ E9. Using
associative identities, Q can be transformed into Ql GOJ[ p, prese0

(e1),
. . . , prese0

(en)] Qr, where {e1, . . . , en} 5 conf(e0). Ql, Qr are simple,
graph(Ql) 5 Gl and graph(Qr) 5 Gr.

PROOF SKETCH. G has a monotonic query Q1 such that: (1) Join
îì

p1 ` . . . `pk is the root of a maximal subtree of joins. (2) Every one-sided
outerjoin ancestor of îì

p1 ` . . . `pk references a relation below the join. (3)
Every full outerjoin ancestor of îì

p1 ` . . . `pk references some relation in the
maximal join/one-sided outerjoin subtree that includes îì

p1 ` . . . `pk. As in
the previous claim, outerjoins unrelated to e0 have been moved aside. (4)
Ancestors are ordered so that those corresponding to edges in conf(e0)
appear as late as possible in the tree. By Theorem 1, Q can be transformed
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into such Q1. Now use identity (6) to move îì
p1 ` . . . `pk up the operator tree

as high as possible. If conf(e0) is empty, the join is able to move to the root.
Otherwise we have two cases.

—If there is a directed edge in conf(e0), then the parent of the join is a
one-sided outerjoin corresponding to this directed edge. Use identity (10)
to move the one-sided outerjoin upward, until the identity no longer
applies. Now the ancestors of îì

p1 ` . . . `pk all correspond to edges in
conf(e0), first the one-sided outerjoin, then the full outerjoins. Use (11)
once, introducing a GOJ, then (14) until the operator reaches the root.

—If there are only bidirected edges in conf(e0), then the ancestors of
îì

p1 ` . . . `pk all correspond to edges in conf(e0). Use (12) once, introducing
a GOJ, then (14) until the operator reaches the root.

In both cases, the resulting query is that stated in the claim. e

Claim 8. Let G be the graph of a simple query. Let Q9 be an operator
tree generated by Algorithm B using the rule of Figure 8. For each subtree
Q9s of Q9, any simple query Qs with graph G u leaves(Q9s) can be transformed
into Q9s by means of associative identities.

PROOF. By induction on the structure of subtrees of Q9.

Base. The claim is trivially true for one-leaf subtrees of Q9.

Induction. Let Q9s 5 Q9ls J Q9rs. Let E9 be the set of edges in G between
leaves(Q9ls) and leaves(Q9rs). If E9 contains bidirected, directed, or undi-
rected edges, then by Claim 5, 6, or 7, respectively, simple query Qs can be
transformed by associative identities into Qls J Qrs; Qls, Qrs are simple,
with graphs G leaves(Q9ls), G leaves(Q9rs), respectively. In each case, the root
operator chosen by the rule in Figure 8 for Q9s is the same as the root J

obtained transforming Qs into Qls J Qrs. Now, by induction hypothesis,
Qls, Qrs can be transformed into Q9ls, Q9rs, thus completing the transforma-
tion of Qs into Q9s. e

PROOF OF THEOREM 5. Follows from Claim 8. e

PROOF OF THEOREM 2. Let G be the query graph of a simple query Q,
and let T [ assoc(G). Using the operator selection rule of Figure 8, the
modified Algorithm B generates an operator tree Q9 having association tree
T. By Theorem 5, associative identities can transform Q into Q9. e

PROOF OF LEMMA 6. Assume Ts 5 Tl J Tr is a subtree of Q, and
examine now how the operator J was chosen using Figure 8. Let e0 be the
edge used to combine subtrees Tl, Tr. If e0 is bidirected, then J is full
outerjoin; otherwise, no bidirected edge was used in the generation of Tl,
Tr, for it would have created an early full outerjoin. Now, if e0 is directed,
then conf(e0) consists of bidirected edges only, but we have said that no
bidirected edge was used in Tl or Tr; then, no conflicting, less restrictive
edges of e0 were evaluated early and operator J is one-sided outerjoin.
Finally, if e0 is undirected, it conflicts with at most one directed edge, by
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Claim 4. Again, no bidirected edge in conf(e0) was used early, but now
there may be one directed edge in conf(e0), which could have been used in
Tl or Tr. In that case, operator J is GOJ preserving one set of attributes;
otherwise, J is join. Therefore, in no case does GOJ need to preserve more
than one set of attributes. e
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