
Accelerat ing the world's research.

Optimizing parallel bitonic sort

Mihai F Ionescu

Proceedings 11th International Parallel Processing Symposium

Related papers

A generalizat ion of Amdahl's law and relat ive condit ions of parallelism
Gianluca Argent ini

The superblock: An effect ive technique for VLIW and superscalar compilat ion
Scott Mahlke

Membrane systems with surface objects
Gabriel Ciobanu, Bogdan Aman

Download a PDF Pack of the best related papers

https://www.academia.edu/70520211/A_generalization_of_Amdahls_law_and_relative_conditions_of_parallelism?from=cover_page
https://www.academia.edu/149195/The_superblock_An_effective_technique_for_VLIW_and_superscalar_compilation?from=cover_page
https://www.academia.edu/20137232/Membrane_systems_with_surface_objects?from=cover_page
https://www.academia.edu/77791868/Optimizing_parallel_bitonic_sort?bulkDownload=thisPaper-topRelated-sameAuthor-citingThis-citedByThis-secondOrderCitations&from=cover_page

Optimizing Parallel Bitonic Sort

Mihai Florin Ionescu and Klaus E. Schauser

Department of Computer Science
University of California, Santa Barbara

Santa Barbara, CA 93106
fmionescu, schauserg@cs.ucsb.edu

Abstract

Sorting is an important component of many applications, and
parallel sorting algorithms have been studied extensively in the last
three decades. One of the earliest parallel sorting algorithms is
Bitonic Sort, which is represented by a sorting network consisting
of multiple butterfly stages.

This paper studies bitonic sort on modern parallel machines
which are relatively coarse grained and consist of only a mod-
est number of nodes, thus requiring the mapping of many data
elements to each processor. Under such a setting optimizing the
bitonic sort algorithm becomes a question of mapping the data
elements to processing nodes (data layout) such that communica-
tion is minimized. We developed a bitonic sort algorithm which
minimizes the number of communication steps and optimizes the
local computation. The resulting algorithm is faster than previous
implementations, as experimental results collected on a 64 node
Meiko CS-2 show.

1 Introduction

Sorting is a popular Computer Science topic which receives much
attention. As a parallel application, the problem is especially
interesting because it fundamentally requires communication as
well as computation [ABK95] and is challenging because of the
amount of communication it requires. Parallel sorting is one ex-
ample of a parallel application for which the transition from a
theoretical model to an efficient implementation is not straightfor-
ward. Most of the research on parallel algorithm design in the ’70s
and ’80s has focused on fine-grain models of parallel computa-
tion, such as PRAM or network-based models, where the ratio of
memory to processors is relatively small [BDHM84, JáJ92, KR90,
Lei92, Rei93, Qui94]. Later research has shown, however, that
processor-to-processor communication is the most important bot-
tleneck in parallel computing [ACS90, CKP+93, KRS90, PY88,
Val90a, Val90b, AISS95]. Thus efficient parallel algorithms are
more likely to be achieved on coarse-grain parallel systems and in
most situations algorithms originally developed for PRAM-based
models are substantially redesigned.

One of the earliest parallel sorting algorithms is Bitonic Sort
[Bat68], which is represented by a sorting network consisting of
multiple butterfly stages of increasing size. The bitonic sorting
network was the first network capable of sorting n elements in
O(lg2

n) time and not surprisingly, bitonic sort has been studied
extensively on parallel network topologies such as the hypercube
and shuffle-exchange which provide an easy embedding of butter-
flies [Sto71]. Various properties of bitonic networks have been

investigated, e.g. [Knu73, HS82, BN89], and recent implementa-
tions and evaluations show that although bitonic sort is slow for
large data sets (compared for example with radix sort or sample
sort) it is more space-efficient and represents one of the fastest
alternatives for small data sets [CDMS94, BLM+91].

In order to achieve the O(lg2
n) time bound, the algorithm as-

sumes that each node of the bitonic sorting network is mapped onto
a separate processor and that connected processors can communi-
cate in unit time. Therefore the network size grows proportionally
to the input size. Modern parallel machines, however, have gener-
ally a high communication overhead and are much coarser grained,
consisting of only a relatively small number of nodes. Thus many
data elements have to be mapped onto each processor. Under such
a setting optimizing a parallel algorithm becomes a question of
optimizing communication as well as computation.

We derive a new data layout which allows us to perform the
smallest possible number of data remaps. The basic idea is to
locally execute as many steps of the bitonic sorting network as
possible. We show that for the last lgP stages of the bitonic sorting
network — which usually require communication — the maximum
number of steps that can be executed locally is lg N

P
(N is the data

size, P is the number of processors). Our algorithm remaps the
data such that it always executes lg N

P
before remapping again,

thus executing the smallest possible number of remap operations.
Compared with previous approaches our algorithm executes

less communication steps and also transfers less data. Furthermore,
by taking advantage of the special format of the data input, we show
how to optimize the local computation on each node. We develop
an efficient implementation of our algorithm in Split-C [CDG+93]
and collect experimental results on a 64 node Meiko CS-2. We also
investigate the factors that influence communication in a remap-
based parallel bitonic sort algorithm by analyzing the algorithm
under the framework of realistic models for parallel computation.
Finally, we compare our implementation of bitonic sort against
other parallel sorts.

2 Bitonic Sort

Bitonic sort is based on repeatedly merging two bitonic sequences
to form a larger bitonic sequence. The following basic definitions
were adapted from [KGGK94].

Definition 1 (Bitonic Sequence) A bitonic sequence is a sequence
of values a0; : : : ; an�1, with the property that (1) there exists an
index i, where 0 � i � n� 1, such that a0 through ai is monotoni-
cally increasing and ai through an�1 is monotonically decreasing,
or (2) there exists a cyclic shift of indices so that the first condition
is satisfied.

On a bitonic sequence we can apply the operation called bitonic
split which halves the sequence in two bitonic sequences such that
all the elements of one sequence are smaller than all the elements
of the other sequence (for details see [KGGK94]). Thus, given
a bitonic sequence we can recursively obtain shorter bitonic se-
quences using bitonic splits, until we obtain sequences of size one,
at which point the input sequence is sorted. This procedure of sort-
ing a bitonic sequence using bitonic splits is called bitonic merge
and it is easy to implement on a network of comparators (known
as bitonic merging network, see Figure 1).

1

7

4

3 2

1

3

4

5

6

7

8

1

2

3

4

5

6

7

8

3

4

2

1

5

6

7

8

6

8

5

2

Step 3 Step 1Step 2

Bitonic
Sequence

Sorted
Sequence

Figure 1: Butterfly structure of an increasing bitonic merge of size
N = 8 (we denote this with BM�

8). A shaded node designates an
address where the minimum of the two keys is placed, the unshaded
node designates an address where the maximum of the two keys is
placed.

Definition 2 (Bitonic Sorting Network) The bitonic
sorting network for sorting N numbers consists of lgN bitonic
sorting stages, where the i-th stage is composed of N=2i alter-
nating increasing and decreasing bitonic merges of size 2i (see
Figure 2).

The communication structure of a bitonic merge of size 2i is
represented by a butterfly with 2i rows and i+1 columns (Figure 1),
where each butterfly node selects the minimum or the maximum of
the two inputs.

Each node of the bitonic sorting network is identified by a 3-
tuple (s; c; r), where the three elements are the stage, the column
inside the stage and the row of the node, respectively. Stage s

contains s+ 1 columns numbered s; : : : ; 0. Column 0 of stage s is
called the output of stage s and corresponds also to column s+1 of
stage s+ 1 which is called the input of stage s+ 1. The transition
from column i to column i� 1 is called step i (see Figure 3).

The connectivity of the network is described by the following
relation: the node (s; c; r), where 1 � s � lgN , 0 � c � s � 1
and 0 � r < N , receives inputs from nodes (s; c + 1; r) and
(s; c + 1; rc), where rc = r � 2c (i.e. r and rc differ only in bit
c). The network has two types of nodes, MIN and MAX. The node
(s; c; r), where 0 � c � s � 1, selects the minimum of the two
inputs if (r div 2c) mod 2 = (r div 2s) mod 2, otherwise it selects
the maximum.

What is not obvious from the Bitonic Sorting Network definition
is that this network actually sorts the input. This results, however,
from the duality of the network view and the algorithmic view of
bitonic sort. Basically, the bitonic sorting network implements the
bitonic merges described previously.

BM 8

BM 8

Stage 3

BM16

Stage 4

BM4

BM
4

BM4

BM
4

Stage 2

BM
2

BM
2

BM2

BM
2

BM
2

BMBM 2

BM
2

BM 2

Stage 1

Figure 2: Block structure of a bitonic sorting network of size
N = 16. With BM

�

k
and BM

	

k
we denote increasing, re-

spectively decreasing, bitonic merging networks of size k. The
arrows indicate the monotonic ordered sequence, with the arrow-
head pointing towards the largest key.

2.1 Naive and Improved Data Layouts

A straightforward parallel implementation is a naive one: simply
simulate the compare-exchange steps in the butterfly network using
a blocked data layout. A blocked layout for mapping N keys on
P processors assigns the i-th key to the bi=nc-th processor, where
n = N=P . Under a blocked layout, the first lgn stages execute
completely local. For subsequent stages lgn+ k, the first k steps
require communication while the last lgn steps are completely
local. Another possible data layout is the cyclic data layout. A
cyclic layout for mapping N keys on P processors assigns the i-th
key to the (i mod n)-th processor, where n = N=P . Compared
to the blocked layout just the reverse happens: the first lg n stages
require remote accesses. For subsequent stages lgn + k, where
1 � k � lgP , the first k steps of the stage are completely local,
while the last lgn steps require remote communication. Overall,
a cyclic layout has a higher communication complexity than a
blocked layout. As we can see communication is strongly affected
by the data layout.

One efficient data placement which minimizes the communi-
cation requirements is to switch between different data layouts so
that all compare-exchange operations execute locally. Therefore,
we can reduce the communication requirements by periodically
remapping the data from a blocked layout to a cyclic layout and
vice versa. Under this remapping strategy the algorithm starts with
a blocked layout, therefore, the first lg n stages are entirely local.
For each subsequent stage lgn + k, where 1 � k � lgP , we
remap from a blocked to a cyclic layout, compute the first k steps
locally, remap back into a blocked layout, and perform the last lgn
steps locally. Thus, we have reduced the communication require-
ments to only two remap operations per stage for the stages that
require communication (the last lgP stages). This approach was
suggested in [CKP+93, CDMS94] and used for efficient imple-
mentations of parallel algorithms based on the butterfly network
such as FFT or bitonic sort.

3 Optimizing Communication

As we saw from the cyclic-blocked implementation a good data
distribution can dramatically reduce the communication require-

7

3

8

6

4

1

5

2

3

7

8

6

1

4

5

2

3

6

8

7

5

4

1

2

2

1

3

4

5

6

7

8

1

2

3

4

5

6

7

8

3

4

2

1

5

6

7

8

3

6

7

8

5

4

2

1

000

001

010

011

100

101

110

111

Node
Address

1st
Merge Stage

2nd
Merge Stage

3rd
Merge Stage

Step 1Step 2Step 3Step 1Step 2Step 1

Figure 3: A bitonic sorting network of size N = 8. A row of
nodes represents an address containing one of the keys. Each node
compares two keys, as indicated by the edges and selects either the
maximum or the minimum.

ments. The main result presented in this section is that we derive
an algorithm which executes the smallest possible number of data
remaps and therefore we minimize the number of communication
steps.

We need to introduce some new notation: the absolute address
of a node (lgN bits long) represents the row number of the node in
the bitonic sorting network; at a remap we move nodes across pro-
cessors and therefore each node also has a relative address which
consists of two parts: the first lgP bits represent the processor
number and the last lgn bits the local address of the node after the
remap. The following lemma is based on the absolute and relative
address representation (for proof and details see [Ion96]):

Lemma 1 After the first lgn stages (which can be entirely executed
locally under a blocked layout) the maximum number of successive
steps of the bitonic sorting network that can be executed locally,
under any data layout, is lgn (where n = N=P , N=data size,
P=number of processors).

3.1 Deriving the Optimal Data Layout

The previous lemma shows that there is a fundamental limitation on
how much the communication part of the bitonic sort algorithm can
be optimized. A remap strategy that executes exactly lgn steps
locally before remapping again generates the smallest possible
number of remaps. We can thus reformulate the problem as: Given
the tuple (stage; step), which uniquely identifies a column of the
bitonic sorting network, how to remap the elements at this point in
such a way that the next lgn steps of the bitonic sorting network are
executed locally? The essential observation is that the execution of
lgn steps of the bitonic sorting network requires comparing only
elements that differ in exactly lg n bits of the absolute address.

We consider two cases depending whether we cross a stage
during the lgn steps following the remap operation. The first case
is illustrated in Figure 4 where we have an inside remap (s � lgn).
Here all the steps following the remap are inside the stage where
the remap occurs and the bits that are compared in the absolute
address are s : : : s�lgn+1. In the case when we cross a stage (see
Figure 5) we have a crossing remap (s < lgn); since we execute
the last s steps of stage lgn+k and the first lgn� s steps of stage

lgn+k+1 we compare bits s : : : 1 and lgn+k+1 : : : k+s+2.
In both cases we get an absolute and relative address bit pattern.
Nodes whose addresses match the shaded parts of the pattern are
remapped on the same processor and the next lgn steps of the
bitonic sorting network execute locally. The following definition
and lemma formalize our findings:

Stage

Start Remap

lg n + k

s

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A C

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A

A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

C

t

B

b = lg n

Absolute Address

Relative Address

B

b = lg n

b = lg n

t

Figure 4: Inside Remap and the corresponding absolute and rel-
ative address bit pattern. The absolute address specifies the row
number of the bitonic sorting network, the relative address spec-
ifies the processor (the shaded part) and local offset within the
processor after the remap.

lg n + k lg n + k + 1Stage

Start Remap

a = s
b

t

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A DC B

ab

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A DB C

ab
t

Absolute Address

Relative Address

lg n

Figure 5: Crossing Remap and the corresponding absolute and
relative address bit pattern.

Definition 3 (Smart Layout) Given the tuple (stage = lgn+ k,
step = s), where 0 < k � lgP and 0 < s � lgn + k (N =
data size, P = number of processors, n = N=P = elements per
processor), we can define a smart data layout at step s within the
stage lgn + k as the 5-tuple (k; s; a; b; t) where a, b and t are
defined as follows:

a =

�
0 s � lgn
s s < lgn

b = lgn � a

t =

�
s� lgn s � lgn
s+ k + 1 s < lgn:

The above formulas change in the case k = lgP and s � lgn (the
last remap, when we remap to a blocked layout) to:

a = lgn; b = 0; t = lgn:

Given the absolute address of a node, the relative address where
the node is remapped is computed as presented in Figure 4 (for
s � lgn) and Figure 5 (for s < lgn).

Data Layout Number of remaps Number of elements transfered Number of messages

Blocked lgP (lgP+1)
2 n

lgP (lgP+1)
2

lgP (lgP+1)
2

Cyclic-Blocked 2 lgP 2nP�1
P

lgP 2 lgP (P � 1)
Smart lgP + 1 n lgP 3(P � 1)� lgP

Table 1: Communication complexity for three different data layouts.

Lemma 2 The smart layout remaps the data such that it can exe-
cute exactly lgn steps locally.

The previous lemmas allow for a simple formulation of our parallel
bitonic sorting algorithm:

Algorithm 1 (Smart Layout Parallel Bitonic Sort)
The parallel bitonic sort algorithm for sorting N elements on
P processors (n = N=P elements per processor) starts with a
blocked data layout and executes the first lgn stages entirely local.
For the last lgP stages it periodically remaps to a smart data
layout and executes lgn steps before remapping again.

Clearly, the smallest number of communication steps is achieved
if we use a remapping strategy that performs the smallest number
of data remaps. Assuming that we don’t replicate the data then, as
we showed previously, for the last lgP stages of the bitonic sorting
network lgn is the maximum number of steps that can be executed
locally. The following theorem summarizes our observations:

Theorem 1 Algorithm 1 uses the smallest possible number of data
remaps.

3.2 Communication Complexity Analysis

Our smart data layout minimizes the number of communication
steps, but the total communication time of the algorithm depends
on other factors as well. Analyzing the algorithm under a “real-
istic” model of parallel computation which captures the existing
overheads of modern hardware reveals that the important factors
that influence the communication time are: the total number of
remaps, the total number of elements transfered (volume), and the
total number of messages transfered.

We study three versions of bitonic sort algorithm using three
different data layouts: the blocked, cyclic-blocked and the smart
data layouts. We analyze the communication complexity of the
algorithm with respect to the three metrics (the total volume and
number of messages are considered per processor). The formulas
for all three metrics are summarized in Table 1. For the smart data
layout we considered the practical case when lgP (lgP+1)

2 � lgn
and in the case of number of messages we use a lower bound.
Observe that with respect to the total number of elements transfered
and the number of remaps the smart data layout version is the best.
We refer the interested reader to [Ion96] for a more thorough
analysis on how these three abstract metrics determine the actual
communication complexity under the LogP and LogGP models of
parallel computation.

4 Optimizing Computation

In this section we show how we optimize the local computation
by replacing the compare-exchange operations with very fast local
sorts.

Lemma 3 The data array at the input of stage k, where 1 � k �
lgN , consists of 2lgN�k+1 alternating increasing and decreasing
sorted sequences of length 2k�1 (see Figure 2).

This observation leads to straightforward optimizations (applied
in [CDMS94]): the purpose of the first lgn stages is to form a
monotonically increasing or decreasing sequence of n keys on
each processor, thus we can replace all these stages with a single,
highly optimized local sort. Furthermore, if we use a cyclic-
blocked remapping strategy then for the last lgP stages we can
optimize the computation performed for the last lgn steps of each
stage (which execute under a blocked layout) by using a local radix
sort.

Lemma 4 The data array at column s of stage k, where k < s <

0, consists of 2lgN�s bitonic sequences of length 2s.

The result of this lemma was applied in [CDMS94] for optimizing
the local sort (under the blocked layout) for the last lg P stages. The
observation is that on each processor we have bitonic sequences of
length n (from Lemma 4, where column number = lgn), therefore
we can replace the local radix sort with a simpler and much faster
bitonic merge sort: after the minimum element of the sequence has
been found, the keys to its left and right are simply merged.

The following two theorems show how we can optimize the
local computation in the case of a smart layout.

Theorem 2 (Inside Remap) For an Inside Smart-Remap, the keys
assigned to a processor form a bitonic sequence. After performing
lgn steps of the bitonic sorting network, this sequence of keys is
sorted.

Optimizing the computation in this case is straightforward; all we
have to do is to sort a bitonic sequence using the simple bitonic
merge sort.

Theorem 3 (Crossing Remap) For the lgn steps following a Cross-
ing Smart-Remap (k; s; a; b; t) there are two computation phases
for which the following holds (see Figure 5):

� The first a steps after the remap (within stage lgn+k): Here
the input on each processor consists of 2b bitonic sequences
of length 2a. At the end of this phase, i.e. at the boundary
between stages lgn + k and lgn + k + 1 these sequences
are sorted. Furthermore, the data on each processor at the
end of this phase consists of two sorted sequences, the first
one increasing and second one decreasing.

� The last b steps of the remap (within stage lgn + k + 1):
After a local remap which interchanges the first b bits of the
local address with the last a bits, the input on each processor
consists of 2a bitonic sequences of length 2b and at the end
of the phase these are sorted.

In this case we can optimize the computation by using multiple
bitonic merges to sort bitonic sequences. However, for a crossing
remap that is followed by another crossing remap we can take
the optimizations one step further by using only one local sort
to sort the entire data array on each processor. In the following
we give a brief justification (for details see [Ion96]): The first
observation is that if we sort all the elements we obtain 2b sorted
sequences of size 2a with the property that every sorted sequence of
size 2a has exactly the same elements as its corresponding bitonic
sequence obtained if we would simulate the sorting network. The
second important observation is that for a crossing to crossing
remap every sequence of size 2a is remapped on the same processor,
therefore, although we changed their order, elements remap to the
right processor. Recall from Theorem 2 that for an inside remap
we also sort the data, thus, for all the remaps except a crossing
remap followed by an inside remap we can just sort the data on
each processor.

4.1 Implementing Bitonic Merge Sort

In the following we show how we can optimize bitonic merge sort
by presenting an algorithm that finds the minimum element of a
bitonic sequence without duplicate elements in logarithmic time.
Because a bitonic sequence can be viewed (after a circular shift)
as a sequence which first increases and then decreases, we can
abstractly represent it under a circular format (see Figure 6) which
has a maximum and a minimum element.

Min

Max

a

cb

b a cx y

Figure 6: Circular representation of a bitonic sequence (left) and
splitter selection (right).

Algorithm 2 (Minimum of a Bitonic Sequence)
Step 1 - The algorithm starts by selecting three splitters which
break the circular sequence into three equal parts. Let’s denote
with a; b; c the three splitters and assume that a is the minimum of
the three (see Figure 6). Then the minimum of the whole sequence
cannot be in between b and c, otherwise a would not be the mini-
mum of the three. Therefore we restrict our search to the segments
[b; a] and [a; c] (a is the minimum of a; b; c) which form a bitonic
sequence and we recursively apply Step 2.
Step 2 - We select two new splitters x and y to split the intervals
[b; a] and [a; c] respectively (see Figure 6). Depending on the
minimum of x; a; y we have 3 possibilities:

� min = x - We restrict our search to [b; x] and [x; a]

� min = a - We restrict our search to [x; a] and [a; y]

� min = y - We restrict our search to [a; y] and [y; c]

If we find two equal minimums (of a group of three splitters) we use
a sequential search to find the minimum on the remaining interval.
Otherwise we stop when our search interval consists of only the
three splitters and we return the minimum of the three.

The above algorithm works in logarithmic time even if we have
duplicates, as long as we don’t have two equal minimum splitters.

4.2 Computation Complexity

Without any optimization the complexity of simulating lg n steps of
the bitonic sorting networks would be O(n logn). The following
lemma characterizes the complexity of the bitonic merge sort and
is a direct consequence of the definition of the bitonic sequence
(Definition 1):

Lemma 5 Sorting a bitonic sequence takes O(n) time, where n is
the length of the bitonic sequence, versus O(n logn) for the naive
algorithm.

For the first lgn stages since the keys are in a specified range
we used radix-sort which takes O(n) time. For the last lgP stages
by using only bitonic merges we have reduced the computation
complexity to O(n) for each stage. Since we have O(lgP) com-
putation phases, the complexity of the local computation for the
entire bitonic sort algorithm is O(n lgP).

5 Experimental Results

Our experimental platform is the Meiko CS-2 which consists of
Sparc based nodes connected via a fat tree communication network.
For our implementation we used an optimized version of the Split-
C parallel language [CDG+93] implemented on Meiko CS-2 on
top of Active Messages [vECGS92, SS95].

We present and compare the measurements for our implemen-
tation (called Smart bitonic sort) and two other implementations of
parallel bitonic sort previously used in important studies of parallel
sorting algorithms. The first is the parallel bitonic sort implemen-
tation from [BLM+91] (which was reimplemented in Split-C).
The algorithm uses a local radix-sort for the first lgn stages then
for each subsequent stage lgn + k, where 1 � k � lgP , exe-
cutes k communication steps and at each one of them exchanges
data between pairs of processors and simulates a merge step of
the bitonic sorting network, then uses local radix-sort again for
the remaining lgn steps of the stage. We call this algorithm the
Blocked-Merge bitonic sort. The second implementation is the
Cyclic-Blocked version [CDMS94] presented in Section 2.1. The
computation performed under the cyclic layout consists of bitonic
merges, and under the blocked layout of local radix sorts. All algo-
rithms are implemented in Split-C and the communication phase
uses long messages. We use random, uniformly-distributed 32-bit
keys (actually, our random number generator produces numbers in
the range 0 through 231� 1). We measured and compared the total
execution time and the execution time per key on 2 to 32 proces-
sors and for 16K to 1M keys per processor. Figure 7 shows the
total execution times and the execution time per key for the three
algorithms for 32 processors.

We also compared our implementation of bitonic sort with two
highly optimized versions of sample and radix sort (implemented
using long messages [AISS95]). Figure 8 shows the execution time
per key per processor for sample, radix and bitonic sort on 16 and
32 processors. As we can see for 16 processors our implementation
of bitonic sort performs better than radix sort. On 32 processors
bitonic sort is still better than radix sort for up to 256K elements
per processor. Sample sort is still the clear winner, but for a small
number of processors and for small data sets bitonic sort performs
better. Furthermore, the performance of sample sort is strongly
dependent on the initial distribution of the keys: a low entropy
input set may lead to unbalanced communication and contention.
Bitonic sort on the other hand is oblivious to the input distribution.
These comparisons suggests that for a small number of processors
and for small data sets bitonic sort is the fastest choice. The
performance comparison of parallel sorting algorithms, radix sort

0

10

20

30

40

50

0 200 400 600 800 1000 1200

Keys per processor (in K)

T
o

ta
l

S
o

rt
in

g
 T

im
e

 (
s

e
c

)

Blocked-Merge

Cyclic-Blocked

Smart

0

20

40

60

0 200 400 600 800 1000 1200

Keys per processor (in K)

T
im

e
 /

 k
e

y
 /

 p
ro

c
 (

u
s

)

Blocked-Merge

Cyclic-Blocked

Smart

Figure 7: Total execution time (left) and execution time per key (right) for different implementations of the bitonic sort algorithm on 32
processors.

0

10

20

30

0 200 400 600 800 1000 1200

Keys per processor (in K)

T
im

e
 /
 k

e
y
 /
 p

ro
c
 (

u
s
)

Bitonic16

Radix16

Sample16

0

10

20

30

0 200 400 600 800 1000 1200
Keys per processor (in K)

T
im

e
 /
 k

e
y
 /
 p

ro
c
 (

u
s
)

Bitonic32

Radix32

Sample32

Figure 8: Execution time per key per processor for sample, radix and bitonic sort on 16 processors (left) and 32 processors (right).

and sample sort in particular, is also the subject of more recent
studies [BHJ96, HJB96]. Notably, the author’s implementation of
sample sort is invariant over the set of input distributions.

6 Related Work

Bitonic sort and sorting networks have received special attention
since Batcher [Bat68] showed that fine-grained parallel sorting
networks can sort in O(lg2

n) time using O(n) processors. Since
then a lot of effort has been directed at fine-grain parallel sorting
algorithms (e.g. see [BDHM84, JáJ92, KR90, Rei93, AKS83,
Lei85, Col88]).

Many of these fine-grained algorithms are not optimal, however,
when implemented under more realistic models of parallel com-
putation. The later make the “realistic” assumption that the data
size N is much larger than the number of processors P . Now the
goal becomes to design a general-purpose parallel sort algorithm
that is the fastest in practice. One of the first important studies
of the performance of parallel sorting algorithms was conducted
by Blelloch, Leiserson et al. [BLM+91] which compared bitonic,
radix and sample sort on CM-2. Several issues were emphasized
like space, stability, portability and simplicity.

These comparisons were augmented by a new study by Culler et
al. [CDMS94]. Column sort was included and a more general class
of machines was addressed by formalizing the algorithms under the
LogP model. All algorithms were implemented in Split-C making
them available to be ported and analyzed across a wide variety of
parallel architectures. The conclusion of this study was that an
“optimized” data layout across processors was a crucial factor in
achieving fast algorithms. Optimizing the local computation was

another major factor that contributed to the overall performance
of the algorithms. The study also showed that by a careful anal-
ysis of the algorithm under a realistic parallel computation model
we can eliminate design deficiencies and come up with efficient
implementations.

A more recent study [AISS95] showed that a large class of
parallel algorithms (and in particular sorting algorithms) can be
substantially improved when re-designed under the LogGP model
which captures the fact that modern parallel machines have sup-
port for long message transfers, therefore achieving a much higher
bandwidth than short messages. By careful re-design improve-
ments of more than an order of magnitude were achieved over
previous implementations of radix sort and sample sort. These
observations are also emphasized in [BHJ96, HJB96] where the
authors’ main focus is on efficient implementation of parallel sort-
ing algorithms under a realistic computation model with a strong
accent on portability. Another study of various parallel sorting
algorithms, including bitonic sort, on SIMD machines is [BW97]
which compares implementations of different deterministic obliv-
ious methods for large values of N=P .

7 Conclusion and Future Work

In this paper we have analyzed optimizations that can be applied
to the parallel bitonic sort algorithm. We have designed and im-
plemented a remap-based algorithm that uses the smallest possible
number of data remaps. Besides minimizing the communication
requirements, local computation has also been optimized by taking
advantage of the special format of the data sets. For this we have
shown that local computation can be entirely replaced with faster

local sorts. Furthermore, we have analyzed three fundamental met-
rics that influence the communication time of a parallel algorithm
(the number of remaps, the total number of transfered elements,
and the number of messages) and we have shown that the total
communication time is dependent upon all three metrics and mini-
mizing just one of them is not sufficient to obtain a communication
optimal algorithm. Our experimental results have shown that our
implementation is much faster than any previous implementation
of parallel bitonic sort and for a small number of processors or
small data sets our algorithm is faster than other parallel sorts such
as radix or sample sort.

Overall, we hope that our techniques will be further refined and
applied for a larger class of algorithms. We feel that the applica-
bility area of our methods is larger than parallel computing and it
extends to memory hierarchy models and numerical computations
involving data sets under various layouts.

Acknowledgments

This work was supported by the National Science Foundation under
NSF CAREER Award CCR-9502661. Computational resources
were provided by NSF Instrumentation Grant CDA-9216202. We
would like to thank David Bader, Chris Scheiman and the anony-
mous reviewers for their valuable feedback on this paper.

References

[ABK95] M. Adler, J. W. Byers, and R. M. Karp. Parallel sorting with
limited bandwidth. In Proceedings the Symposium on Parallel
Algorithms and Architectures, July 1995.

[ACS90] A. Aggarwal, A. K. Chandra, and M. Snir. Communication
Complexity of PRAMs. In Theoretical Computer Science,
March 1990.

[AISS95] A. Alexandrov, M. Ionescu, K. E. Schauser, and C. Scheiman.
LogGP: Incorporating Long Messages into the LogP model
— One step closer towards a realistic model for parallel com-
putation. In 7th Annual Symposium on Parallel Algorithms
and Architectures, July 1995.

[AKS83] M. Ajtai, K. Komlós, and E. Szemerédi. Sorting in c logn
parallel steps. In Combinatorica, March 1983.

[Bat68] K. Batcher. Sorting Networks and their Applications. In Pro-
ceedings of the AFIPS Spring Joint Computing Conference,
volume 32, 1968.

[BDHM84] D. Bitton, D. J. DeWitt, D. K. Hsiao, and J. Menon. A Taxon-
omy of Parallel Sorting. Technical Report TR84-601, Cornell
University, Computer Science Department, April 1984.

[BHJ96] D.A. Bader, D.R. Helman, and J. JáJá. Practical Parallel Algo-
rithms for Personalized Communication an d Integer Sorting.
ACM Journal of Experimental Algorithmics, 1(3), 1996.

[BLM+91] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton,
S. J. Smith, and M. Zagha. A Comparison of Sorting Algo-
rithms for the Connection Machine CM-2. In Proceedings
of the Symposium on Parallel Architectures and Algorithms,
1991.

[BN89] G. Bilardi and A. Nicolau. Adaptive Bitonic Sorting: An
Optimal Parallel Algorithm for Shared Memory Machines.
SIAM Journal on Computing, April 1989.

[BW97] K. Brockmann and R. Wanka. Efficient Oblivious Parallel
Sorting on the MasPar MP-1. In Proceedings of the 30th
Hawaii International Conference on System Sciences, 1997.

[CDG+93] D. E. Culler, A. Dusseau, S. C. Golstein, A. Krishnamurthy,
S. Lumetta, T. von Eicken, and K. Yelick. Parallel Program-
ming in Split-C. In Proc. of Supercomputing, November 1993.

[CDMS94] D. E. Culler, A. Dusseau, R. Martin, and K. E. Schauser.
Fast Parallel Sorting under LogP: from Theory to Practice. In
T. Hey and J. Ferrante, editors, Portability and Performance
for Parallel Processing. Wiley, 1994.

[CKP+93] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von Eicken.
LogP: Towards a Realistic Model of Parallel Computation. In
Fourth ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, May 1993.

[Col88] R. Cole. Parallel merge sort. SIAM J. Comput, 17(4), 1988.

[HJB96] D. R. Helman, J. JáJá, and D. A. Bader. A New Deterministic
Parallel Sorting Algorithm With an Experimental Evaluation.
Technical Report CS-TR-3670 and UMIACS-TR-96-54, Uni-
versity of Maryland, August 1996.

[HS82] Z. Hong and R. Sedgewick. Notes on merging networks.
In Proceedings of the 14th Annual Symposium on Theory of
Computing, May 1982.

[Ion96] M. F. Ionescu. Optimizing Parallel Bitonic Sort. Master’s the-
sis, also available as Technical Report TRCS96-14, Depart-
ment of Computer Science, University of California, Santa
Barbara, July 1996.

[JáJ92] J. JáJá. An Introduction to Parallel Algorithms. Addison-
Wesley, Reading, Mass., 1992.

[KGGK94] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction
to Parallel Computing. Benjamin Cummings, 1994.

[Knu73] D. E. Knuth. The Art of Computer Programming, volume 3.
Addison Wesley, Reading Massachusetts, 1973.

[KR90] R. M. Karp and V. Ramachandran. Parallel Algorithms for
Shared-Memory Machines. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science. Elsevier Science Pub-
lishers, 1990.

[KRS90] C. Kruskal, L. Rudolph, and M. Snir. A complexity the-
ory of efficient parallel algorithms. In Theoretical Computer
Science, 1990.

[Lei85] F. T. Leighton. Tight bounds on complexity of parallel sorting.
IEEE Transactions on Computers, 34(4), 1985.

[Lei92] F. T. Leighton. Introduction to Parallel Algorithms and Ar-
chitectures: Arrays, Trees, Hypercubes. Morgan Kaufman,
1992.

[PY88] C. H. Papadimitriou and M. Yannakakis. Towards an
Architecture-Independent Analysis of Parallel Algorithms. In
Proceedings of the Twentieth Annual ACM Symposium of the
Theory of Computing. ACM, May 1988.

[Qui94] M. J. Quinn. Parallel Computing. Theory and Practice. Mc-
Graw Hill, 1994.

[Rei93] J. H. Reif. Synthesis of Parallel Algorithms. Morgan Kauf-
mann Publishers, Inc., San Mateo, CA, 1993.

[SS95] K. E. Schauser and C. J. Scheiman. Experience with Active
Messages on the Meiko CS-2. In 9th International Parallel
Processing Symposium, April 1995.

[Sto71] H. S. Stone. Parallel processing with the perfect shuffle. IEEE
Computer, C-20(2), February 1971.

[Val90a] L. G. Valiant. A Bridging Model for Parallel Computation.
Communications of the ACM, 33(8), August 1990.

[Val90b] L. G. Valiant. Parallel Algorithms for Shared-Memory Ma-
chines. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science. Elsevier Science Publishers, 1990.

[vECGS92] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active Messages: a Mechanism for Integrated
Communication and Computation. In Proc. of the 19th Int’l
Symposium on Computer Architecture, May 1992.

