
Optimization of Common Table Expressions in MPP
Database Systems

Amr El-Helw∗, Venkatesh Raghavan∗, Mohamed A. Soliman∗, George Caragea∗,
Zhongxian Gu†, Michalis Petropoulos‡

∗Pivotal Inc.
Palo Alto, CA, USA

†Datometry Inc.
San Francisco, CA, USA

‡ Amazon Web Services
Palo Alto, CA, USA

ABSTRACT
Big Data analytics often include complex queries with similar or
identical expressions, usually referred to as Common Table Expres-
sions (CTEs). CTEs may be explicitly defined by users to simplify
query formulations, or implicitly included in queries generated by
business intelligence tools, financial applications and decision sup-
port systems. In Massively Parallel Processing (MPP) database
systems, CTEs pose new challenges due to the distributed nature of
query processing, the overwhelming volume of underlying data and
the scalability criteria that systems are required to meet. In these
settings, the effective optimization and efficient execution of CTEs
are crucial for the timely processing of analytical queries over Big
Data. In this paper, we present a comprehensive framework for the
representation, optimization and execution of CTEs in the context
of Orca – Pivotal’s query optimizer for Big Data. We demonstrate
experimentally the benefits of our techniques using industry stan-
dard decision support benchmark.

1. INTRODUCTION
Big Data analytics are becoming increasingly common in many

business domains, including financial corporations, government
agencies, and insurance providers. The uses of Big Data range from
generating simple reports to executing complex analytical work-
loads. The increase in the amount of data being stored and pro-
cessed in these domains exposes many challenges with respect to
scalable processing of analytical queries. Massively Parallel Pro-
cessing (MPP) databases address these challenges by distributing
storage and query processing across multiple nodes and processes.

Common Table Expressions (CTEs) are commonly used in com-
plex analytical queries that often have many repeated computations.
A CTE can be seen as a temporary table that exists just for one
query. The purpose of CTEs is to avoid re-execution of expres-
sions referenced more than once within a query. CTEs may be de-
fined explicitly, or generated implicitly by the query optimizer (cf.
Section 8). The following example illustrates a use case of CTEs
defined explicitly using the SQL WITH clause:

Example 1. Consider the following query:

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

WITH v as (SELECT i brand, i current price, max(i units) m
FROM item
WHERE i color = ’red’
GROUP BY i brand, i current price)

SELECT * FROM v WHERE m < 100
AND v.i current price IN (SELECT min(i current price)

FROM v WHERE m > 5);

Example 1 includes a CTE (v), with filtering and grouping op-
erations, where v is referenced twice in the main query. This is an
alternative to repeating the whole expression that defines v. 1

In practice, the definition of v may be much more complex, con-
taining joins, subqueries, user-defined functions, etc. In addition,
it may be referenced more than twice in the query. Thus, defining
it as a CTE achieves two goals: (i) simplifying the query, making
it more readable, and (ii) if handled carefully, performance gains
could be achieved by evaluating a complex expression only once.

CTEs follow a producer/consumer model, where the data is pro-
duced by the CTE definition, and consumed in all the locations
where that CTE is referenced. One possible approach to execute
CTEs is to expand (inline) all CTE consumers, essentially rewrit-
ing the query internally to replace each reference to the CTE with
the complete expression. This approach simplifies query execution
logic, but may incur performance overhead due to executing the
same expression multiple times. In addition, query optimization
time could increase if the expanded query is complex.

An alternative approach is to execute CTEs in a true pro-
ducer/consumer fashion, where the CTE expression is separately
optimized and executed only once, the results are kept in memory,
or written to disk if the data does not fit in memory or has to be
communicated between different processes – as is the case in MPP
systems. The data is then read whenever the CTE is referenced.
This approach avoids the cost of repeated execution of the same
expression, although it may incur an overhead of disk I/O. The im-
pact of this approach on query optimization time is rather limited,
since the optimizer chooses one plan to be shared by all CTE con-
sumers. However, important optimization opportunities could be
missed due to fixing one execution plan for all consumers.

1.1 Challenges
In this section, we highlight the main challenges we tackle.

1.1.1 Deadlock Hazard
MPP systems leverage parallel query execution, where differ-

ent parts of the query plan execute simultaneously as separate pro-
cesses, possibly running on different machines. Data flows between
these processes as the operators in the plan are executed. In some
1v could be used in multiple queries if defined using CREATE VIEW state-
ment. In this case, the query parser can automatically include v definition
in the parse tree of any query that references v.

1704

!"#"$%&
'($)**"+%(,*'$"&-&.///&

012#"!$1+3'%"45&

67&

6.&

68&

9:'+&

9:'+&

!"#"$%&
'($:#:*;<*"=>&

6&

(a) No inlining

!"#$%

!"#$%

&'(')*%
#+),--'$*+.-#)'%/%0111%

234('&)3$5#*'67%

&'(')*%
#+),--'$*+.-#)'%/%0111%

234('&)3$5#*'67% 8$9':&)3$5#*'67%
#+)"("-;<-'9=%

&'(')*%
#+),--'$*+.-#)'%/%0111%

(b) Inline all CTEs

!"#

!$# %&'(#

%&'(#

)(*+,-./(0'1+23#
'4.&5&6786+*9#

!#

-+5+.1#
'4.:66+(14;6'.+#<#$===#

>/?5+-./(0'1+23#

-+5+.1#
'4.:66+(14;6'.+#<#$===#

(c) Partial inlining

Figure 1: Possible plans for the query in Example 2

cases, a process has to wait until another process produces the data
it needs. For example, if the CTE definition is in one process and
the CTE consumer is in a different process, then the latter has to
wait for the former. For complicated queries involving multiple
CTEs, the optimizer needs to guarantee that no two or more pro-
cesses could be waiting on each other during query execution. CTE
constructs need to be cleanly abstracted within the query optimiza-
tion framework to guarantee deadlock-free plans. We discuss how
our design greatly simplifies deadlock handling in Sections 4 and 5.

1.1.2 Enumerating Inlining Alternatives
The approaches of always inlining CTEs, or never inlining CTEs,

can be easily proven to be sub-optimal, as we show here.

Example 2. Given the item table from TPC-DS [13], and as-
suming that we have an index on item.i color, consider the
following query:

WITH v as (SELECT i brand, i color FROM item
WHERE i current price < 1000)

SELECT v1.*
FROM v v1, v v2, v v3
WHERE v1.i brand = v2.i brand AND v2.i brand = v3.i brand
AND v3.i color = ’red’;

Figure 1(a) illustrates the plan produced when the CTE is never
inlined. In this scenario, the CTE is executed once, and its re-
sults are reused 3 times. This approach avoids repeated computa-
tion. However, this approach does not take advantage of the index
on i color. The opposite approach is illustrated in Figure 1(b),
where all occurrences of the CTE are replaced by the expansion of
the CTE expression. This allows the optimizer to utilize the index
on i color in one of the inlined expressions. However, it suffers
from the repeated computation of the other two inlined expressions.
Figure 1(c) depicts a possible plan in which one occurrence of the
CTE is expanded, allowing the use of the index, while the other
two occurrences are not inlined, to avoid recomputing the com-
mon expression. This plan would not be considered by adopting
the inlining/no-inlining approaches in isolation. The query opti-
mizer needs to efficiently enumerate and cost plan alternatives that
combine the benefits of these approaches. We show how our plan
enumeration approach addresses this challenge in Section 6.

1.1.3 Contextualized Optimization
CTEs should not be optimized in isolation without taking into

account the context in which they occur. Isolated optimization can
easily miss several optimization opportunities. For example, if the
query has filters on all CTE consumers, these filters can possibly
be pushed inside the CTE plan to reduce the number of tuples to be

produced. Similarly, multiple consumers may require CTE results
to be partitioned or sorted in the same way. Considering plan al-
ternatives that push such requirements into the CTE plan can lead
to avoiding re-sorting/re-partitioning the same data. However, re-
optimizing a CTE every time it is referenced in the query does not
scale, and causes the search space to grow exponentially. CTE
optimization needs to be handled organically by the optimizer to
consider their interplay with other optimizations and allow early-
pruning of inferior plan alternatives. We show how we tackle this
challenge in Section 7.

1.2 Contributions
We present a novel approach for representing, optimizing and ex-

ecuting queries with non-recursive CTEs. Our approach is imple-
mented in Orca, the Pivotal Query Optimizer [12], and is currently
used in production. Our contributions are summarized as follows:

• A novel framework for the optimization of CTEs in MPP
database systems. Our framework extends and builds upon
our optimizer infrastructure to allow optimization of CTEs
within the context where they are used in a query

• A new technique in which a CTE does not get re-optimized
for every reference in the query, but only when there are op-
timization opportunities, e.g. pushing down filters or sort
operations. This ensures that the optimization time does not
grow exponentially with the number of CTE consumers

• A cost-based approach for deciding whether or not to expand
CTEs in a given query. The cost model takes into account
disk I/O as well the cost of repeated CTE execution

• Several optimizations that reduce the plan search space and
speed up query execution, including pushing down predi-
cates into CTEs, always inlining CTEs if referenced only
once, and eliminating CTEs that are never referenced

• A query execution model that guarantees that the CTE pro-
ducer is always executed before the CTE consumer(s). In
MPP settings, this is crucial for deadlock-free execution

We have also conducted an experimental evaluation using TPC-
DS benchmark [13] to demonstrate the efficiency of our techniques.
The rest of the paper is organized as follows: Section 2 reviews re-
lated work, and Section 3 provides the necessary background on
MPP architecture and query optimization in Orca. Section 4 out-
lines our proposed CTE representation, and Section 5 demonstrates
how this representation guarantees deadlock-free query execution.

1705

Section 6 describes our plan enumeration technique. Section 7 dis-
cusses property derivation and enforcement as well as costing for
the plan alternatives. Section 8 discusses how CTEs can be used
as an optimization tool for queries with no explicit CTEs. Sec-
tion 9 describes how queries with CTEs are executed in an MPP
system. Section 10 presents our experimental evaluation which
demonstrates the performance gain of our approach. Lastly, Sec-
tion 11 concludes the paper.

2. RELATED WORK
The problem of optimizing common subexpressions has been

well studied in the domain of query processing and optimization.
We focus on two important areas that are pertinent to our proposal.

CTE Optimization. Silva et al. [11] proposed an extension to
the SCOPE query optimizer [15], where a 2-phase optimization
technique is used to address the contextualized optimization chal-
lenge discussed in Section 1.1.3. The first phase uses the origi-
nal SCOPE optimizer with an additional step that records the re-
quired physical properties (e.g. data partitioning and sorting) of all
CTE consumers in linked lists. Then, a subsequent re-optimization
phase is used to identify the least common ancestors of CTE con-
sumers, and re-optimize CTE producers based on the CTE con-
sumers’ local requirements, with the goal of identifying a globally-
optimal plan.

In contrast to [11], our proposal integrates CTE optimization or-
ganically at the core of the query optimizer, eliminating the need for
re-optimization (cf. Section 7). Our representation framework also
allows identifying the optimization entry point of CTEs, without
the need to search for least common ancestors. Finally, by conduct-
ing optimization in one phase, our method lends itself naturally to
pruning the plan space early on to avoid unnecessary optimization.

PostgreSQL [1] views CTEs as a means to isolate a subquery
within a complex query. The generated plan evaluates a CTE in
a separate subplan, optimized in isolation of the main query. This
approach could result in dismissing important optimization oppor-
tunities such as (1) inlining CTE, (2) enforcing physical properties
such as sort order on CTE output when all the CTE consumers re-
quire the same properties, and (3) pushing down predicates into the
CTE subplan (cf. Section 6.3).

Oracle optimizer [4] generates plans that can store the results of
a subquery into a temporary table that can be referred to as many
times as needed. The optimizer can inline each reference to the
refactored subquery. The MATERIALIZE and INLINE optimizer
hints can be used to influence the decision. HP Vertica [3] and
PDW [10] also maintain CTE results in a temporary table for the
duration of query execution.

Optimization using Materialized Views. In traditional
database systems, using materialized views in query optimization
and execution is a well-studied problem [6, 14, 8]. Our approach
of exploring inlining alternatives has similarities to the cost-driven
methodology used in deciding whether or not to use a materialized
view in answering a query. However, the problem addressed in our
work is orthogonal to the materialized view selection problem and
can be differentiated as follows; first, using materialized views de-
pends primarily on view matching techniques to decide whether a
materialized view can be used to optimize a particular query. Ex-
plicit CTEs do not generally require view matching since they are
defined and referenced in the query. View matching techniques
can be used to detect common subexpressions that are implicitly
defined in the query. Our framework can leverage and build on
such techniques to capture and optimize subexpressions within our

CTE framework (cf. Section 8.2). Second, as we show in Sec-
tion 7, CTEs can take advantage of contextual optimization, where
CTE consumers’ local requirements may impose new plans onto
the CTE producer side, e.g., pushing predicates and/or sort orders
from the consumer to the producer. This is not applicable to materi-
alized views because the creation of the materialized view happens
separately from the query that may utilize it. Furthermore, unlike
materialized views, CTEs are defined as part of the query and are
not stored. Hence the problems of materialized view maintenance
and design do not apply.

3. BACKGROUND
In this section, we outline two topics that are key to this work. In

Section 3.1, we describe the underlying MPP architecture, while in
Section 3.2, we give an overview on Orca query optimizer.

3.1 Massively Parallel Processing
Modern scale-out database engines are usually based on one of

two design principles: sharded and massively parallel processing
(MPP) databases. Both are shared-nothing architectures, where
each node manages its own storage and memory, and they are typ-
ically based on horizontal partitioning. Common use cases for
sharding include “west” vs “east” customers, or partitioning user
names based on ranges of the alphabet. Sharded systems optimize
for executing queries on small subsets of the shards, and commu-
nication between shards is relatively limited. Shards can be placed
in different data centers, or even geographies.

MPP databases optimize for parallel execution of each query.
The nodes are usually collocated within the same data center, and
each query can access data across all the nodes. A query opti-
mizer generates an execution plan that includes explicit data move-
ment directives, and the cost of moving data is taken into account
during optimization. A query executing in an MPP database can
include several pipelined execution stages, with explicit commu-
nication between nodes at each stage. For example, a multi-stage
aggregation can be used to compute an aggregate over the entire
dataset using all the nodes.

Pivotal’s Greenplum Database (GPDB) [9] is an MPP analytics
database. GPDB adopts a shared-nothing architecture with mul-
tiple cooperating processors (typical deployments include tens or
hundreds of nodes). Storage and processing of large amounts of
data are handled by distributing the load across several servers or
hosts to create an array of individual databases, working together
to present a single database image. The master is the entry point,
where clients connect and submit SQL statements. The master co-
ordinates work with other database instances, called segments.

During query execution, data can be distributed in multiple ways
including hashed distribution, where tuples are distributed to seg-
ments based on some hash function, replicated distribution, where
a full copy of a table is stored at each segment and singleton distri-
bution, where the whole distributed table is gathered from multiple
segments to a single host (usually the master).

Special operators, called Motion operators, are used to ac-
complish data communication among segments. A Motion op-
erator acts as the boundary between two active processes send-
ing/receiving data and potentially running in different nodes. The
goal of Motion operators is to establish a given data distribution.
For example, to establish a hashed distribution on column x, an
instance of Redistribute(x) Motion operator, running on segment
S, sends tuples on S to other segments based on the hash value
of x, and also receives tuples from other Redistribute(x) opera-
tor instances running, in parallel, on other segments. Similarly,

1706

!"#"$%&
'($)#)*+,*"-.&

/01#"!$02&
3'%"45&

6)'2&

7/892$:)*3;5&7/8<*)-=$"*3;5&

7/87)2>=4"*3;5&7/87)2>=4"*3;5&

!"#$%&'($)*+,-$.,++$!&#$/.0$1+2('34($

Figure 2: Logical representation of query in Example 3

a Broadcast Motion and Gather Motion operators are used to es-
tablish replicated and singleton distributions, respectively. In Sec-
tion 7.1, we elaborate on how Motion operators are used to enforce
required data distribution during query optimization.

3.2 Query Optimization in Orca
Orca [12] is the query optimizer of Pivotal data management

products, including GPDB [9] and HAWQ [5]. Orca is a modern
top-down query optimizer based on the Cascades framework [7].

In Orca, the plan space is encoded in a compact data structure
called the Memo [7] consisting of a set of containers called groups.
Each group contains logically equivalent expressions, called group
expressions. Each group expression is an operator whose children
are other groups. This recursive structure of the Memo allows com-
pact encoding of a huge space of possible plans. The Memo group
that contains the query top operator is called the “root” group.

Plan alternatives are generated by transformation rules that pro-
duce either equivalent logical expressions, or physical implemen-
tations of existing expressions. The results of applying transforma-
tion rules are added to the Memo, which may result in creating new
groups and/or adding new expressions to existing groups.

During optimization, an operator may request its children to sat-
isfy physical properties (e.g., sort order and data distribution). A
child plan may either satisfy the required properties on its own
(e.g., an IndexScan delivers sorted data), or an enforcer operator
(e.g., Sort) needs to be used to deliver the required properties.

4. REPRESENTATION OF CTEs
To illustrate how we represent queries with CTEs in Orca, we

start with the following simple example:

Example 3.

WITH v AS (SELECT i brand FROM item WHERE i color = ’red’)
SELECT * FROM v as v1, v as v2
WHERE v1.i brand = v2.i brand;

The initial logical representation of the query is shown in Fig-
ure 2. We introduce the following new CTE operators:

• CTEProducer : This operator is initially set as the root of a
separate logical tree which corresponds to the CTE defini-
tion. There is one such tree – and one such CTEProducer op-
erator – for every CTE defined in the query. These trees are
not initially connected to the main logical query tree. Each
CTEProducer has a unique id.

• CTEConsumer : This operator denotes the place in the query
where a CTE is referenced. The number of CTEConsumer
nodes is the same as the number of references to CTEs in the
query. The id in the CTEConsumer operator corresponds to
the CTEProducer to which it refers. There can be multiple
CTEConsumers referring to the same CTEProducer.

NL#Join#

Select#
i_color=‘red’#

TableScan(item)#

Select#
i_color=‘red’#

TableScan(item)#

NL#Join#

Select#
i_color=‘red’#

TableScan#
(item)#

Select#
i_color=‘red’#

TableScan#
(item)#

(a) CTEs inlined

NL#Join#CTEProducer(0)#

CTEConsumer(0)#CTEConsumer(0)#

Sequence#

Select#
i_color=‘red’#

TableScan(item)#

NL#Join#CTEProducer(0)#

CTEConsumer(0)#CTEConsumer(0)#

Sequence#

Select#
i_color=‘red’#

TableScan#
(item)#

(b) No inlining

Figure 3: Execution plans of query in Example 3

!"#"$%&
'($)#)*+,*"-.&

/01#"!$023'%"45&

6)'2&

7/892$:)*3;5&

7/8<*)-=$"*3;5&

7/87)2>=4"*3;5&7/87)2>=4"*3;5&

7/8<*)-=$"*3?5&

7/892$:)*3?5&

6)'2&

7/87)2>=4"*3?5&7/87)2>=4"*3?5&

6)'2&

7/87)2>=4"*3;5&

!"#$%&'($)*+,-$.,++$!&#$/.0$1+2('34(5$

Figure 4: Logical representation of query in Example 4

• CTEAnchor : This operator denotes where a particular CTE
is defined in the query. It defines the scope of that CTE.
A CTE can be referenced only in the subtree rooted by the
corresponding CTEAnchor operator.

• Sequence: This is a binary operator that executes its chil-
dren in order (left to right), and returns the results of the right
child. Orca also uses the Sequence operator for optimizing
queries on partitioned tables [2].

Figure 3 shows two possible execution plans for the query in
Figure 2. In the first plan, all CTEs are inlined. In this case, the
CTEAnchor is removed, and each CTEConsumer is replaced with
the whole tree representing the CTE definition. In the second plan,
there is no CTE inlining. The CTEAnchor has been replaced by a
Sequence operator that has the CTEProducer as its first child, and
the original child of the CTEAnchor as its second child.

The Sequence operator guarantees a specific order of execution,
where the subtree under the CTEProducer is executed first before
any of the corresponding CTEConsumers start execution. As a re-
sult, when execution reaches the CTEConsumer, the data is already
available to read. This guarantees that generated plans have no
deadlocks, especially with plans that have multiple CTEs. We elab-
orate on this point in Section 5.

The previous operators can also be used to represent nested
CTEs, as we show in the following example:

Example 4.

WITH v as (SELECT i current price p FROM item
WHERE i color = ’red’),

w as (SELECT v1.p FROM v as v1, v as v2
WHERE v1.p < v2.p)

SELECT * FROM v as v3, w as w1, w as w2
WHERE v3.p < w1.p + w2.p;

Figure 4 shows the logical representation of the query in Exam-
ple 4. Each CTEProducer node sits on top of the logical tree of the
corresponding CTE. The main query has two CTEAnchor nodes, in
the same order as the occurrence of the CTEs in the WITH clause.

1707

NLJoin'

CTEConsumer(0)$CTEConsumer(0)$

Select'
i_color=‘red’$

TableScan'
(item)$

CTEProducer(0)$

(a) Possible execution plan
for query in Example 3

NLJoin'

CTEConsumer(0)$

TableScan'
(item)$

Select'
i_color=‘red’$

TableScan'
(item)$

CTEProducer(0)$
Select'

i_current_price=1000$

NLJoin'

CTEConsumer(0)$GbAgg'
COUNT(*)$

(b) Execution plan dependent on
input data

Figure 5: Execution plans with deadlocks

Note that some CTEConsumer nodes are in the main query and
some are inside the tree under a CTEProducer, which corresponds
to CTEs being referenced from inside other CTEs.

5. CTE EXECUTION AND DEADLOCKS
Executing plans with CTEs creates dependencies between dif-

ferent parts of the plan that need to be satisfied at runtime. The
optimizer must take these dependencies into account, and guaran-
tee that the generated plan is deadlock free for any possible input.

A possible approach is to place the CTEProducer as a child of
one of the CTEConsumer nodes. Consider the query in Example 3,
with the logical representation in Figure 2. One possible execution
plan can use a Nested Loop Join (NLJoin), and attach the CTEPro-
ducer directly under the CTEConsumer on the inner (right) side of
the join (see Figure 5(a)). In this plan, the NLJoin node triggers the
execution of its outer (left) child, which triggers the execution of
the CTEConsumer on the left side. This CTEConsumer would be
blocked, since the tuples it tries to read have not yet been produced.
Since the outer child of the NLJoin is blocked, execution never
reaches the inner child, which is supposed to execute the CTEPro-
ducer. Therefore this plan results in a deadlock. This deadlock
could have been avoided if the CTEProducer is placed under the
consumer which is executed first, which is the outer (left) child of
the NLJoin in this case. A naı̈ve method to avoid deadlocks can be
summarized in the following steps:

1. Optimize query without considering the CTE expressions.
2. Optimize each of these CTE expressions separately.
3. For each CTE in the query (in order of dependency):

(a) Traverse the execution plan of the main query in the
order of execution

(b) Plug the tree corresponding to this CTEProducer un-
der the first corresponding consumer encountered dur-
ing this traversal

One obvious drawback of this approach is that the first step does
not take into account the cost of executing the CTEProducer, which
means that the plan chosen for the main query may not be optimal
anymore after plugging in the smaller CTE subplans.

An additional source of complexity with this approach comes
from the fact that executing some parts of a query plan might be
skipped altogether for certain inputs. Consider the plan in Fig-
ure 5(b). In this plan, the CTEProducer was placed according to the
algorithm above, under the first CTEConsumer encountered in the
order of execution. Assume now that the filter on i current price

does not return any tuples. Most engines will then optimize execu-
tion and simply skip executing the inner side of the join, since the

!"#$%

&'()$*+",-./%

&'(&"$0123,-./%&'(&"$0123,-./%

.4%

54%

64% 74%

Figure 6: Memo after inserting the query in Figure 2

!"#$%

&'()$*+",-./%

&'(0,"12*3,-./%

&'(&"$4253,-./%&'(&"$4253,-./%

63723$*3% 8"9:%

';<=36*;$-#>35/%

';<=36*;$-#>35/% ';<=36*;$-#>35/%

63=3*>%
#?*"=",@A,31B%

63=3*>%
#?*"=",@A,31B%

63=3*>%
#?*"=",@A,31B%

.C%

DC%

EC% FC%

GC%

HC%

IC%

JC% KC%

Figure 7: Memo after applying transformations

join operator will not produce any tuples. In this case, the CTEPro-
ducer placed under the inner child of the join will never be exe-
cuted. When execution reaches the CTEConsumer placed under
the top join operator, it will try to read tuples from a CTEProducer
that has never executed, resulting in a deadlock.

In theory, these situations could be avoided during query opti-
mization or execution. However, this would make the processing
logic increasingly complex by tightly coupling optimizer and exe-
cution engine designs, resulting in maintainability and extensibility
challenges. The problem is aggravated in the context of MPP sys-
tems, where we need to handle communication among processes
on different nodes. The Sequence operator greatly simplifies the
decision on the placement of the CTEProducer in the plan, and al-
lows the optimizer to transparently perform several optimizations
without worrying about deadlocks.

6. PLAN ENUMERATION
In this section, we illustrate how to generate plan alternatives for

queries with CTEs. We use the logical query depicted in Figure 2
for illustration. The initial logical query expression is first inserted
into the Memo, creating as many Memo groups as required. Fig-
ure 6 shows a representation of the Memo after initializing it with
this logical expression, where each numbered box represents a dis-
tinct Memo group.

6.1 Transformation Rules
A transformation rule takes as input an expression in a Memo

group, and produces another expression to be added to the same
group. For each CTE, we generate the alternatives of inlining or
not inlining the CTE. Figure 7 depicts the Memo after applying the
following CTE-related transformations:

• The first rule is applied to the CTEAnchor operator. It gen-
erates a Sequence operator in the same group as the CTEAn-
chor (group 0), such that the left child of the Sequence is
the whole tree representing the CTE definition – creating as
many new groups as necessary (groups 4, 5, and 6) – and
the right child of the Sequence is the original child of the
CTEAnchor (group 1).

1708

!"#$%

&'(&"$)*+,-!"#$ &'(&"$)*+,-!"#$

(a)

!"#$%

&'(&"$)*+,-!"#$.,/,01%
%&'()(*$+,*-./$

'23/,.02$%
!%0-1#$

(b)

!"#$%&'()*"+,-.*!"#$

/.0.-1%
%&'()(*$+,*-./$

/.0.-1%
%&'()(*$+,*-./$

/.0.-1%
%&'()(*$+,*-./$

'230./-2$%
!%0-1#$

'230./-2$%
!%0-1#$

'230./-2$%
!%0-1#$

/.4,.$-.$

(c)

!"#$%&'()*"+,-.*!"#$

/.0.-1%
%&'()(*$+,*-./$

/.0.-1%
%&'()(*$+,*-./$

'230./-2$%
!%0-1#$

'230./-2$%
!%0-1#$

/.4,.$-.$

&'(&"$5,6.*!"#$

(d)

Figure 8: Other possible plans

• The second rule is also applied to the CTEAnchor, generating
a NoOp operator in the same group (group 0), with its only
child being the child of the CTEAnchor (group 1).

• The third rule is applied to CTEConsumer operators, generat-
ing a copy of the CTE definition, and adding that expression
to the same group as the CTEConsumer. For example, for
the CTEConsumer in group 2, the CTE definition is added so
that the Select operator is also in group 2, and its child (the
TableScan operator) is added to a new group (group 7).

After estimating the cost of the different alternatives (cf. Sec-
tion 7), the optimizer chooses the alternative with the lowest cost
from each group. For example, if the optimizer chooses a plan
rooted by the NoOp operator from group 0 with the inlined expres-
sions from groups 2 and 3, we get the plan in Figure 3(a). Alterna-
tively, if the optimizer picks a plan rooted by the Sequence operator
from group 0 with the CTEConsumers from groups 2 and 3, we end
up with the plan in Figure 3(b).

Figure 8 shows other possible plans that can be picked by choos-
ing other operators. Note, however, that not all the plans shown
in this Figure are valid. For example, the plans in Figures 8(a)
and 8(b) contain CTEConsumer operators without a corresponding
CTEProducer. These plans cannot be executed since the CTECon-
sumers need to read data that is never produced. The plan in Fig-
ure 8(c) has a CTEProducer without any corresponding CTECon-
sumers. This means that the CTE expression would be needlessly
executed one additional time and cached. We avoid generating such
plans using the algorithm explained in Section 6.2.

The plan in Figure 8(d) is not an invalid plan. However, it is not
the most efficient plan, since it contains only one CTEConsumer
that corresponds to the included CTEProducer. This plan is almost
equivalent to the plan in Figure 3(a) in terms of cost, except that
it incurs the additional overhead of caching the CTE outputs. We
avoid generating such plans as we explain later in Section 6.3.2.

Using the Memo to represent the different alternatives makes
the decision of whether or not to inline a CTE purely cost-based.
Within the same query, some CTEs may be inlined, while others
may not be inlined. Inlining also allows performing some opti-
mizations such as pushing down predicates, distribution, sorting,
etc. For example, consider the CTEProducer in Figure 9(a). The
partial logical expression shown in Figure 9(b) shows a predicate
on top of a CTEConsumer. Using the transformation rule that in-
lines the CTEConsumer would give us the partial expression in Fig-

GroupBy(i_color(

CTEProducer(0)(

TableScan(item)(

GroupBy((
i_color(

CTEProducer(0)(

TableScan(
(item)(

(a) CTE definition

Select&
i_color=‘red’&

GroupBy&i_color&

TableScan(item)&

GroupBy&i_color&

TableScan(item)&

Select&
i_color=‘red’&

CTEConsumer(0)&

Select&
i_color=‘red’&

CTEConsumer(0)&

Select&
i_color=‘red’&

GroupBy&&
i_color&

TableScan4
(item)&

Select4
i_color=‘red’&

Select4
i_color=‘red’&

GroupBy&&
i_color&

TableScan4
(item)&(b) Original expression

Select&
i_color=‘red’&

GroupBy&i_color&

TableScan(item)&

GroupBy&i_color&

TableScan(item)&

Select&
i_color=‘red’&

CTEConsumer(0)&

Select&
i_color=‘red’&

CTEConsumer(0)&

Select&
i_color=‘red’&

GroupBy&&
i_color&

TableScan4
(item)&

Select4
i_color=‘red’&

Select4
i_color=‘red’&

GroupBy&&
i_color&

TableScan4
(item)&

(c) Inlined CTE

Select&
i_color=‘red’&

GroupBy&i_color&

TableScan(item)&

GroupBy&i_color&

TableScan(item)&

Select&
i_color=‘red’&

CTEConsumer(0)&

Select&
i_color=‘red’&

CTEConsumer(0)&

Select&
i_color=‘red’&

GroupBy&&
i_color&

TableScan4
(item)&

Select4
i_color=‘red’&

Select4
i_color=‘red’&

GroupBy&&
i_color&

TableScan4
(item)&

(d) Predicate push-
down

Figure 9: Pushing down predicates through inlined CTE

ure 9(c). However, Orca by default tries to push down predicates as
far as possible, which means that the expression in Figure 9(c) will
eventually be transformed to the expression in Figure 9(d), which
may significantly reduce the number of intermediate rows.

6.2 Avoiding Invalid Plans
In this section we describe the algorithm which checks plans and

subplans for validity with respect to the configuration of CTEPro-
ducers and CTEConsumers. The algorithm fits within Orca’s
framework of passing down query requirements and deriving plan
properties (cf. Section 3.2). The algorithm operates on the different
alternative plans encoded by the Memo. However, for illustration
purposes, we present here a recursive implementation of the algo-
rithm which operates on a complete plan.

The main function is given in Algorithm 1. The input to this
function is a plan (or a subplan), represented by its root node, and
a list of CTE requirements. Each item in the list is a CTESpec
object. The output of the function is also a list of CTESpec objects
that represent the CTE configuration in the given subplan. Each
CTESpec is a compact specification of an unresolved CTEProducer
or CTEConsumer, comprised of : (i) the CTE id, and (ii) spec type:
either ‘p’ for producer or ‘c’ for consumer. For simplicity, we will
represent each CTESpec using a pair (id, type). For example (1, c)
represents a CTESpec with id=1 and type consumer.

This function is called initially on the top node of the whole plan,
and given an empty list of requirements. The function computes a
CTESpec list for the current node (lines 1-2), then proceeds to pro-
cess the child nodes, if any (lines 3-7). For each child, we compute
a new set of CTE requirements depending on the requirement com-
ing from the parent as well as the CTESpecs obtained from previ-
ous children (line 4). We then call the same function recursively
for the child, passing the new requirement (line 5) and combine
the returned CTESpecs with what has been returned from previous
children (line 6). Finally the function checks whether or not the
combined CTESpecs of the current node and its children satisfies
the requirement coming from the parent. If not, then the current
plan is invalid (lines 8-10). Otherwise, the combined CTESpec list
is returned to the parent (line 11).

The algorithm uses a number of helper functions; The Compu-
teCTESpec() function is operator-specific, and is used to compute
the local CTESpec representation for every different operator. The

1709

Algorithm 1: DeriveCTEs
Input : Node node, List reqParent
Output: List of CTESpecs

1 List specList;
2 specList.Add(node.ComputeCTESpec());
3 foreach child in node.children do
4 List reqChild = Request(specList, reqParent);
5 List specChild = DeriveCTEs(child, reqChild);
6 Combine(specList, specChild);
7 end
8 if !Satisfies(specList, reqParent) then
9 SignalInvalidPlan();

10 end
11 return specList;

implementation of ComputeCTESpec() for most operators returns
an empty list. The only exceptions are for the CTEProducer and
CTEConsumer operators; each of which returns a list with one
CTESpec object having the CTEid of that operator.

The Request() function computes a new list of requirements for
a given child node, taking into account the parent’s requirements,
and the CTESpecs returned from the previous children. The new
requirements contain the following:

• Any CTESpec not required by the parent, but introduced by
a previous child. For example, the Sequence node in Fig-
ure 8(d) receives an empty requirement list, since it is the
root. Its first child reports (0, p). Therefore the requirement
for the second child is (0, c)

• Any CTESpec required by the parent and not resolved by the
previous children. For example, the join node in Figure 8(d)
receives the requirement (0, c) from its parent. This require-
ment is not satisfied by the first child. Therefore it is passed
down to the second child.

The Combine() function combines CTESpec lists obtained from
the current node and its children to build CTESpec list for the whole
subplan rooted by the current node. Combining multiple lists takes
place as follows: If CTESpecs exist with the same id but different
types, they cancel each other and are not part of the combined list.
All remaining CTESpecs are copied into the combined list.

The Satisfies() function checks whether or not the CTE represen-
tation of the whole subplan satisfies the requirement passed down
from the parent. This is accomplished by comparing the CTESpecs
in both lists, and checking if they match.

Finally, the function SignalInvalidPlan() signals that the current
plan being processed is invalid because the requirements are not
satisfied. Hence, it cannot be considered as one of the possible
execution plans for the given query.

As noted in the beginning of this section, our implementation of
this algorithm operates on the Memo groups directly, not on the
extracted plans. The requests and derived properties are passed
from one Memo group to its children and vice versa. Signalling
an invalid subplan simply means that this subplan is removed from
the plan space, and not considered as part of any plan. In other
words, we do not wait until all alternative plans are produced and
then apply this algorithm, but rather apply it as part of property
derivation to avoid invalid operator combinations.

6.3 Optimizations Across Consumers
Execution plans containing CTEs can be further optimized in

multiple ways to improve execution performance. In this section,
we outline some of these optimizations. These optimizations have

Join%CTEProducer(0)$

Select%
i_current_price$$

<50

Sequence$

TableScan%
(item)$

Select%
i_color$=‘red’$

CTEConsumer(0)% CTEConsumer(0)%

Select%
i_color=‘blue’$

Join%CTEProducer(0)$

Select%
i_current_price$$

<50

Sequence$

TableScan%
(item)$

Select%
i_color=‘red’$

CTEConsumer(0)% CTEConsumer(0)%

Select%
i_color=‘blue’$

Select%
i_color=‘red’OR
$i_color=‘blue’$

(a)$Predicates$Not$pushed$to$CTEProducer$ (b)$Predicates$pushedtoCTEProducer$

Figure 10: Pushing down predicates without inlining

to take into account all consumers of a given CTE, and cannot be
applied locally to individual CTEConsumers.

6.3.1 Predicate Push-down
As explained in Section 6.1, inlining CTEs makes it possible

to push down predicates, which reduces the number of intermedi-
ate rows. However, in Orca, we introduce a method to push down
predicates even without inlining CTEs.

Example 5. Consider the following query:
WITH v as (SELECT i brand, i color FROM item

WHERE i current price < 50)
SELECT * FROM v v1, v v2
WHERE v1.i brand = v2.i brand
AND v1.i color = ’red’
AND v2.i color = ’blue’;

This query has two CTEConsumers, with a predicate on each
one. Figure 10(a) shows a possible execution plan for the original
query without CTE inlining. However, in this plan, the CTEPro-
ducer outputs tuples that are not needed by any of the CTECon-
sumers. We optimize this by forming a new predicate as the dis-
junction of all predicates on top of the CTEConsumers, and pushing
that new predicate to the CTEProducer. This reduces the amount of
data that needs to be materialized. We still need to apply the orig-
inal predicates on top of the CTEConsumers to produce only the
needed tuples. The optimized plan is given in Figure 10(b).

6.3.2 Always Inlining Single-use CTEs
In Orca, we use a heuristic where any CTE with a single con-

sumer is automatically inlined. Consider the following example:

Example 6.
WITH v as (SELECT i color FROM item
WHERE i current price < 50)
SELECT * FROM v
WHERE v.i color = ’red’;

This query has only one consumer of v. Whether we inline the
CTE or not, the CTE expression is executed only once. However,
when the CTE is not inlined, we also incur the added cost of ma-
terialization and reading back the materialized tuples. Therefore, it
is always better to inline CTEs that are referenced only once.

6.3.3 Elimination of unused CTEs

Example 7.
WITH v as (SELECT i color FROM item
WHERE i current price < 50)
SELECT * FROM item
WHERE item.i color = ’red’;

1710

As an extension to the previous optimization, CTEs that are
never referenced in the query can be removed altogether. In Ex-
ample 7, v is defined but never referenced. No matter how compli-
cated the definition of v is, it can be completely removed without
affecting the result of the query. This can also be applied iteratively
to queries with multiples CTEs.

Example 8. Consider the following query:

WITH v as (SELECT i current price p FROM item
WHERE i current price < 50),

w as (SELECT v1.p FROM v as v1, v as v2
WHERE v1.p < v2.p)

SELECT * FROM item
WHERE item.i color = ’red’;

In this query, v is referenced twice, while w is never referenced.
Therefore, we can eliminate the definition of w. However, by doing
that, we remove the only references to v, which means we can also
eliminate the definition of v.

7. CONTEXTUALIZED OPTIMIZATION
In this section, we discuss our novel contextualized optimization

technique and give simple examples to highlight its impact. A key
contribution of our work is the ability to optimize CTEs in different
ways, depending on the contexts where they are used in different
plans. Earlier efforts [11] have addressed this problem using a CTE
re-optimization phase that exploits CTE properties discovered in
previous regular optimization phases (cf. Section 2).

To the extent of our knowledge, our framework is the first pro-
posal towards integrating CTE optimization at the core of the op-
timizer and avoiding full re-optimization. The cohesion of CTEs
and other optimizations in one framework leads to an efficient and
systematic process that eliminates redundant work. Efficient opti-
mization often translates to better quality of the generated plans,
since more resources can be devoted to expensive operations such
as join ordering.

7.1 Enforcing Physical Properties
Orca optimizes candidate plans by processing optimization re-

quests in Memo groups. An optimization request is a set of physical
properties to be satisfied by a physical group expression. Required
physical properties include sort order, distribution, rewindability,
CTEs and data partitioning [2]. For clarity, we focus here on data
distribution. Other properties are handled similarly.

For an incoming optimization request, each physical group ex-
pression passes corresponding requests to child Memo groups.
These child requests depend on the incoming requirements as well
as operator local requirements. During optimization, many iden-
tical requests may be received by the same group. Orca caches
computed requests in a group hash table. An incoming request is
computed only if it does not already exist in group hash table.

CTE optimization requires satisfying physical properties in dif-
ferent contexts, leading to potentially competing plan alternatives.
We depict this process in Figure 11 using the query in Example 3.

7.1.1 Producer Context
A CTEProducer plan can be generated without considering

where the CTEConsumers occur. To illustrate, in Figure 11(a), the
Sequence operator requests ANY distribution from group 4, where
the CTEProducer exists. This request can be satisfied by any plan
generated from group 4. In this case, the derived distribution of
the cheapest possible plan is Hashed(i sk), which is the distribu-
tion of the item table. Next, the physical properties of this plan

are attached to the request sent to group 1, from which the CTE-
Consumers descend. This allows the CTEConsumers to determine
later whether the CTE plan satisfies the requirements at the CTE-
Consumers contexts, or property enforcers are needed to satisfy
missing requirements.

The local requirements of the HashJoin operator in group 1
entail aligning child distributions based on the join condition
(v1.i brand = v2.i brand). The goal is to collocate tu-
ples that will join together on the same node. This is achieved by
requesting Hashed(i brand) distribution from both child groups 2
and 3. Note that CTE plan properties are still attached to these re-
quests. Next, the CTEConsumers at groups 2 and 3 check whether
the distribution of the CTE plan (Hashed(i sk)) satisfies the re-
quested distribution (Hashed(i brand)) or not. In this case, it
does not, and thus Redistribute(i brand) enforcers are plugged
in groups 2 and 3 to satisfy the required distributions.

Figure 11(a) shows a candidate plan resulting after the previous
steps, where CTE results are redistributed twice on the same hash
expression. Since the plan is unaware of the CTEConsumer con-
texts, such redundancy cannot be avoided. This may not be the best
alternative due to wasting network and CPU resources2. We show
next how more efficient plans can be generated for this example.

7.1.2 Consumer Context
Identical properties may be required in the contexts where CTE-

Consumers occur. These properties can be enforced in the CTEPro-
ducer expression to avoid repeated work.

To illustrate, in Figure 11(b), the CTEConsumer operator sends
an additional (Hashed(i brand)) request (annotated with a dotted
line) back to group 0, where the Sequence operator exists. In con-
trast to other optimization requests, this request does not arise from
parent-child relationships in the Memo, but it is used to push CTE-
Consumers requirements into the CTEProducer plan. This is en-
abled by our framework, since each Sequence provides the op-
timization entry point in the Memo for its CTE. This optimiza-
tion could result in avoiding property enforcement on the CTECon-
sumer side, as we show next.

Similar to the previous discussion, the request
(Hashed(i brand)) triggers a new sequence of optimization
requests propagated across Memo groups. This results in adding a
Redistribute(i brand) operator to group 5 to enforce required
distribution. When optimization reaches groups 2 and 3, the CTE-
Consumers recognize that the attached CTE plan properties satisfy
Hashed(i brand) distribution, and hence there is no need for
property enforcing on the CTEConsumers side. Figure 11(b) shows
a candidate plan, where CTE results are optimally distributed once
before being shared by the CTEConsumers.

The plan alternatives where CTEConsumers are partially or fully
inlined are still valid in our example. The optimizer estimates the
cost of all these different alternatives in order to pick the best pos-
sible plan, as we discuss in Section 7.2.

It is also important to highlight that by integrating CTE optimiza-
tion at the core of Orca, there is no need for multi-phase optimiza-
tion, where CTEs are considered later after regular optimization is
done. Additionally, by combining CTEs with other optimizations
in one framework, comprehensive pruning of the search space is
enabled. This is done by computing a lower bound on the cost of
an optimization request, before fully computing it, and eliminating
a request when a full plan with a smaller cost is already known.
This allows cutting-off additional CTE optimizations early on. We
omit further details due to space constraints.
2In other cases (e.g., when CTEConsumers have no distribution require-
ments), the plan generated from the Producer Context may be good enough.

1711

HJN$
i_brand=i_brand$

CTEProducer$
(0)$

CTEConsumer$
(0)$

CTEConsumer$
(0)$

Sequence$

TableScan$
(item)$

TableScan$
(item)$

Select$
i_color=‘red’$

Select$
i_color=‘red’$

0:$

1:$

2:$ 3:$

4:$

7:$ 8:$

ANY$?$

Hashed(i_sk)'

TableScan$
(item)$

Select$
i_color=‘red’$

5:$

6:$

ANY$?$$
CTE(0)=Hashed(i_sk)'

Hashed(i_brand)$?$$
CTE(0)=Hashed(i_sk)'

Redistribute$
(i_brand)$

Redistribute$
(i_brand)$

Hashed(i_brand)$?$$
CTE(0)=Hashed(i_sk)'

Sequence$

CTEProducer(0)$

Select$
i_color=‘red’$

TableScan(item)$

HJN$$
i_brand=i_brand$

Redistribute$
i_brand$

Redistribute$
i_brand$

CTEConsumer$
(0)$

CTEConsumer$
(0)$

Candidate$Plan:$$
Redundant$distribu.on0of0CTE0results0

Requested$ProperAes$
Derived$ProperAes$

(a) Enforcing properties on top of CTEConsumers

CTEProducer+
(0)+

CTEConsumer+
(0)+

Sequence+

TableScan+
(item)+

TableScan+
(item)+

Select+
i_color=‘red’+

Select+
i_color=‘red’+

0:+

1:+

2:+ 3:+

4:+

7:+ 8:+

Hashed(i_brand))?)

Hashed(i_brand)(

TableScan+
(item)+

Select+
i_color=‘red’+

5:+

6:+

ANY)?+
CTE(0)=Hashed(i_brand))

Hashed(i_brand))?))
CTE(0)=Hashed(i_brand))

Redistribute+
(i_brand)+

Redistribute+
(i_brand)+

Hashed(i_brand))?)

Redistribute+
(i_brand)+

Hashed(i_brand))?))
CTE(0)=Hashed(i_brand)(

HJN+
i_brand=i_brand+

Sequence)

CTEProducer(0)+

Select)
i_color=‘red’+

TableScan(item)+

HJN))
i_brand=i_brand+

CTEConsumer)
(0)+

CTEConsumer)
(0)+

Candidate+Plan:++
Op,mal)distribu,on)of)CTE)results)

Redistribute)
i_brand+

CTEConsumer+
(0)+

Requested)ProperAes+
Derived)ProperAes+

(b) Enforcing properties in CTEProducer expression

Figure 11: Enforcing physical properties for different plans for Example 3

7.2 Cost Estimation
Costing CTEs properly is crucial for optimization. The cost of

the CTEProducer is the cost of executing the whole subtree under it,
plus the cost of materializing the results to disk. The cost of a CTE-
Consumer is the cost of reading the rows from disk, so its cost is
similar to the cost of a table scan. On the other hand, the cost of an
inlined CTE expression is the full cost of executing that expression.
For each CTEConsumer, the optimizer has two alternative plans:

1. A plan in which the CTE expression is inlined, and hence the
full cost of executing the expression is incurred, and

2. A plan in which the CTE expression is not inlined, and hence
we only incur the cost of reading the CTE outputs.

Comparing the cost of these two alternatives locally is incorrect,
however, because the second alternative also implicitly assumes
that somewhere else, a CTEProducer executes the expression and
writes the results. The cost of the CTEProducer cannot be added to
the reading cost of the CTEConsumer since the CTEProducer com-
putes and writes data that can be read by multiple consumers, hence
its overhead is amortized among these consumers.

As pointed out in [14], deciding on the best plan cannot take
place locally for each CTEConsumer, but has to take into account
all consumers of the same CTE, as well as the corresponding
CTEProducer. Unlike the approach in [14], our approach does not
require the additional work of computing the least common ances-
tor of all consumers of the same CTE, since this is already known; it
is the Memo group which contains the corresponding CTEAnchor.

Since the CTEProducer is attached to the rest of the query via the
Sequence, any plan alternative which includes the CTEProducer
(e.g. Figure 3(b)) has its cost accounted for, regardless of the num-
ber of CTEConsumers. A plan which does not have a CTEProducer
(e.g. Figure 3(a)) does not incur that extra cost. As a result, com-
puting the cost and comparing the plans happens organically as the
different plan alternatives are enumerated.

8. CTE-BASED OPTIMIZATIONS
We discuss how CTEs are implicitly generated by Orca as a way

of optimizing queries that may not include explicitly defined CTEs.
We show how CTEs can be used for optimizing some relational
constructs such as distinct aggregates (Section 8.1), and for com-
mon subexpression elimination (Section 8.2).

8.1 CTE-Generating Transformations
In a number of scenarios, Orca employs transformation rules that

implicitly generate CTEs during query optimization. For instance,
while optimizing window functions, full outer joins, and distinct
aggregates, Orca considers plan alternatives that employ CTEs.
The following example describes one such scenario:

Example 9.

SELECT COUNT(DISTINCT cs item sk), AVG(DISTINCT cs qty)
FROM catalog sales WHERE cs net profit > 1000

The query in Example 9 computes two different distinct ag-
gregates on catalog sales. A possible MPP execution strat-
egy of a single distinct aggregate requires input to be hash-
distributed based on the aggregate column. This enables effi-
cient identification of duplicates by sending identical values to
the same node, and using multiple aggregation levels for de-
duplication. However, when two (or more) different distinct ag-
gregates are required (e.g., COUNT(DISTINCT cs item sk),
AVG(DISTINCT cs qty)), this strategy becomes less efficient,
since each aggregate entails a distribution on a different column.

In Orca, a rule that transforms different distinct aggregates into a
join between CTEConsumers is used, so that we compute the input
to different aggregates only once. The join serves as a means to
concatenate the two aggregate values in one resulting tuple. Fig-
ure 12 illustrates the input and output of this transformation rule.
Each CTEConsumer goes through a different Redistribute opera-
tor based on one aggregate column. This allows the MPP system
nodes to perform distinct aggregate computation in parallel. For
more than two distinct aggregates, the joins can be cascaded.

8.2 Common Subexpression Elimination
In addition to optimizing queries with explicit CTEs, our frame-

work can also be used to optimize queries with common subex-
pressions that are not explicitly defined as CTEs. This is known as
common subexpression elimination.

Example 10. Consider the following query:
SELECT *
FROM (SELECT i brand, count(*) as b

FROM item GROUP BY i brand HAVING count(*) > 10) t1,
(SELECT i brand, count(*) as b
FROM item GROUP BY i brand HAVING count(*) > 20) t2

WHERE t1.i brand <> t2.i brand;

1712

Gather'

GbAgg(cs_qty)
(level,2)'

GbAgg'
,COUNT(DISTINCT,cs_item_sk),

AVG(DISTINCT,cs_qty),

Select'
cs_net_profit,,

>,1000,,

TableScan'
(catalog_sales),

Join'CTEProducer(0),

Select'
cs_net_profit,,

>,1000,,
Redistribute(cs_qty),

Sequence,

TableScan'
(catalog_sales),

GbAgg(cs_qty)
(level,1)'

CTEConsumer(0)'

GbAgg(cs_item_sk),
(level,2)'

Redistribute(cs_item_sk),

GbAgg(cs_item_sk),
(level,1)'

CTEConsumer(0)'

(a)$Transforma,on$Input$ (b)$Output$Plan$

Gather'

AVG(cs_qty)'COUNT(cs_item_sk)'

Figure 12: Generating CTEs for Multiple Distinct Aggregates

!"#$%

&'(')*%
!"#$%&'&()&

+,-..%
*+,-.$/&

/0,('&)0$%
0*%123&

&'(')*%
!"#$%&'&4)&

+,-..%
*+,-.$/&

/0,('&)0$%
0*%123&

1/234"56)'40)3&

+,-..%
*+,-.$/&

/0,('&)0$%
0*%123&

!"#$%

&'(')*%
!"#$%&'&()&

1/21"$768'40)3%

&'(')*%
!"#$%&'&4)&

1/21"$768'40)3%

1/2-$)9"40)3&

!"#$%&'()$'*+(',,-./,$!0#$1.22./$'*+(',,-./,$+&33'4$.&5$-/5.167

Figure 13: Common subexpression elimination

Figure 13(a) depicts the logical expression tree of this query.
The query has a repeated common subexpression, outlined by the
two dotted boxes. Algorithm 2 transforms an input logical expres-
sion exprin into an equivalent expression exprout, where com-
mon subexpressions are replaced with CTEConsumers. The algo-
rithm utilizes the function DetectMatches() to detect identi-
cal subexpressions (line 2). This function can be implemented in
multiple ways. One example is using the table signatures method
in [11, 14]. The output of DetectMatches() is a set M that is
composed of groups of matching subexpressions in exprin .

After M is computed, the algorithm visits groups in M with
more than one member. For each such group m, a CTEProducer is
created and the id of the created CTE is assigned to m.id (lines 3-
6). The algorithm then calls InsertCTEConsumers(), which
recursively visits subexpressions, replacing each common subex-
pression with its corresponding CTEConsumer. Finally, a CTEAn-
chor is inserted above the least common ancestor (LCA) of each
group of common subexpressions (lines 9-12). Figure 13(b) shows
the output expression after processing the query in Example 10.

Note that this is only one possible algorithm. Other methods can
be also used to identify similar (but non-identical) subexpressions.
In this context, several view matching techniques can be leveraged
by our framework, as we discuss in Section 2.

9. EXECUTION
In MPP databases, different parts of a query plan can execute

in different processes, both within a single host, and across differ-
ent hosts. In a shared-nothing MPP architecture such as GPDB,
processes within the same host share a common filesystem, and
processes in different hosts communicate through a network. The
plans produced by Orca require CTEConsumers to read tuples from
CTEProducers within the same host (both from the same process,

Algorithm 2: Common Subexpression Elimination
1 Algorithm EliminateCommonSubexpressions()

Input : Expression exprin
Output: Expression exprout

2 M = DetectMatches(exprin);
3 foreach (m ∈ M s.t. size(m) > 1) do
4 exprp = any expression ∈ m;
5 p = create CTEProducer for exprp ;
6 m.id = p.id;
7 end
8 exprout = InsertCTEConsumers (exprin, M);
9 foreach (m ∈ M s.t. m.used == true) do

10 l = LCA(m.consumers, exprout);
11 exprout = insert CTEAnchor(m.id) above l in exprout
12 end
13 return exprout ;

14 Procedure InsertCTEConsumers()
Input : Expression exprin, SetOfMatches M
Output: Expression exprout

15 if (∃m ∈ M s.t. exprin ∈ m) then
16 m.used = true;
17 c = create CTEConsumer(m.id);
18 add c to m.consumers;
19 return c;
20 end
21 new children = new set;
22 foreach (child ∈ exprin.children) do
23 new child = InsertCTEConsumers(child, M);
24 add new child to new children;
25 end
26 return new Expression(exprin.op, new children);

and from a different process), but they never require reading from
a CTEProducer on another host.

Before query execution starts, CTEConsumers are instantiated as
SharedScan operators, and CTEProducers are instantiated as Mate-
rialize (Spool) or Sort nodes (if the CTE produces sorted results).
A possible execution plan for the query in Example 3 is shown in
Figure 14. The Broadcast operator manages data exchange between
the shown two active processes (cf. Section 3.1).

Typically, a CTEProducer has multiple CTEConsumers execut-
ing both in the same process, as well as in other processes. The ex-
ecution engine allows CTEConsumers to read tuples from CTEPro-
ducers in both of these scenarios. Additionally, when multiple pro-
cesses are involved, the execution engine provides a synchroniza-
tion mechanism to ensure the consumer can wait for the producer to
have tuples. CTEProducer and CTEConsumers identify each other
using the common CTEId. In addition, each CTEProducer is anno-
tated with the number of consumers in the same process, as well
as in different processes. These are used in the synchronization
protocol between consumers and producers.

In GPDB, a process that contains a CTEConsumerexecutes a de-
pendency check before it begins executing any of the operators as-
signed to it. Using a synchronization protocol, it waits for acknowl-
edgement from the producer that all the tuples have been produced
and are ready to be read. A process that does not contain any con-
sumers executes normally. If any producers exist in a process, that
producer notifies all the consumers once all the tuples are available.
The synchronization protocol ensures that no notifications are lost,
regardless of the order producers and consumers reach the synchro-
nization point.

The results of a producer operator are explicitly materialized in
a TupleStore, a data structure implementing an iterator over a set of
tuples. The TupleStore for a CTEProducer can be stored in mem-
ory or on disk, depending on the size of the data, the amount of

1713

!"#$%&'#()*+,&)-&.+/01234567#

89),+48:)'#
/01234567#

8+;<+':+#

8+-+:*#
&=:%-%,5>,+4?#

1)@-+8:)'#
/&*+A7#

89),+48:)'/01234567#

B,%)4:)C*#
D,%:+CC#DE#

D,%:+CC#DF#

Figure 14: GPDB Execution Plan for Example 3

memory available and the plan requirements on the CTEProducer.
When all the consumers of a particular CTEProducer are located
in the same process, consumers can directly read the contents of
the TupleStore from the producer. If the amount of data fits in the
operator memory, the TupleStore is stored in memory, resulting in
additional performance gains. If at least one consumer is located
in a different process, then the TupleStore is stored on disk. The
CTEConsumer receives the file name and the notification when the
tuples are on disk, then proceeds to read the tuples from disk.

An additional optimization applies when the CTEProducer gen-
erates sorted tuples. If the operator on top of the producer is a Sort
operator, explicit materialization of the results is avoided. The Sort
operator already materializes its results in a TupleStore. This Tu-
pleStore is shared with the consumers directly.

The execution of plans with CTEs can be further improved by
lazily executing the CTEProducer only when the first CTECon-
sumer requests it. If the CTEProducer and CTEConsumers are in
the same process, a mechanism to jump between executing dif-
ferent parts of the plan is needed. If they reside in different pro-
cesses, more coordination between processes is required, both for
flow control and for efficiently sending tuples between processes on
the same host. The CTEProducer must also be able to spill to disk
when consumers request data at different rates. The cost of such
plans cannot be estimated at optimization time, since it is based en-
tirely on the execution flow; the cost estimates can vary depending
on whether the CTEProducer executes in memory, spills to disk or
is not executed altogether. We plan to investigate such improve-
ments as part of future development.

10. EXPERIMENTS
In this section, we present our experimental evaluation. Sec-

tion 10.1 outlines our experimental setup. Section 10.2 compares
the performance of Orca-generated plans against plans generated
by GPDB’s legacy query optimizer, referred to as Planner, which
always inlines CTEs. Section 10.3 outlines the importance of cost-
based CTE inlining, as opposed to always inline CTEs or never
inline CTEs. We do not experimentally compare our approach to
the techniques proposed by other database systems. In general, this
was infeasible because many of these systems are tightly coupled
with their respective optimization/execution frameworks that are
considerably different from GPDB and Orca. We highlight the
similarities and differences between our approach and other ap-
proaches in Section 2.

10.1 Setup
The experiments were conducted on a cluster of eight nodes con-

nected with 10Gbps Ethernet. Each node has dual Intel Xeon pro-

cessors at 3.33GHz, 48GB RAM and twelve 600GB SAS drives
in two RAID-5 groups. The operating system is Red Hat Enter-
prise Linux 5.5. We use the TPC-DS [13] benchmark with size
5TB. The workload consists of 48 queries – which are all TPC-DS
queries containing CTEs.

10.2 Comparing Orca against the Planner

Setting Execution Time
Orca 32,951.82 sec
Planner 57,176.04 sec

Table 1: Total execution time

Table 1 shows the total execution time of the entire workload us-
ing both Orca and Planner. Orca reduced the total execution time
by 43%. Figure 15 shows the relative performance improvement
of each query as a result of using Orca. The improvement is com-
puted as a percentage of the execution time when using Planner,
so that an improvement of 10% means a query finishes in 90% of
the time, when using Orca. The X-axis is the execution time with
Planner in logarithmic scale. One can see that across the board,
Orca speeds up the execution time both for short-running and long-
running queries. 80% of the queries exhibited performance im-
provement. This improvement is due to avoiding unnecessary inlin-
ing of CTEs, and thus avoiding re-executing common expressions,
as well as the effective CTE optimizations discussed earlier.

!"#$%
!&#$%
!'#$%
#$%
'#$%
&#$%
"#$%
(#$%
)##$%
)'#$%

)%)#%)##%)###%)####%

!"
#$
%&
'"

'(
)*

+,'-./%(*01"'*23'-4*

Figure 15: Performance of Orca vs. Planner

There are some instances, however, where Orca’s plan is just as
good as the plan generated by Planner. This is usually the case
when the overhead of materializing and reading the CTE outputs
from disk is roughly equal to the time saved from the multiple exe-
cutions of the CTE expression in the Planner’s plan. Lastly, for are
some queries the performance degraded with Orca. We investigated
these cases and found out that they are caused by Orca picking a
suboptimal plan primarily due to imperfect tuning of cost model
parameters and cardinality misestimation.

10.3 Cost-based Inlining
Next, we evaluate the effect of our cost-based CTE inlining

method by executing our workload using the following settings:

1. Basic CTE optimization, where we disable CTE inlining as
well as pushing down predicates into the CTEProducer.

2. Inlining is enforced for all CTEs.
3. Cost-based inlining, with all the optimizations enabled. This

is Orca’s default setting.

The goal of this experiment is to demonstrate that the cost-based
inlining generates better plan by applying both principles (pure in-
lining, and basic CTE optimization) in a cost-based manner rather
than applying only one of principles as a heuristic choice. Fig-
ure 16 shows the difference in performance among these settings.

1714

1"

10"

100"

1000"

10000"

01" 02" 04" 05a" 11" 14a" 18" 18a" 22" 22a" 23" 24" 27" 30" 31" 36a" 39" 47" 51" 51a" 58" 59" 64" 67" 67a" 70" 70a" 74" 75" 80a" 83" 86a" 95" 97"

Ex
ec
u&

on
)T
im

e)
(s
ec
))

TPC2DS)Queries)

Basic"CTE"op6miza6on" Inline"all"CTEs" Cost>based"inlining"

Figure 16: Performance Comparison: Basic CTE Optimization (No Inlining) vs. Inlining Only Approach vs Cost-based CTE Approach (uses
inlining and CTE optimization techniques)

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

%# (# (*# %%# &!# &&#&)*#($# ()# (+# (,#)!#)+#+!*#++*#+,# ,!#,!*#,&#,)*#-+#

!"
#$
%&
'"

'(
)*

+,-./0*12'$3'4*

(a)

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

'# $$# &*# +'# +(#

!"
#$
%&
'"

'(
)*

+,-./0*12'$3'4*

(b)

Figure 17: Effect of individual CTE optimizations: (a) inlining
CTEs with a single consumer (b) pushing predicates down into
CTE producer

The vertical axis represents the execution time in log scale. We
observed that for 14 out of the 48 TPC-DS queries the difference
in execution time between the three different settings was less than
10% and hence ignored in Figure 16. In the remaining 34 queries,
we observed that if we picked inlining as a heuristic it can result on
an average 44% performance regression and in the worst case a 4x
regression as is the case for query 14a. A purely inlining CTE ap-
proach delivers notable performance gains only in scenarios where
the inlined CTE is highly selective, namely queries 11 and 31 where
the inlined subquery has a cardinality of a few hundred tuples. In
these two cases, only using the basic CTE optimization can cause a
2x regression. The cost-based inlining approach captures the best
of both worlds. Inlining is favored when there is only one con-
sumer (as shown in Figure 17(a)), or the CTE is cheap enough to
re-execute. Additionally, the cost-based approach favors no inlin-
ing when it is expensive to execute the CTE expression repeatedly.
This hybrid approach along with the benefits of pushing predicates
down into the CTE producer (as in Figure 17(b)) saves up to 55%
of the execution time with negligible optimization overhead.

11. SUMMARY
This paper presents a comprehensive framework for the repre-

sentation, optimization and execution of CTEs. Our work consider-
ably extends the optimizer’s infrastructure and addresses multiple
challenges pertinent to distributed query processing in MPP sys-
tems. We demonstrate the efficiency of our techniques using stan-
dard decision support benchmark.

12. REFERENCES
[1] PostgreSQL. http://www.postgresql.org.
[2] L. Antova, A. El-Helw, M. A. Soliman, Z. Gu,

M. Petropoulos, and F. Waas. Optimizing Queries over

Partitioned Tables in MPP Systems. In SIGMOD, pages
373–384, 2014.

[3] C. Bear, A. Lamb, and N. Tran. The Vertica Database: SQL
RDBMS for Managing Big Data. In MBDS, 2012.

[4] S. Bellamkonda, R. Ahmed, A. Witkowski, A. Amor,
M. Zaı̈t, and C. C. Lin. Enhanced Subquery Optimizations in
Oracle. PVLDB, 2(2):1366–1377, 2009.

[5] L. Chang, Z. Wang, T. Ma, L. Jian, L. Ma, A. Goldshuv,
L. Lonergan, J. Cohen, C. Welton, G. Sherry, and
M. Bhandarkar. HAWQ: A Massively Parallel Processing
SQL Engine in Hadoop. In SIGMOD, pages 1223–1234,
2014.

[6] J. Goldstein and P. Larson. Optimizing Queries sing
Materialized Views: A Practical, Scalable Solution. In
SIGMOD, pages 331–342, 2001.

[7] G. Graefe. The Cascades Framework for Query
Optimization. IEEE Data Eng. Bull., 18(3), 1995.

[8] L. L. Perez and C. M. Jermaine. History-aware query
optimization with materialized intermediate views. In Data
Engineering (ICDE), 2014 IEEE 30th International
Conference on, pages 520–531. IEEE, 2014.

[9] Pivotal. Greenplum Database.
http://www.pivotal.io/big-data/pivotal-
greenplum-database, 2013.

[10] S. Shankar, R. Nehme, J. Aguilar-Saborit, A. Chung,
M. Elhemali, A. Halverson, E. Robinson, M. S.
Subramanian, D. DeWitt, and C. Galindo-Legaria. Query
Optimization in Microsoft SQL Server PDW. In SIGMOD,
pages 767–776, 2012.

[11] Y. N. Silva, P. Larson, and J. Zhou. Exploiting Common
Subexpressions for Cloud Query Processing. In ICDE, pages
1337–1348, 2012.

[12] M. A. Soliman, L. Antova, V. Raghavan, A. El-Helw, Z. Gu,
E. Shen, G. C. Caragea, C. Garcia-Alvarado, F. Rahman,
M. Petropoulos, F. Waas, S. Narayanan, K. Krikellas, and
R. Baldwin. Orca: A Modular Query Optimizer Architecture
for Big Data. In SIGMOD, pages 337–348, 2014.

[13] TPC. TPC-DS Benchmark.
http://www.tpc.org/tpcds.

[14] J. Zhou, P. Larson, J. C. Freytag, and W. Lehner. Efficient
Exploitation of Similar Subexpressions for Query
Processing. In SIGMOD, pages 533–544, 2007.

[15] J. Zhou, P.-Å. Larson, and R. Chaiken. Incorporating
Partitioning and Parallel Plans into the SCOPE Optimizer. In
ICDE, pages 1060–1071, 2010.

1715

http://www.postgresql.org
http://www.pivotal.io/big-data/pivotal-greenplum-database
http://www.pivotal.io/big-data/pivotal-greenplum-database
http://www.tpc.org/tpcds

	Introduction
	Challenges
	Deadlock Hazard
	Enumerating Inlining Alternatives
	Contextualized Optimization

	Contributions

	Related work
	Background
	Massively Parallel Processing
	Query Optimization in Orca

	Representation of CTEs
	CTE Execution and Deadlocks
	Plan Enumeration
	Transformation Rules
	Avoiding Invalid Plans
	Optimizations Across Consumers
	Predicate Push-down
	Always Inlining Single-use CTEs
	Elimination of unused CTEs

	Contextualized Optimization
	Enforcing Physical Properties
	Producer Context
	Consumer Context

	Cost Estimation

	CTE-Based Optimizations
	CTE-Generating Transformations
	Common Subexpression Elimination

	Execution
	Experiments
	Setup
	Comparing Orca against the Planner
	Cost-based Inlining

	Summary
	References

