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Abstract—Merging two sorted arrays is a prominent 
building block for sorting and other functions. Its efficient 
parallelization requires balancing the load among compute 
cores, minimizing the extra work brought about by 
parallelization, and minimizing inter-thread synchronization 
requirements. Efficient use of memory is also important.  

We present a novel approach to partitioning the two 
sorted arrays into pairs of contiguous sequences of elements, 
one from each array, such that 1) each pair comprises any 
desired total number of elements, and 2) the elements of 
each pair form a contiguous sequence in the final merged 
sorted array. While the resulting partition and the 
computational complexity are similar to those of certain 
previous algorithms, our approach is different, extremely 
intuitive, and offers interesting insights. Based on this, we 
present a synchronization-free, cache-efficient merging (and 
sorting) algorithm. While we use CREW PRAM as the basis, 
our algorithm is easily adaptable to additional architectures. 
In fact, our approach is even relevant to sequential cache-
efficient sorting. The algorithms and performance results 
are presented, along with important cache-related insights. 

Keywords-component; Parallelism and concurrency; 
Parallel processors; Sorting and searching  

 

I.  INTRODUCTION  
Merging two sorted arrays, ܣ and ܤ, to form a sorted 

array ܵ  is an important utility, and is the core the of 
merge-sort algorithm [1]. The merging (e.g., in ascending 
order) is carried out by repeatedly comparing the smallest 
(lowest-index) as-yet unused elements of the two arrays, 
and appending the smaller of those to the result array.  

Given an (unsorted) N-element array, merge-sort 
comprises a sequence of log2N rounds: in the first round, 
N/2 disjoint pairs of adjacent elements are sorted, forming 
N/2 sorted arrays of size two. In the next round, each of 
the N/4 disjoint pairs of two-element arrays is merged to 
form a sorted 4-element array. In each subsequent round, 
array pairs are similarly merged, eventually yielding a 
single sorted array.  

Consider the parallelization of merge-sort using  

compute cores (or processors or threads, terms that will be 
used synonymously). Whenever |ܵ| ൌ ܰ ب  , the early 
rounds are trivially parallelizable, with each core assigned 
a subset of the array pairs. This, however, is no longer the 
case in later rounds, as only few arrays remain. Because 
the total amount of computation is the same for all 
rounds, effective parallelization thus requires the ability to 
parallelize the merging of two sorted arrays. 

An efficient Parallel Merge algorithm must have 
several salient features, some of which are required due to 
the very low compute to memory-access ratio: 1) equal 
amounts of work for all cores; 2) minimal inter-core 
communication (platform-dependent ramifications); 3) 
minimum excess work (for parallelizing, as well as 
replication of effort); and 4) efficient access to memory 
Coherence issues may arise due to concurrent access to 
the same address. Memory issues have platform-
dependent manifestations. 

A naïve approach to parallel merge would entail 
partitioning each of the two arrays into equal-length 
contiguous sub-arrays and assigning a pair of same-
numbered sub arrays to each core. Each core then merges 
its pair to form a single sorted array, and those are 
concatenated to yield the final result. Unfortunately, this is 
incorrect. (To see this, consider the case wherein all the 
elements of A are greater than all those of B.) So, correct 
partitioning is the key to success. 

In this paper, we present a parallel merge algorithm for 
Parallel Random Access Machines (PRAM), namely 
shared-memory architectures that permit concurrent 
(parallel) access to memory. PRAM systems are further 
categorized as CRCW, CREW, ERCW or EREW, where 
C, E, R and W denote concurrent, exclusive, read and 
write, respectively. Our algorithm assumes CREW, but 
can be adapted. Also, complexity calculations assume 
equal access time of any core to any address, but this is not 
a requirement. 

Our algorithm is load-balanced, lock-free, requires a 
negligible amount of excess work, and is extended to a 
memory-efficient version. Being lock-free, the algorithm 
does not rely on a set of atomic instructions of any 
particular platform. The efficiency of memory access is 
also not confined to one kind of architecture; in fact, the 
memory access is efficient for both private- and shared-
cache architectures.  

————————————————  ‡Oded Green is currently with the School of Computational 
Science and Engineering at Georgia Tech, GA 30332. This work was 
done while Oded was at the Technion.  
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We show a correspondence between the merge 
operation and the traversal of a path on a grid, from the 
upper left corner to the bottom right corner and going only 
rightward or downward. This greatly facilitates the 
comprehension of parallel merge algorithms. By using this 
path, dubbed Merge Path, one can divide the work equally 
among the cores.  

Our actual basic algorithm is similar to that of [2], but is 
more intuitive and conceptually simpler.  

The remainder of the paper is organized as follows. In 
Section II, we present the Merge Path, the Merge Matrix 
and the relationship between them. These are used in 
Section III to develop parallel merge and sort algorithms. 
Section IV introduces cache-related issues and presents a 
cache-efficient merge algorithm. Section V discusses 
related work, Section VI presents implementations and 
performance results, and Section VII offers concluding 
remarks. 

 

II. MERGE PATH 

A. Construction and basic properties 
 
Consider two sorted arrays, A and B, with |A| and |B| 

elements, respectively. Without loss of generality, assume 
that they are sorted in ascending order. As depicted in Fig. 
1 (ignore the contents of the matrix), create a column 
comprising A’s elements and a Row comprising B’s 
elements, and an |ܤ|ݔ|ܣ| matrix M, each of whose rows 
(columns) corresponds to an element of A (B). We refer to 
this matrix as the Merge Matrix. A formal definition and 
additional details pertaining to M will be provided later. 

Next, let us merge the two arrays: in each step, pick the 
smallest (regardless of array) yet-unused array element. 
Alongside this process, we construct the Merge Path. 
Referring again to Fig. 1, start in the upper left corner of 
the grid, i.e., at the upper left corner of M[1,1]. If 
A[1]>B[1], move one position to the right; else move one 
position downward. Continue similarly as follows: 
consider matrix position (i,j) whose upper left corner is the 
current end of the merge path: if  A[i]>B[j], move one 
position to the right; else move one position downward; 
having reached the right or bottom edge of the grid, 
proceed in the only possible direction. Repeat until 
reaching the bottom right corner.  

The following four lemmas follow directly from the 
construction of the Merge Path: 

Lemma 1: Traversing a Merge Path from beginning to 
end, picking in each rightward step the smallest yet-unused 
element of B, and in each downward step the smallest yet-
unused element of A, yields the desired merger.               □ 

Lemma 2: Any contiguous segment of a Merge Path is 
composed of a contiguous sequence of elements of A and 
of a contiguous sequence of elements of B.               □ 

Lemma 3: Non-overlapping segments of a merge path 
are composed of disjoint sets of elements, and vice versa.□ 

Lemma 4: Given two non-overlapping segments of a 
merge path, all array elements composing the later 
segment are greater than or equal to all those in the earlier 
segment.            □ 

Theorem 5: Consider a set of element-wise disjoint 
sub-array pairs (one, possibly empty sub-array of A and 
one, possibly empty sub-array of B), such that each such 
pair comprises all elements that, once sorted,  jointly form 
a contiguous segment of a merge path. It is claimed that 
these array pairs may be merged in parallel and the 
resulting merged sub-arrays may be concatenated 
according to their order in the merge path to form a single 
sorted array. 

Proof: By Lemma 1, the merger of each sub-array pair 
forms a sorted sub-array comprising all the elements in the 
pair. From Lemma 2 it follows that each such sub-array is 
composed of elements that form a contiguous sub-array of 
their respective original arrays, and by Lemma 3 the given 
array pairs correspond to non-overlapping segments of a 
merge path. Finally, by Lemma 4 and the construction 
order, all elements of a higher-indexed array pair are 
greater than or equal to any element of a lower-indexed 
one, so concatenating the merger results yields a sorted 
array.                   □ 

Corollary 6: Any partitioning of a given Merge Path of 
input arrays A and B into non-overlapping segments that 
jointly comprise the entire path, followed by the 
independent  merger of each corresponding sub-array pair 
and the concatenation of the results in the order of the 
corresponding Merge-Path segment produces a single 
sorted array comprising all the elements of A and B.       □ 
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Figure 1 - The cross diogonals  in a Merge Matrix are used to find
the points of change between the ones and the zeros, i.e., the 
intersections with the Merge Path. 
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Corollary 7: Partitioning a Merge Path into equisized 
segments and merging the corresponding array pairs in 
parallel balances the load among the merging processors.  

Proof: each step of a Merge Path requires the same 
operations (read, compare and write), regardless of the 
outcome.          □ 

Equipped with the above insights, we next set out to 
find an efficient method for partitioning the Merge Path 
into equal segments. The challenge, of course, is to do so 
without actually constructing the Merge Path, as its 
construction is equivalent to carrying out the entire 
merger. Once again using the geometric insights provided 
by Fig. 1, we begin by exposing an interesting relationship 
between positions on any Merge Path and cross diagonals 
(ones slanted upward and to the right) of the Merge Matrix 
M. Next, we define the contents of a Merge Matrix and 
expose an interesting property involving those. With these 
two building blocks at hand, we construct a simple method 
for parallel partitioning of any given Merge Path into 
equisized segments. This, in turn, enables parallel merger. 

B. The Merge Path and cross diagonals 
Lemma 8: Regardless of the route followed by a Merge 

Path, and thus regardless of the contents of A and B, the 
i'th point along a Merge Path lies on the i'th cross diagonal 
of the grid and thus of the Merge Matrix M. 

Proof: each step along the Merge Path is either to the 
right or downward. In either case, this results in moving to 
the next cross diagonal.          □ 

Theorem 9: Partitioning a given merge path into p 
equisized contiguous segments is equivalent to finding its 
intersection points with p-1 equispaced cross diagonals of 
M,  

Proof: follows directly from Lemma 8.        □ 

C. The Merge Matrix – content & properties 
Definition 1: A binary merge matrix ܯ  of ܣ, ܤ  is a 

Boolean two dimensional matrix of size |ܣ| ൈ |ܤ|  such 
that:  

,ሾ݅ܯ  ݆ሿ ൌ ൜1 ሾ݅ሿܣ  ሾ݆ሿ0ܤ ݁ݏ݅ݓݎ݄݁ݐ . 
 
Proposition 10: Let ܯ be a binary merge matrix. Then ሾ݅, ݆ሿ ൌ ,݇⇒1 ݉: ݅  ݇  |ܣ| ר 1  ݉  ݆, ,ሾ݇ܯ ݉ሿ ൌ 1 
Proof: If ܯሾ݅, ݆ሿ ൌ 1  then according to definition 1, ܣሾ݅ሿ  ݇ .ሾ݆ሿܤ  ݅ ֜ ሾ݇ሿܣ  ݆ .(is sorted ܣ) ሾ݅ሿܣ  ݉ ሾ݆ሿܤ֜  ሾ݉ሿܤ  ( ܤ  is sorted). ܣሾ݇ሿ  ሾ݅ሿܣ  ሾ݆ሿܤ   ሾ݉ሿܤ

and according to definition 1,  ܯሾ݇, ݉ሿ ൌ 1.        □ 
Proposition 11: Let ܯ  be a binary merge matrix. If ܯሾ݅, ݆ሿ ൌ 0 , then ݇, ݉: 1  ݇ ൏ ݅ ר ݆  ݉  |ܤ| ,ሾ݇ܯ , ݉ሿ is false. 
Proof: Similar to the proof of proposition 10.       □ 
Corollary 12. The entries along any cross diagonal of 

M form a monotonically non-increasing sequence.       □ 
 

D. The Merge Path and the Merge Matrix 
Having established interesting properties of both the 

Merge Path and the Merge Matrix, we now relate the two, 
and use P(M) to denote the Merge Path corresponding to 
Merge Matrix M. 

 
Proposition 13: Let (݅, ݆)  be the highest point on a 

given cross diagonal ܯ such that ܯሾ݅, ݆ െ 1ሿ ൌ 1 if exists, 
otherwise let (݅, ݆)  be the lowest point on that cross 
diagonal. Then, ܲ(ܯ) passes through (݅, ݆) . This is 
depicted in Figure 2. 

Proof: by induction on the points on the path. 
Base: The path starts at (1,1). The cross diagonal that 

passes through (1,1) consists only of this point; therefore, 
it is also the lowest point on the cross diagonal. 

Induction step: assume the correctness of the claim for 
all the points on the path up to the point (݅, ݆). Consider 
the next point on ܲ(ܯ). Since the only permissible moves 
are ܴ, ܦ , the next point can be either (݅, ݆  1)  or (݅ 1, ݆), respectively.  

Case 1: ܴ move. The next point is (݅, ݆  1). According 
to Definition 1, ܯሾ݅, ݆ሿ ൌ 1. According to the induction 
assumption, either ݅ ൌ 1 or ܯሾ݅ െ 1, ݆ሿ ൌ 0. If ݅ ൌ 1 then 
the new point is the highest point on the new cross 
diagonal such that ܯሾ݅, ݆ሿ ൌ 1. Otherwise, ܯሾ݅ െ 1, ݆ሿ ൌ0 . According to Proposition 11, ܯሾ݅ െ 1, ݆  1ሿ ൌ 0 . 
Therefore, (݅, ݆  1)  is the highest point on its cross 
diagonal at which ܯሾ݅, ݆ሿ ൌ 1. 

Case 2: the move was ܦ, then the next point is (݅ 1, ݆). According to Definition 1, ܯሾ݅, ݆ሿ ൌ 0. According to 
the induction assumption, either ݆ ൌ 1 or ܯሾ݅, ݆ െ 1ሿ ൌ1. 
If ݆ ൌ 1 then the new point is the lowest point in the new 
cross diagonal. Since ܯሾ݅, ݆ሿ ൌ 0  and according to 
Proposition 11, the entire cross diagonal is 0. Otherwise, 
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Figure 2 - Merge Matrix and Merge Path. 
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,ሾ݅ܯ ݆ െ 1ሿ ൌ 1 . According to Proposition 10, ܯሾ݅ 1, ݆ െ 1ሿ ൌ 1. Therefore, (݅, ݆  1) is the highest point on 
its cross diagonal at which ܯሾ݅  1, ݆ െ 1ሿ ൌ 1.              □ 

Theorem 14: Given sorted input arrays A and B, they 
can be partitioned into p pairs of sub-arrays corresponding 
to p equisized segments of the corresponding merge path. 
The p-1 required partition points can be computed 
independently of one another (optionally in parallel), in at 
most log2(min(|A|,|B|)) steps per partition point, with 
neither the matrix nor the path having actually been 
constructed. 

Proof: According to Theorem 9, the required partition 
points are the intersection points of the Merge Path with 
p-1 equispaced (and thus content-independent) cross 
diagonals of M. According to Corollary 12 and 
Proposition 13, each such intersection point is the (only) 
transition point between ‘1’s and ‘0’s along the 
corresponding cross diagonal. (If the cross diagonal has 
only ‘0’s or only ‘1’s, this is the uppermost and the lower 
most point on it, respectively.) Finding this partition point 
can be done by way of a binary search, whereby in each 
step a single element of A is compared with a single 
element of B. Since the length of a cross diagonal is at 
most min(|A|,|B|), at most log2(min(|A|,|B|)) steps are 
required. Finally it is obvious from the above description 
that neither the Merge Path nor the Merge Matrix needs to 
be constructed and that the p-1 intersection point can be 
computed independently and thus in parallel.      □ 

III. PARALLEL MERGE AND SORT 
Given two input arrays A and B parallel merger is 

carried out by p processors as follows: 
 
 
Algorithm 1 – Parallel Merge (A,B,p) 
/* i  = processor number in the range 1..p  */ 
In parallel do: 
1.  DiagonalNum=(i-1)⋅(|A|+|B|)/p+1 
2. Compute intersection of the merge path with the 

          relevant diagonal //Binary search 
3. Execute (|A|+|B|)/p steps of sequential merge,  

          writing the results to output array positions starting  
          at (i-1)⋅ (|A|+|B|)/p+1 

Barrier; 
 

Remark. Note that no communication is required 
among the cores: they write to disjoint sets of addresses 
and, with the exception of reading in the process of 
finding the intersections between the Merge Path and the 
diagonals, read from disjoint addresses. Whenever 
|A|+|B|>>p, which is the common case, this means that 
concurrent reads from the same address are rare.  

Summarizing the above, the time complexity of the 
algorithm for |A|+|B|=N and p processors is given by 

/ܰ)ܱ  log(ܰ)), and the work complexity is given by ܱ(ܰ   · log ܰ ). For  ൏  this algorithm is  ,(ܰ)݈݃/ܰ
considered to be optimal. In the next section, we will 
further address the issue of efficient memory (cache) 
utilization.  

Finally, merge-sort can be used, employing Parallel 
Merge to carry out each of log2N rounds. The rounds are 
carried out one after the other. 

The time complexity of this Parallel Merge-Sort is:  ܱ(ܰ/ · (/ܰ)݈݃  /ܰ · ()݈݃  log( ( · log(ܰ))ൌ /ܰ)ܱ · log(ܰ) log( ( · log(ܰ))  
In the first expression, the first component corresponds 

to the sequential sort carried out concurrently by each 
core on N/p input elements, and the two remaining ones 
correspond to the subsequent rounds of parallel merges. 

 

IV. CACHE EFFICIENT MERGE PATH 

A. Overview 
The rate at which merging and sorting can be performed 

even in memory (as opposed to disk), is often dictated by 
the performance of the memory system rather than by 
processing power. This is due to the fact that these 
operations require a very small amount of computing per 
unit of data, and the fact that only a small amount of 
memory, the cache, is reasonably fast. (The next level in 
the memory hierarchy typically features a ten-fold higher 
access latency as well as coarser memory-management 
granularity.) Parallel implementation on a shared memory 
system further aggravates the situation for two reasons: 1) 
the increased compute power is seldom matched by a 
commensurate increase in memory bandwidth, at least 
beyond the 1st-level or 2nd-level cache, and 2) cache 
coherence mechanisms can present an extremely high 
overhead. In this section, we address the memory issues. 

 Assuming large arrays (relative to cache size) and 
merge-sort, it is clear that data will have to be brought in 
multiple times (log2N times, one for each level of the 
merge tree, for non cache oblivious algorithms), so we 
again focus on merging a pair of sorted arrays. 

In the remainder of this section, we examine the cache 
efficiency issue in conjunction with our algorithm, 
offering important insights, exploring trade-offs and 
presenting our approaches.  

B. Cache-Efficient Parallel Merge 
In this sub-section we present an extension to our 

algorithm for parallel merging that is also cache-efficient. 
It is stated in the context of a PRAM-like system with a 
shared-memory hierarchy (including a shared cache).  

Collisions in the cache between any two items are 
avoided when they are guaranteed to be able to reside in 
different cache locations, as well as when they are 
guaranteed to be in the cache at different times. In a Merge 
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operation, a cache-resident item is usually required for a 
very short time, and is used only once. However, many 
items are brought into the cache. Also, the relative 
addresses of “active” items are data dependent. This is true 
among elements of different arrays (A, B, S) and, 
surprisingly, also among same-array elements accessed by 
different cores. This is because the segment-partition 
points in any given array are data dependent, as is the rate 
at which its elements are consumed. 

Given our efficient parallelization, we are able to 
efficiently carry out parallel merger of even cache-size 
arrays. In view of this, we explore approaches that ensure 
that all elements that may be active at any given time can 
co-reside in cache.  

Let C denote cache size (in elements). Our general 
approach is to break the overall merge path into cache-size 
(actually a fraction of that) segments, merging those 
segments one after the other, with the merging within each 
segment being parallelized. We refer to this as Segmented 
Parallel Merge, SPM. See Fig. 3. 

Lemma 15. A merge-path segment of length L 
comprises at most L consecutive elements of A and at most 
L consecutive elements of B.         □ 

Theorem 16. Given L consecutive elements of A and L 
consecutive elements of B, starting with the first element 
of each of them in the segment being constructed, one can 
compute in parallel the p segment starting points so as to 
enable p consecutive segments of length L/p to be 
constructed in parallel. 

Proof:  Consider the p-1 cross diagonals of the merge 
matrix comprising the aforementioned elements of the two 
arrays, such that the first one is L/p away from the upper 
left corner and the others are spaced with the same stride. 
The farthest cross diagonal will require the L’th provided 
element from each of the two arrays, and no other point 
along any of the diagonals will require “later” elements. 
Also, since the farthest diagonal is at distance L from the 
upper left corner (Manhattan distance), the constructed 
segment will be of length L.          □ 

Remark. Unlike the case of a full merger of two sorted 
arrays of size L, not all elements will be used. While L 
elements will be consumed in the construction of the 
segment, the mix of elements from A and from B is data 
dependent.  

In order to avoid the extra complexity of using the same 
space for input elements and for merged data, let L=C/3, 
where C is the cache size. 

 
Algorithm 2 – Segmented Parallel Merge 
Repeat the following (|A|+|B|)/L times /* L=|C|/3 */ 
1. If first iteration, fetch the first L items of A and B; 

Else fetch the next elements of A and B in numbers equal 
to the respective numbers of consumed elements in the 
previous iteration, overwriting the used elements of the 
respective arrays (cyclic buffer). 

2. Parallel do: 
a. Find the core’s segment starting point 

/* binary search on cross diagonal */ 
b. Merge (sequential) L/p steps, commencing at the 

start point. 
3. Write the results out to memory. 
 
Remark. Sufficient total cache size does not guarantee 

collision freedom (conflict misses can occur). However, 
we have shown that 3-way associativity suffices to 
guarantee collision freedom. This will be reported 
elsewhere. 

Computational complexity Assuming a total merged-
array segment size of L=C/3 per sequential iteration of 
the algorithm, there are 3N/C such iterations. In each of 
those, only 2L=2C/3 elements of the input arrays (L of 
each) need to be considered in order to determine the end 
of the segment and, accordingly, the numbers of elements 
that should be copied into the cache. Because the sub-
segments of this segment are to be created in parallel, 
each of the p cores must compute its starting points (in A 
and in B) independently. (We must consider 2L elements 
because the end point of the segment, determined by the 
numbers of elements contributed to it by A and B, is 
unknown.) 

The computational complexity of the cache-efficient 
merge of N elements given a cache of size C and p cores 
is: ܱ(ܰ ⁄ܥ ·  · ܥ݈݃  ܰ). 

Normally, p<<C<<N, in which case this becomes 
O(N). In other words, the parallelization overhead is 
negligible. 

The time complexity is  ܱ൫ܰ ⁄ܥ · ܥ݈݃)   .൯(/ܥ
Neglecting logC (the parallelization overhead) relative 

to C/p (the merge itself), this becomes O(N/p), which is 
optimal. Finally, looking at typical numbers and at the 

Figure 3 - Merge Matrix for the cache efficient algorithm. The 
yellow circles depict the initial and final points of the path for a 
specific block in the cache algorithm. 

160916091615



actual algorithms, it is evident that the various constant 
coefficients are very small, so this is truly an extremely 
efficient parallel algorithm and the overhead of 
partitioning into smaller segments is insignificant. 

C. Cache-Efficient Parallel Sort 
Initially, partition the unsorted input array into equisized 

sub-arrays whose size is some fraction of the cache size C. 
Next, iterate over these sub-arrays, sorting them one by 

one using the parallel sort algorithm on all p processors as 
explained in an earlier section. 

Finally, proceed with merge rounds; in each of those, 
the cache-efficient parallel merge algorithm is applied to 
every pair of sorted sub-arrays. This is repeated until a 
single array is produced.   

We now derive the time complexity of the cache 
efficient parallel sort algorithm. We divide the complexity 
into two stages: 1) the complexity of the parallel sorting of 
the sub-arrays of at most ܥ  elements, and 2) the 
complexity of the cache-efficient merge stages. 

In the first stage, depicted in Fig. 4, the parallel sort 
algorithm is invoked on the cache sized sub-arrays. The 
number of those sub-arrays is ܱ(ܰ/ܥ). Hence, the time 
complexity of this stage is ܱ൫ܰ/ܥ · /ܥ) · log (ܥ) log·log(ܥ). 

The second stage may be viewed as a binary tree of 
merge operations. The tree leaves are the sorted cache 
sized sub-arrays. Each two merged sub-arrays are 
connected to the merged sub-array, and so on. The 
complexity of each level in the tree is ܱ(ܰ/  ܥ/ܰ ·log()). The height of the tree is ܱ(log  Hence, this .(ܥ/ܰ
stage’s complexity is ܱ൫log(ܰ/ܥ) · /ܰ)  ܥ/ܰ ·log()൯. 

The total complexity of the cache-efficient parallel sort 
algorithm is the summation of the complexities of the two 
stages, which yield: /ܰ)ܱ · log (ܰ)  ܥ/ܰ · log() ·log(ܥ)). 

One may observe again that the new algorithm has a 
slightly higher complexity, ܰ/ܥ · log(ܥ) · log( ( log N · log() , due to the numerous partitioning stages, 
however for system that a cache miss is expensive, this 
increase in complexity may be justified. 

 

V. RELATED WORK  
In this section, we review previous works on the 

subjects of parallel sorting and parallel merging, and relate 
our work to them.  

Prior works fall into two categories: 1) algorithms that 
use a problem-size dependent number of processors, and 
2) algorithms that use a fixed number of processors.  

Several algorithms have been suggested for parallel 
sorting. While parallel merge can be a building block for 
parallel sorting, some of the parallel sorting algorithms do 
not require merging. An example is Bitonic Sort [4] in 
which ܱ(ܰ · (log ܰ)ଶ)  comparators are used ( ܰ/2 
comparators are used in each stage) to sort ܰ elements in ܱ((log ܰ)ଶ)  cycles. Bitonic sort falls into the 
aforementioned first category. Our work is in the latter. 

We consider two complexity measures: 1) time 
complexity (the time required to complete the task), and 2) 
overall work complexity, i.e, the total number of basic 
operations carried out. In a load balanced algorithm like 
ours, the work complexity is the product of time 
complexity and the number of cores. Even with perfect 
load balancing, however, one must be careful not to 
increase the total amount of work (overhead, redundancy, 
etc.), as this would increase the latency. Similarly, one 
must be careful not to introduce stalls (e.g., for inter-
processor synchronization), as these would also increase 
the elapsed time even if the “net” work complexity is  not 
increased. 

Merging two sorted arrays requires Ω(ܰ)  operations. 
Some of the parallel merging algorithms, including ours, 
have a work complexity of ܱ(ܰ   · log ܰ) . For   ܰ/ log ܰ, the latter component is negligible and the 
complexity is ܱ(ܰ), as observed in [5]. Also, there are no 
synchronization stalls in our algorithm. 

In [6], as in our work, a ܯܣܴܲ ܹܧܴܥmemory model is 
used. There, a mechanism for partitioning the workload is 
presented. This mechanism is less efficient than ours and 
does not feature perfect load balancing; although each 
processor is responsible for merging ܱ(ܰ/) elements on 
average, a processor may be assigned as many as 2ܰ/ 
elements. This can introduce a stall to some of the cores 
since all the cores have to wait for the heaviest job. For 
truly efficient algorithms, namely ones in which the 
constants are also tight, as is the case with our algorithm, 
such a load imbalance can cause a 2X increase in latency! 
The time complexity of this algorithm is ܱ(1  log  log ܰ  ܰ For .(/ܰ ب  which is the case of interest, it ,
is ܱ(ܰ/  log ܰ) .  

In [5], Akl and Santoro present a merging algorithm that 
is memory-conflict free using the ܹܧܴܧ model. It begins 
by finding one element in each of the given sorted arrays 
such that one of those two elements is the median (mid-
point) in the output array. The elements found (ܣሾ݅ሿ,  (ሾ݆ሿܤ
are such that if ܣሾ݅ሿ is the aforementioned median then ܤሾ݆ሿ is the largest element of B that is smaller than ܣሾ݅ሿ or 
the smallest element of B that is greater than ܣሾ݅ሿ. Once 
this median point has been found, it is possible to repeat 
this on both sets of the sub-arrays. Their way of finding 
the median is similar to the process that we use. The 

Figure 4 - Cache-efficient parallel sort first stage. Each cache 
sized block is sorted followed by parallel merging 
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complexity of finding the median is ܱ(log(ܰ)). As these 
arrays are non-overlapping, there will not be any more 
conflict on accessed data. This stage is repeated until there 
are  partitions. This requires ܱ(log()) iterations. Once 
all the partitions have been found, it is possible to merge 
each pair of sub-arrays sequentially, concurrently for all 
pairs, and to simply concatenate the results to form the 
merged array. The overall complexity of this algorithm is ܱ(ܰ/  log ܰ log  The somewhat higher complexity .(
is the price for the total elimination of memory conflicts. 

In [2], an algorithm that is conceptually similar to that 
of [5] is presented. They initially present an algorithm that 
finds one element in each of two given sorted arrays such 
that one of these elements is ݇ െ  smallest element in ݄ݐ
the output (merged) array. In [5] they start off by finding ݇ ൌ ܰ/2. In [2], the elements sought after are those that 
are equispaced (ܰ/ positions apart) in the output array. 
Finding each of these elements has the complexity of ܱ(log(ܰ)). This algorithm is aimed for ܹܧܴܥ systems. 
The complexity of this algorithm is  ܱ(ܰ/  log ܰ).  

Our algorithm is very similar to the one presented in 
[2]. However, our approach is different in that we show a 
correspondence between finding the desired elements and 
finding special points on a grid. Finally, using this 
correspondence along with additional insights and ideas, 
we also provide cache efficient algorithms for parallel 
merging and sorting that did not appear in any of the 
related works.  

The work done in [7] is an extension of [2], in which 
the algorithm is adapted to an ܹܧܴܧ  machine with a 
slightly larger complexity of ܱ(ܰ/ܲ  log ܰ  log ܲ).  

Merging and sorting using GPUs is a topic of great 
interest as well, and raises additional challenges that need 
to be addressed. In [8] a radix sort for the GPU is 
presented. In addition to the radix sort, the authors 
suggest a merge-sort algorithm for the GPU, in which the 
a pair-wise merge tree is required in the final stages. In 
[9], a hybrid sorting algorithm is presented for the GPU. 
Initially the data is sorted using bucket sort and this is 
followed by a merge sort. The bucket approach suffers 
from workload imbalance and requires atomic instructions 
(i.e., synchronization).  

Another focus of sorting algorithms is finding a way to 
implement them in a cache oblivious [10] way. As the 
algorithm in this paper focused on the merging stage and 
not the entire sort and presented a cache aware merging 
algorithm, we will not elaborate on cache oblivious 
algorithms. The interested reader is referred to [11-13]. 

VI. IMPLEMENTATION AND MEASUREMENT   RESULTS 
It is quite evident from the previous sections that we 

have succeeded in truly parallelizing the entire merging 
and sorting process, with negligible overhead for any 
numbers of interest. Nonetheless, we wanted to obtain 
actual performance results on real systems in order to 
ensure that we did not miss important issues.  

We implemented our basic Parallel Merge algorithm on 
a dual 6-core processor Intel x86 system. We begin with a 
brief overview of the system, including system 
specifications, and then present some of the practical 
challenges of implementing the algorithms. Following 
this, we present the speedup of  the new algorithm. The 
runtime of Merge-Path with a single thread is used as the 
baseline.  

We used a 2-processor, 2X6 core Intel X86 system with 
hyperthreading, It has L1 and L2 private caches for each 
core. The cores share an L3 cache. Because the cores have 
private caches, a cache coherency mechanism is required 
to ensure correctness.  Furthermore, as we had multiple 
processors, each with its own L3 cache, the cache 
coherence mechanism had to communicate across 
processors; this is even more expensive from a latency 
point of view. 

Specifically, we used a Dell-T610 server. The server 
consists of two X5670 INTEL processors, each of which 
having six cores with a private 32KB L1 data cache and a 
private 256KB L2 cache. Each processor has a 12MB L3 
cache. The processors are connected via 6.4GT/s QPI. 
The server has 12GB DDR3 memory. For testing the 
algorithm, the following capabilities have been disabled: 
1) INTEL hyper threading technology. 2) INTEL turbo 
technology. The reasons are fairly obvious. 

Our implementation of Merge Path uses OpenMP. We 
tested the algorithm using multiple sizes of integer arrays 
and different numbers of threads. In view of the 
sophisticated cache management and prefetching of this 
system, we left this issue to the hardware and 
implemented the basic version of our algorithm rather 
than the segmented one. In Figure 5, the data set sizes 
refer to the size of each of the input arrays ܣ and ܤ. The 
output array ܵ is twice this size, meaning that the total 
memory required for the 3 arrays is 4· |ܣ| · |݁ݕݐ| where ,|݁ݕݐ|  denotes the number of bytes need to stored the 
data type (for 32 bit integers this will be 4). 

In Figure 5, we present the speedup of executing Merge 
Path using various size input arrays. One mega element 

0

2

4

6

8

10

12

14

1 2 4 6 8 10 12

Sp
ee

du
p

Number of Threads (Cores)

1M 4M 16M 64M 256M

Figure 5 - Speedup of the regular Merge Path algorithm. Each of 
the colored bars represents a different sized input array. The 
sizes of the arrays are in Mega elements. 
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refers to 2ଶ elements.  As can be seen, the speedups are 
near linear, with a slight reduction in performance for the 
bigger input arrays: approximately 11.7ܺ for 12 threads. 

Remark. We note that the single-thread execution time 
of our algorithm was some 6%  longer than a truly 
sequential merge algorithm. This is due in part to a few 
extra instructions, and possibly also to overhead of 
OpenMP. 

Both the basic and the segmented algorithm were also 
implemented on a semi-stable prototype of Hypercore 
[16], a many-core architecture with shared L1 cache that 
is effectively a CREW PRAM architecture and supports 
fine-grain task-level parallelism. These results confirmed 
our expectations, but we were unable to obtain end-to-end 
results due to an incomplete implementation of the cache 
system in that prototype. 

 
  

VII. CONCLUSIONS 
In this paper, we explored the issue of parallel sorting 

through the cornerstone of many sorting algorithms – the 
merging of two sorted arrays. 

One important contribution of this paper is a very 
intuitive, simple and efficient approach to correctly  
partitioning each of two input sorted arrays into segments 
that, once pairs of segments, one from each, are merged, 
the concatenation of the merged pairs yields a single sorted 
array. This partitioning is also done in parallel. 

Another important contribution is an insightful 
consideration of cache related issues. This are extremely 
important because, especially when parallelized, sorting 
and merging are carried out at a speed that is very often 
determined by the memory subsystem rather than by the 
compute power.   

We implemented the algorithms on a multi-processor, 
multi-core X86 platform that represents mainstream 
computers. The results show that even though the 
algorithm was initially aimed at PRAM architectures the 
algorithm gives optimal speedups for the X86. This 
notwithstanding, sorting can be carried out in a much more 
cost- and power-efficient manner on many-core systems 
with lightweight compute cores. To this end, the efficient 
segmented version of our algorithm is very promising, as it 
can operate efficiently with simple caches. 
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