
Merge Path - Parallel Merging Made Simple

Saher Odeh, Oded Green ‡, Zahi Mwassi, Oz Shmueli, Yitzhak Birk
Electrical Engineering Department

Technion
Haifa, Israel

{sahero, ogreen, zahim}@tx.technion.ac.il, {shmueli, birk}@ee.technion.ac.il

Abstract—Merging two sorted arrays is a prominent
building block for sorting and other functions. Its efficient
parallelization requires balancing the load among compute
cores, minimizing the extra work brought about by
parallelization, and minimizing inter-thread synchronization
requirements. Efficient use of memory is also important.

We present a novel approach to partitioning the two
sorted arrays into pairs of contiguous sequences of elements,
one from each array, such that 1) each pair comprises any
desired total number of elements, and 2) the elements of
each pair form a contiguous sequence in the final merged
sorted array. While the resulting partition and the
computational complexity are similar to those of certain
previous algorithms, our approach is different, extremely
intuitive, and offers interesting insights. Based on this, we
present a synchronization-free, cache-efficient merging (and
sorting) algorithm. While we use CREW PRAM as the basis,
our algorithm is easily adaptable to additional architectures.
In fact, our approach is even relevant to sequential cache-
efficient sorting. The algorithms and performance results
are presented, along with important cache-related insights.

Keywords-component; Parallelism and concurrency;
Parallel processors; Sorting and searching

I. INTRODUCTION
Merging two sorted arrays, ܣ and ܤ, to form a sorted

array ܵ is an important utility, and is the core the of
merge-sort algorithm [1]. The merging (e.g., in ascending
order) is carried out by repeatedly comparing the smallest
(lowest-index) as-yet unused elements of the two arrays,
and appending the smaller of those to the result array.

Given an (unsorted) N-element array, merge-sort
comprises a sequence of log2N rounds: in the first round,
N/2 disjoint pairs of adjacent elements are sorted, forming
N/2 sorted arrays of size two. In the next round, each of
the N/4 disjoint pairs of two-element arrays is merged to
form a sorted 4-element array. In each subsequent round,
array pairs are similarly merged, eventually yielding a
single sorted array.

Consider the parallelization of merge-sort using

compute cores (or processors or threads, terms that will be
used synonymously). Whenever |ܵ| ൌ ܰ ب , the early
rounds are trivially parallelizable, with each core assigned
a subset of the array pairs. This, however, is no longer the
case in later rounds, as only few arrays remain. Because
the total amount of computation is the same for all
rounds, effective parallelization thus requires the ability to
parallelize the merging of two sorted arrays.

An efficient Parallel Merge algorithm must have
several salient features, some of which are required due to
the very low compute to memory-access ratio: 1) equal
amounts of work for all cores; 2) minimal inter-core
communication (platform-dependent ramifications); 3)
minimum excess work (for parallelizing, as well as
replication of effort); and 4) efficient access to memory
Coherence issues may arise due to concurrent access to
the same address. Memory issues have platform-
dependent manifestations.

A naïve approach to parallel merge would entail
partitioning each of the two arrays into equal-length
contiguous sub-arrays and assigning a pair of same-
numbered sub arrays to each core. Each core then merges
its pair to form a single sorted array, and those are
concatenated to yield the final result. Unfortunately, this is
incorrect. (To see this, consider the case wherein all the
elements of A are greater than all those of B.) So, correct
partitioning is the key to success.

In this paper, we present a parallel merge algorithm for
Parallel Random Access Machines (PRAM), namely
shared-memory architectures that permit concurrent
(parallel) access to memory. PRAM systems are further
categorized as CRCW, CREW, ERCW or EREW, where
C, E, R and W denote concurrent, exclusive, read and
write, respectively. Our algorithm assumes CREW, but
can be adapted. Also, complexity calculations assume
equal access time of any core to any address, but this is not
a requirement.

Our algorithm is load-balanced, lock-free, requires a
negligible amount of excess work, and is extended to a
memory-efficient version. Being lock-free, the algorithm
does not rely on a set of atomic instructions of any
particular platform. The efficiency of memory access is
also not confined to one kind of architecture; in fact, the
memory access is efficient for both private- and shared-
cache architectures.

———————————————— ‡Oded Green is currently with the School of Computational
Science and Engineering at Georgia Tech, GA 30332. This work was
done while Oded was at the Technion.

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.202

1605

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.202

1605

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.202

1611

We show a correspondence between the merge
operation and the traversal of a path on a grid, from the
upper left corner to the bottom right corner and going only
rightward or downward. This greatly facilitates the
comprehension of parallel merge algorithms. By using this
path, dubbed Merge Path, one can divide the work equally
among the cores.

Our actual basic algorithm is similar to that of [2], but is
more intuitive and conceptually simpler.

The remainder of the paper is organized as follows. In
Section II, we present the Merge Path, the Merge Matrix
and the relationship between them. These are used in
Section III to develop parallel merge and sort algorithms.
Section IV introduces cache-related issues and presents a
cache-efficient merge algorithm. Section V discusses
related work, Section VI presents implementations and
performance results, and Section VII offers concluding
remarks.

II. MERGE PATH

A. Construction and basic properties

Consider two sorted arrays, A and B, with |A| and |B|

elements, respectively. Without loss of generality, assume
that they are sorted in ascending order. As depicted in Fig.
1 (ignore the contents of the matrix), create a column
comprising A’s elements and a Row comprising B’s
elements, and an |ܤ|ݔ|ܣ| matrix M, each of whose rows
(columns) corresponds to an element of A (B). We refer to
this matrix as the Merge Matrix. A formal definition and
additional details pertaining to M will be provided later.

Next, let us merge the two arrays: in each step, pick the
smallest (regardless of array) yet-unused array element.
Alongside this process, we construct the Merge Path.
Referring again to Fig. 1, start in the upper left corner of
the grid, i.e., at the upper left corner of M[1,1]. If
A[1]>B[1], move one position to the right; else move one
position downward. Continue similarly as follows:
consider matrix position (i,j) whose upper left corner is the
current end of the merge path: if A[i]>B[j], move one
position to the right; else move one position downward;
having reached the right or bottom edge of the grid,
proceed in the only possible direction. Repeat until
reaching the bottom right corner.

The following four lemmas follow directly from the
construction of the Merge Path:

Lemma 1: Traversing a Merge Path from beginning to
end, picking in each rightward step the smallest yet-unused
element of B, and in each downward step the smallest yet-
unused element of A, yields the desired merger. □

Lemma 2: Any contiguous segment of a Merge Path is
composed of a contiguous sequence of elements of A and
of a contiguous sequence of elements of B. □

Lemma 3: Non-overlapping segments of a merge path
are composed of disjoint sets of elements, and vice versa.□

Lemma 4: Given two non-overlapping segments of a
merge path, all array elements composing the later
segment are greater than or equal to all those in the earlier
segment. □

Theorem 5: Consider a set of element-wise disjoint
sub-array pairs (one, possibly empty sub-array of A and
one, possibly empty sub-array of B), such that each such
pair comprises all elements that, once sorted, jointly form
a contiguous segment of a merge path. It is claimed that
these array pairs may be merged in parallel and the
resulting merged sub-arrays may be concatenated
according to their order in the merge path to form a single
sorted array.

Proof: By Lemma 1, the merger of each sub-array pair
forms a sorted sub-array comprising all the elements in the
pair. From Lemma 2 it follows that each such sub-array is
composed of elements that form a contiguous sub-array of
their respective original arrays, and by Lemma 3 the given
array pairs correspond to non-overlapping segments of a
merge path. Finally, by Lemma 4 and the construction
order, all elements of a higher-indexed array pair are
greater than or equal to any element of a lower-indexed
one, so concatenating the merger results yields a sorted
array. □

Corollary 6: Any partitioning of a given Merge Path of
input arrays A and B into non-overlapping segments that
jointly comprise the entire path, followed by the
independent merger of each corresponding sub-array pair
and the concatenation of the results in the order of the
corresponding Merge-Path segment produces a single
sorted array comprising all the elements of A and B. □

82696445221253

0017

0129

0135

1173

1186

1190

1195

1199

Figure 1 - The cross diogonals in a Merge Matrix are used to find
the points of change between the ones and the zeros, i.e., the
intersections with the Merge Path.

160616061612

Corollary 7: Partitioning a Merge Path into equisized
segments and merging the corresponding array pairs in
parallel balances the load among the merging processors.

Proof: each step of a Merge Path requires the same
operations (read, compare and write), regardless of the
outcome. □

Equipped with the above insights, we next set out to
find an efficient method for partitioning the Merge Path
into equal segments. The challenge, of course, is to do so
without actually constructing the Merge Path, as its
construction is equivalent to carrying out the entire
merger. Once again using the geometric insights provided
by Fig. 1, we begin by exposing an interesting relationship
between positions on any Merge Path and cross diagonals
(ones slanted upward and to the right) of the Merge Matrix
M. Next, we define the contents of a Merge Matrix and
expose an interesting property involving those. With these
two building blocks at hand, we construct a simple method
for parallel partitioning of any given Merge Path into
equisized segments. This, in turn, enables parallel merger.

B. The Merge Path and cross diagonals
Lemma 8: Regardless of the route followed by a Merge

Path, and thus regardless of the contents of A and B, the
i'th point along a Merge Path lies on the i'th cross diagonal
of the grid and thus of the Merge Matrix M.

Proof: each step along the Merge Path is either to the
right or downward. In either case, this results in moving to
the next cross diagonal. □

Theorem 9: Partitioning a given merge path into p
equisized contiguous segments is equivalent to finding its
intersection points with p-1 equispaced cross diagonals of
M,

Proof: follows directly from Lemma 8. □

C. The Merge Matrix – content & properties
Definition 1: A binary merge matrix ܯ of ܣ, ܤ is a

Boolean two dimensional matrix of size |ܣ| ൈ |ܤ| such
that:

,ሾ݅ܯ ݆ሿ ൌ ൜1 ሾ݅ሿܣ ሾ݆ሿ0ܤ ݁ݏ݅ݓݎ݄݁ݐ .

Proposition 10: Let ܯ be a binary merge matrix. Then ሾ݅, ݆ሿ ൌ ,݇⇒1 ݉: ݅ ݇ |ܣ| ר 1 ݉ ݆, ,ሾ݇ܯ ݉ሿ ൌ 1
Proof: If ܯሾ݅, ݆ሿ ൌ 1 then according to definition 1, ܣሾ݅ሿ ݇ .ሾ݆ሿܤ ݅ ֜ ሾ݇ሿܣ ݆ .(is sorted ܣ) ሾ݅ሿܣ ݉ ሾ݆ሿܤ֜ ሾ݉ሿܤ (ܤ is sorted). ܣሾ݇ሿ ሾ݅ሿܣ ሾ݆ሿܤ ሾ݉ሿܤ

and according to definition 1, ܯሾ݇, ݉ሿ ൌ 1. □
Proposition 11: Let ܯ be a binary merge matrix. If ܯሾ݅, ݆ሿ ൌ 0 , then ݇, ݉: 1 ݇ ൏ ݅ ר ݆ ݉ |ܤ| ,ሾ݇ܯ , ݉ሿ is false.
Proof: Similar to the proof of proposition 10. □
Corollary 12. The entries along any cross diagonal of

M form a monotonically non-increasing sequence. □

D. The Merge Path and the Merge Matrix
Having established interesting properties of both the

Merge Path and the Merge Matrix, we now relate the two,
and use P(M) to denote the Merge Path corresponding to
Merge Matrix M.

Proposition 13: Let (݅, ݆) be the highest point on a

given cross diagonal ܯ such that ܯሾ݅, ݆ െ 1ሿ ൌ 1 if exists,
otherwise let (݅, ݆) be the lowest point on that cross
diagonal. Then, ܲ(ܯ) passes through (݅, ݆) . This is
depicted in Figure 2.

Proof: by induction on the points on the path.
Base: The path starts at (1,1). The cross diagonal that

passes through (1,1) consists only of this point; therefore,
it is also the lowest point on the cross diagonal.

Induction step: assume the correctness of the claim for
all the points on the path up to the point (݅, ݆). Consider
the next point on ܲ(ܯ). Since the only permissible moves
are ܴ, ܦ , the next point can be either (݅, ݆ 1) or (݅ 1, ݆), respectively.

Case 1: ܴ move. The next point is (݅, ݆ 1). According
to Definition 1, ܯሾ݅, ݆ሿ ൌ 1. According to the induction
assumption, either ݅ ൌ 1 or ܯሾ݅ െ 1, ݆ሿ ൌ 0. If ݅ ൌ 1 then
the new point is the highest point on the new cross
diagonal such that ܯሾ݅, ݆ሿ ൌ 1. Otherwise, ܯሾ݅ െ 1, ݆ሿ ൌ0 . According to Proposition 11, ܯሾ݅ െ 1, ݆ 1ሿ ൌ 0 .
Therefore, (݅, ݆ 1) is the highest point on its cross
diagonal at which ܯሾ݅, ݆ሿ ൌ 1.

Case 2: the move was ܦ, then the next point is (݅ 1, ݆). According to Definition 1, ܯሾ݅, ݆ሿ ൌ 0. According to
the induction assumption, either ݆ ൌ 1 or ܯሾ݅, ݆ െ 1ሿ ൌ1.
If ݆ ൌ 1 then the new point is the lowest point in the new
cross diagonal. Since ܯሾ݅, ݆ሿ ൌ 0 and according to
Proposition 11, the entire cross diagonal is 0. Otherwise,

82696445221253

0000011117

0000111129

0000111135

0111111173

1111111186

1111111190

1111111195

1111111199

Figure 2 - Merge Matrix and Merge Path.

160716071613

,ሾ݅ܯ ݆ െ 1ሿ ൌ 1 . According to Proposition 10, ܯሾ݅ 1, ݆ െ 1ሿ ൌ 1. Therefore, (݅, ݆ 1) is the highest point on
its cross diagonal at which ܯሾ݅ 1, ݆ െ 1ሿ ൌ 1. □

Theorem 14: Given sorted input arrays A and B, they
can be partitioned into p pairs of sub-arrays corresponding
to p equisized segments of the corresponding merge path.
The p-1 required partition points can be computed
independently of one another (optionally in parallel), in at
most log2(min(|A|,|B|)) steps per partition point, with
neither the matrix nor the path having actually been
constructed.

Proof: According to Theorem 9, the required partition
points are the intersection points of the Merge Path with
p-1 equispaced (and thus content-independent) cross
diagonals of M. According to Corollary 12 and
Proposition 13, each such intersection point is the (only)
transition point between ‘1’s and ‘0’s along the
corresponding cross diagonal. (If the cross diagonal has
only ‘0’s or only ‘1’s, this is the uppermost and the lower
most point on it, respectively.) Finding this partition point
can be done by way of a binary search, whereby in each
step a single element of A is compared with a single
element of B. Since the length of a cross diagonal is at
most min(|A|,|B|), at most log2(min(|A|,|B|)) steps are
required. Finally it is obvious from the above description
that neither the Merge Path nor the Merge Matrix needs to
be constructed and that the p-1 intersection point can be
computed independently and thus in parallel. □

III. PARALLEL MERGE AND SORT
Given two input arrays A and B parallel merger is

carried out by p processors as follows:

Algorithm 1 – Parallel Merge (A,B,p)
/* i = processor number in the range 1..p */
In parallel do:
1. DiagonalNum=(i-1)⋅(|A|+|B|)/p+1
2. Compute intersection of the merge path with the

 relevant diagonal //Binary search
3. Execute (|A|+|B|)/p steps of sequential merge,

 writing the results to output array positions starting
 at (i-1)⋅ (|A|+|B|)/p+1

Barrier;

Remark. Note that no communication is required
among the cores: they write to disjoint sets of addresses
and, with the exception of reading in the process of
finding the intersections between the Merge Path and the
diagonals, read from disjoint addresses. Whenever
|A|+|B|>>p, which is the common case, this means that
concurrent reads from the same address are rare.

Summarizing the above, the time complexity of the
algorithm for |A|+|B|=N and p processors is given by

/ܰ)ܱ log(ܰ)), and the work complexity is given by ܱ(ܰ · log ܰ). For ൏ this algorithm is ,(ܰ)݈݃/ܰ
considered to be optimal. In the next section, we will
further address the issue of efficient memory (cache)
utilization.

Finally, merge-sort can be used, employing Parallel
Merge to carry out each of log2N rounds. The rounds are
carried out one after the other.

The time complexity of this Parallel Merge-Sort is: ܱ(ܰ/ · (/ܰ)݈݃ /ܰ · ()݈݃ log((· log(ܰ))ൌ /ܰ)ܱ · log(ܰ) log((· log(ܰ))
In the first expression, the first component corresponds

to the sequential sort carried out concurrently by each
core on N/p input elements, and the two remaining ones
correspond to the subsequent rounds of parallel merges.

IV. CACHE EFFICIENT MERGE PATH

A. Overview
The rate at which merging and sorting can be performed

even in memory (as opposed to disk), is often dictated by
the performance of the memory system rather than by
processing power. This is due to the fact that these
operations require a very small amount of computing per
unit of data, and the fact that only a small amount of
memory, the cache, is reasonably fast. (The next level in
the memory hierarchy typically features a ten-fold higher
access latency as well as coarser memory-management
granularity.) Parallel implementation on a shared memory
system further aggravates the situation for two reasons: 1)
the increased compute power is seldom matched by a
commensurate increase in memory bandwidth, at least
beyond the 1st-level or 2nd-level cache, and 2) cache
coherence mechanisms can present an extremely high
overhead. In this section, we address the memory issues.

 Assuming large arrays (relative to cache size) and
merge-sort, it is clear that data will have to be brought in
multiple times (log2N times, one for each level of the
merge tree, for non cache oblivious algorithms), so we
again focus on merging a pair of sorted arrays.

In the remainder of this section, we examine the cache
efficiency issue in conjunction with our algorithm,
offering important insights, exploring trade-offs and
presenting our approaches.

B. Cache-Efficient Parallel Merge
In this sub-section we present an extension to our

algorithm for parallel merging that is also cache-efficient.
It is stated in the context of a PRAM-like system with a
shared-memory hierarchy (including a shared cache).

Collisions in the cache between any two items are
avoided when they are guaranteed to be able to reside in
different cache locations, as well as when they are
guaranteed to be in the cache at different times. In a Merge

160816081614

operation, a cache-resident item is usually required for a
very short time, and is used only once. However, many
items are brought into the cache. Also, the relative
addresses of “active” items are data dependent. This is true
among elements of different arrays (A, B, S) and,
surprisingly, also among same-array elements accessed by
different cores. This is because the segment-partition
points in any given array are data dependent, as is the rate
at which its elements are consumed.

Given our efficient parallelization, we are able to
efficiently carry out parallel merger of even cache-size
arrays. In view of this, we explore approaches that ensure
that all elements that may be active at any given time can
co-reside in cache.

Let C denote cache size (in elements). Our general
approach is to break the overall merge path into cache-size
(actually a fraction of that) segments, merging those
segments one after the other, with the merging within each
segment being parallelized. We refer to this as Segmented
Parallel Merge, SPM. See Fig. 3.

Lemma 15. A merge-path segment of length L
comprises at most L consecutive elements of A and at most
L consecutive elements of B. □

Theorem 16. Given L consecutive elements of A and L
consecutive elements of B, starting with the first element
of each of them in the segment being constructed, one can
compute in parallel the p segment starting points so as to
enable p consecutive segments of length L/p to be
constructed in parallel.

Proof: Consider the p-1 cross diagonals of the merge
matrix comprising the aforementioned elements of the two
arrays, such that the first one is L/p away from the upper
left corner and the others are spaced with the same stride.
The farthest cross diagonal will require the L’th provided
element from each of the two arrays, and no other point
along any of the diagonals will require “later” elements.
Also, since the farthest diagonal is at distance L from the
upper left corner (Manhattan distance), the constructed
segment will be of length L. □

Remark. Unlike the case of a full merger of two sorted
arrays of size L, not all elements will be used. While L
elements will be consumed in the construction of the
segment, the mix of elements from A and from B is data
dependent.

In order to avoid the extra complexity of using the same
space for input elements and for merged data, let L=C/3,
where C is the cache size.

Algorithm 2 – Segmented Parallel Merge
Repeat the following (|A|+|B|)/L times /* L=|C|/3 */
1. If first iteration, fetch the first L items of A and B;

Else fetch the next elements of A and B in numbers equal
to the respective numbers of consumed elements in the
previous iteration, overwriting the used elements of the
respective arrays (cyclic buffer).

2. Parallel do:
a. Find the core’s segment starting point

/* binary search on cross diagonal */
b. Merge (sequential) L/p steps, commencing at the

start point.
3. Write the results out to memory.

Remark. Sufficient total cache size does not guarantee

collision freedom (conflict misses can occur). However,
we have shown that 3-way associativity suffices to
guarantee collision freedom. This will be reported
elsewhere.

Computational complexity Assuming a total merged-
array segment size of L=C/3 per sequential iteration of
the algorithm, there are 3N/C such iterations. In each of
those, only 2L=2C/3 elements of the input arrays (L of
each) need to be considered in order to determine the end
of the segment and, accordingly, the numbers of elements
that should be copied into the cache. Because the sub-
segments of this segment are to be created in parallel,
each of the p cores must compute its starting points (in A
and in B) independently. (We must consider 2L elements
because the end point of the segment, determined by the
numbers of elements contributed to it by A and B, is
unknown.)

The computational complexity of the cache-efficient
merge of N elements given a cache of size C and p cores
is: ܱ(ܰ ⁄ܥ · · ܥ݈݃ ܰ).

Normally, p<<C<<N, in which case this becomes
O(N). In other words, the parallelization overhead is
negligible.

The time complexity is ܱ൫ܰ ⁄ܥ · ܥ݈݃) .൯(/ܥ
Neglecting logC (the parallelization overhead) relative

to C/p (the merge itself), this becomes O(N/p), which is
optimal. Finally, looking at typical numbers and at the

Figure 3 - Merge Matrix for the cache efficient algorithm. The
yellow circles depict the initial and final points of the path for a
specific block in the cache algorithm.

160916091615

actual algorithms, it is evident that the various constant
coefficients are very small, so this is truly an extremely
efficient parallel algorithm and the overhead of
partitioning into smaller segments is insignificant.

C. Cache-Efficient Parallel Sort
Initially, partition the unsorted input array into equisized

sub-arrays whose size is some fraction of the cache size C.
Next, iterate over these sub-arrays, sorting them one by

one using the parallel sort algorithm on all p processors as
explained in an earlier section.

Finally, proceed with merge rounds; in each of those,
the cache-efficient parallel merge algorithm is applied to
every pair of sorted sub-arrays. This is repeated until a
single array is produced.

We now derive the time complexity of the cache
efficient parallel sort algorithm. We divide the complexity
into two stages: 1) the complexity of the parallel sorting of
the sub-arrays of at most ܥ elements, and 2) the
complexity of the cache-efficient merge stages.

In the first stage, depicted in Fig. 4, the parallel sort
algorithm is invoked on the cache sized sub-arrays. The
number of those sub-arrays is ܱ(ܰ/ܥ). Hence, the time
complexity of this stage is ܱ൫ܰ/ܥ · /ܥ) · log (ܥ) log·log(ܥ).

The second stage may be viewed as a binary tree of
merge operations. The tree leaves are the sorted cache
sized sub-arrays. Each two merged sub-arrays are
connected to the merged sub-array, and so on. The
complexity of each level in the tree is ܱ(ܰ/ ܥ/ܰ ·log()). The height of the tree is ܱ(log Hence, this .(ܥ/ܰ
stage’s complexity is ܱ൫log(ܰ/ܥ) · /ܰ) ܥ/ܰ ·log()൯.

The total complexity of the cache-efficient parallel sort
algorithm is the summation of the complexities of the two
stages, which yield: /ܰ)ܱ · log (ܰ) ܥ/ܰ · log() ·log(ܥ)).

One may observe again that the new algorithm has a
slightly higher complexity, ܰ/ܥ · log(ܥ) · log((log N · log() , due to the numerous partitioning stages,
however for system that a cache miss is expensive, this
increase in complexity may be justified.

V. RELATED WORK
In this section, we review previous works on the

subjects of parallel sorting and parallel merging, and relate
our work to them.

Prior works fall into two categories: 1) algorithms that
use a problem-size dependent number of processors, and
2) algorithms that use a fixed number of processors.

Several algorithms have been suggested for parallel
sorting. While parallel merge can be a building block for
parallel sorting, some of the parallel sorting algorithms do
not require merging. An example is Bitonic Sort [4] in
which ܱ(ܰ · (log ܰ)ଶ) comparators are used (ܰ/2
comparators are used in each stage) to sort ܰ elements in ܱ((log ܰ)ଶ) cycles. Bitonic sort falls into the
aforementioned first category. Our work is in the latter.

We consider two complexity measures: 1) time
complexity (the time required to complete the task), and 2)
overall work complexity, i.e, the total number of basic
operations carried out. In a load balanced algorithm like
ours, the work complexity is the product of time
complexity and the number of cores. Even with perfect
load balancing, however, one must be careful not to
increase the total amount of work (overhead, redundancy,
etc.), as this would increase the latency. Similarly, one
must be careful not to introduce stalls (e.g., for inter-
processor synchronization), as these would also increase
the elapsed time even if the “net” work complexity is not
increased.

Merging two sorted arrays requires Ω(ܰ) operations.
Some of the parallel merging algorithms, including ours,
have a work complexity of ܱ(ܰ · log ܰ) . For ܰ/ log ܰ, the latter component is negligible and the
complexity is ܱ(ܰ), as observed in [5]. Also, there are no
synchronization stalls in our algorithm.

In [6], as in our work, a ܯܣܴܲ ܹܧܴܥmemory model is
used. There, a mechanism for partitioning the workload is
presented. This mechanism is less efficient than ours and
does not feature perfect load balancing; although each
processor is responsible for merging ܱ(ܰ/) elements on
average, a processor may be assigned as many as 2ܰ/
elements. This can introduce a stall to some of the cores
since all the cores have to wait for the heaviest job. For
truly efficient algorithms, namely ones in which the
constants are also tight, as is the case with our algorithm,
such a load imbalance can cause a 2X increase in latency!
The time complexity of this algorithm is ܱ(1 log log ܰ ܰ For .(/ܰ ب which is the case of interest, it ,
is ܱ(ܰ/ log ܰ) .

In [5], Akl and Santoro present a merging algorithm that
is memory-conflict free using the ܹܧܴܧ model. It begins
by finding one element in each of the given sorted arrays
such that one of those two elements is the median (mid-
point) in the output array. The elements found (ܣሾ݅ሿ, (ሾ݆ሿܤ
are such that if ܣሾ݅ሿ is the aforementioned median then ܤሾ݆ሿ is the largest element of B that is smaller than ܣሾ݅ሿ or
the smallest element of B that is greater than ܣሾ݅ሿ. Once
this median point has been found, it is possible to repeat
this on both sets of the sub-arrays. Their way of finding
the median is similar to the process that we use. The

Figure 4 - Cache-efficient parallel sort first stage. Each cache
sized block is sorted followed by parallel merging

161016101616

complexity of finding the median is ܱ(log(ܰ)). As these
arrays are non-overlapping, there will not be any more
conflict on accessed data. This stage is repeated until there
are partitions. This requires ܱ(log()) iterations. Once
all the partitions have been found, it is possible to merge
each pair of sub-arrays sequentially, concurrently for all
pairs, and to simply concatenate the results to form the
merged array. The overall complexity of this algorithm is ܱ(ܰ/ log ܰ log The somewhat higher complexity .(
is the price for the total elimination of memory conflicts.

In [2], an algorithm that is conceptually similar to that
of [5] is presented. They initially present an algorithm that
finds one element in each of two given sorted arrays such
that one of these elements is ݇ െ smallest element in ݄ݐ
the output (merged) array. In [5] they start off by finding ݇ ൌ ܰ/2. In [2], the elements sought after are those that
are equispaced (ܰ/ positions apart) in the output array.
Finding each of these elements has the complexity of ܱ(log(ܰ)). This algorithm is aimed for ܹܧܴܥ systems.
The complexity of this algorithm is ܱ(ܰ/ log ܰ).

Our algorithm is very similar to the one presented in
[2]. However, our approach is different in that we show a
correspondence between finding the desired elements and
finding special points on a grid. Finally, using this
correspondence along with additional insights and ideas,
we also provide cache efficient algorithms for parallel
merging and sorting that did not appear in any of the
related works.

The work done in [7] is an extension of [2], in which
the algorithm is adapted to an ܹܧܴܧ machine with a
slightly larger complexity of ܱ(ܰ/ܲ log ܰ log ܲ).

Merging and sorting using GPUs is a topic of great
interest as well, and raises additional challenges that need
to be addressed. In [8] a radix sort for the GPU is
presented. In addition to the radix sort, the authors
suggest a merge-sort algorithm for the GPU, in which the
a pair-wise merge tree is required in the final stages. In
[9], a hybrid sorting algorithm is presented for the GPU.
Initially the data is sorted using bucket sort and this is
followed by a merge sort. The bucket approach suffers
from workload imbalance and requires atomic instructions
(i.e., synchronization).

Another focus of sorting algorithms is finding a way to
implement them in a cache oblivious [10] way. As the
algorithm in this paper focused on the merging stage and
not the entire sort and presented a cache aware merging
algorithm, we will not elaborate on cache oblivious
algorithms. The interested reader is referred to [11-13].

VI. IMPLEMENTATION AND MEASUREMENT RESULTS
It is quite evident from the previous sections that we

have succeeded in truly parallelizing the entire merging
and sorting process, with negligible overhead for any
numbers of interest. Nonetheless, we wanted to obtain
actual performance results on real systems in order to
ensure that we did not miss important issues.

We implemented our basic Parallel Merge algorithm on
a dual 6-core processor Intel x86 system. We begin with a
brief overview of the system, including system
specifications, and then present some of the practical
challenges of implementing the algorithms. Following
this, we present the speedup of the new algorithm. The
runtime of Merge-Path with a single thread is used as the
baseline.

We used a 2-processor, 2X6 core Intel X86 system with
hyperthreading, It has L1 and L2 private caches for each
core. The cores share an L3 cache. Because the cores have
private caches, a cache coherency mechanism is required
to ensure correctness. Furthermore, as we had multiple
processors, each with its own L3 cache, the cache
coherence mechanism had to communicate across
processors; this is even more expensive from a latency
point of view.

Specifically, we used a Dell-T610 server. The server
consists of two X5670 INTEL processors, each of which
having six cores with a private 32KB L1 data cache and a
private 256KB L2 cache. Each processor has a 12MB L3
cache. The processors are connected via 6.4GT/s QPI.
The server has 12GB DDR3 memory. For testing the
algorithm, the following capabilities have been disabled:
1) INTEL hyper threading technology. 2) INTEL turbo
technology. The reasons are fairly obvious.

Our implementation of Merge Path uses OpenMP. We
tested the algorithm using multiple sizes of integer arrays
and different numbers of threads. In view of the
sophisticated cache management and prefetching of this
system, we left this issue to the hardware and
implemented the basic version of our algorithm rather
than the segmented one. In Figure 5, the data set sizes
refer to the size of each of the input arrays ܣ and ܤ. The
output array ܵ is twice this size, meaning that the total
memory required for the 3 arrays is 4· |ܣ| · |݁ݕݐ| where ,|݁ݕݐ| denotes the number of bytes need to stored the
data type (for 32 bit integers this will be 4).

In Figure 5, we present the speedup of executing Merge
Path using various size input arrays. One mega element

0

2

4

6

8

10

12

14

1 2 4 6 8 10 12

Sp
ee

du
p

Number of Threads (Cores)

1M 4M 16M 64M 256M

Figure 5 - Speedup of the regular Merge Path algorithm. Each of
the colored bars represents a different sized input array. The
sizes of the arrays are in Mega elements.

161116111617

refers to 2ଶ elements. As can be seen, the speedups are
near linear, with a slight reduction in performance for the
bigger input arrays: approximately 11.7ܺ for 12 threads.

Remark. We note that the single-thread execution time
of our algorithm was some 6% longer than a truly
sequential merge algorithm. This is due in part to a few
extra instructions, and possibly also to overhead of
OpenMP.

Both the basic and the segmented algorithm were also
implemented on a semi-stable prototype of Hypercore
[16], a many-core architecture with shared L1 cache that
is effectively a CREW PRAM architecture and supports
fine-grain task-level parallelism. These results confirmed
our expectations, but we were unable to obtain end-to-end
results due to an incomplete implementation of the cache
system in that prototype.

VII. CONCLUSIONS
In this paper, we explored the issue of parallel sorting

through the cornerstone of many sorting algorithms – the
merging of two sorted arrays.

One important contribution of this paper is a very
intuitive, simple and efficient approach to correctly
partitioning each of two input sorted arrays into segments
that, once pairs of segments, one from each, are merged,
the concatenation of the merged pairs yields a single sorted
array. This partitioning is also done in parallel.

Another important contribution is an insightful
consideration of cache related issues. This are extremely
important because, especially when parallelized, sorting
and merging are carried out at a speed that is very often
determined by the memory subsystem rather than by the
compute power.

We implemented the algorithms on a multi-processor,
multi-core X86 platform that represents mainstream
computers. The results show that even though the
algorithm was initially aimed at PRAM architectures the
algorithm gives optimal speedups for the X86. This
notwithstanding, sorting can be carried out in a much more
cost- and power-efficient manner on many-core systems
with lightweight compute cores. To this end, the efficient
segmented version of our algorithm is very promising, as it
can operate efficiently with simple caches.

Acknowlegements. The authors thank Rob McColl of

the HPC lab at Georgia Institute of Technology for his
suggestions and lengthy discussions on MergePath; Peleg
Aviely and Shachar Raindel for their useful comments.

REFERENCES

[1] T. H. Cormen, et al., Introduction to algorithms.
Cambridge, Mass.New York: MIT Press, 1990.

[2] N. Deo and D. Sarkar, "Parallel algorithms for
merging and sorting," Information Sciences, vol. 56, pp.
151-161, 1991.

[3] J. L. Hennessy, et al., Computer architecture : a
quantitative approach, 4th ed. Morgan Kaufmann, 2007.

[4] K. E. Batcher, "Sorting Networks and Their
Applications," Proc. AFIPS Conf. 1968.

[5] S. G. Akl and N. Santoro, "Optimal Parallel
Merging and Sorting Without Memory Conflicts," IEEE
Trans. Computers, vol. C-36, pp. 1367-1369, 1987.

[6] Y. Shiloach and U. Vishkin, "Finding the
maximum, merging, and sorting in a parallel computation
model," J. Algorithms, vol. 2, pp. 88-102, 1981.

[7] N. Deo, et al., "An optimal parallel algorithm for
merging using multiselection," Information Processing
Letters, vol. 50, pp. 81-87, 1994.

[8] N. Satish, et al., "Designing efficient sorting
algorithms for manycore GPUs," in Parallel &
Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on, 2009, pp. 1-10.

[9] E. Sintorn and U. Assarsson, "Fast parallel GPU-
sorting using a hybrid algorithm," J. Parallel and
Distributed Computing, vol. 68, pp. 1381-1388, 2008.

[10] A. Aggarwal and S. V. Jeffrey, "The input/output
complexity of sorting and related problems," Commun.
ACM, vol. 31, pp. 1116-1127, 1988.

[11] R. A. Chowdhury, et al., "Oblivious algorithms
for multicores and network of processors," in Parallel &
Distributed Processing (IPDPS), 2010 IEEE International
Symposium on, 2010, pp. 1-12.

[12] R. Cole and V. Ramachandran, "Resource
Oblivious Sorting on Multicores Automata, Languages
and Programming." vol. 6198, S. Abramsky, et al., Eds.,
ed: Springer Berlin / Heidelberg, 2010, pp. 226-237.

[13] M. Frigo, et al., "Cache-oblivious algorithms," in
Foundations of Computer Science, 1999. 40th Annual
Symposium on, 1999, pp. 285-297.

[14] G. M. Amdahl, "Validity of the single processor
approach to achieving large scale computing capabilities,"
presented at the Proceedings of the April 18-20, 1967,
spring joint computer conference, Atlantic City, New
Jersey, 1967.

[15] J. L. Gustafson, "Reevaluating Amdahl Law,"
Commun. ACM, vol. 31, pp. 532-533, May 1988.

[16] "HyperCore Software Developer’s Handbook,"
ed: Plurality, 2009.

161216121618

