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ing high performance in parallel database systems. However, the problem of how to exploit intra-

operator parallelism in a multi-query environment is not well understood. This paper presents a

detailed performance evaluation of several algorithms for managing intra-operator parallelism in a

parallel database system. A dynamic scheme based on the concept of matching the rate of ow of

tuples between operators is shown to perform well on a variety of workloads and con�gurations.
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1 Introduction

Highly-parallel database systems are increasingly being used for large-scale database applications.

Examples of these systems include products like Teradata DBC/1012 [Tera85], Tandem Himalaya

[Tand88], IBM SP1/2 [IBM93], and research prototypes like Bubba [Bora90], Gamma [DeWi90],

and Volcano [Grae89]. Intra-operator parallelism (or partitioned parallelism [DeGr92]) is a well-

established technique for increasing performance in these systems. Basically, by allowing the input

data to be partitioned among multiple processors and memories, this technique enables a database

operator to be split into many independent operators each working on a part of the data. However,

it is not evident how intra-operator parallelism should be used in a multi-query environment, where

multiple concurrent queries are contending for system resources. Selecting low degrees of operator

parallelism can lead to underutilization of the system and reduced performance. On the other

hand, high degrees of parallelism can give \too many" resources to a single query and lead to high

resource contention. This paper explores this problem of determining the \appropriate" degree of

intra-operator parallelism for queries in a multi-query parallel database system.

There are two important issues that need to be addressed. First, for each query, the algorithm

must determine the degree of parallelism of each operator in the query plan. Second, the algorithm

must assign speci�c processors to execute each operator instance.

The degree of parallelism of an operator should be selected such that the cost of starting and

terminating all of the instances of the operator is more than o�set by the performance improvement

due to parallelism. Since startup and termination costs are a function of the con�guration and

workload, the degree of parallelism should change for di�erent workloads and con�gurations. In

this paper, we present several algorithms for determining the degree of parallelism of operators.

A detailed performance evaluation shows that a new dynamic algorithm based on the concept of

matching the rate of ow of tuples between operators provides good performance across a variety

of workloads and con�gurations.

The primary objective of an algorithm for assigning processors to operators is load balancing.

Processors should be assigned to operators such that the workload is uniformly distributed and

all the nodes are equally utilized. This paper presents several alternative methods of assigning

processors to operators. The results show that algorithms that utilize information about the system

workload in assignment decisions perform better than algorithms that assign processors statically.

The rest of the paper is organized as follows. Section 2 presents the system architecture of

a typical highly-parallel database system. The algorithms for selecting the degree of parallelism
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are presented in Section 3 while algorithms for mapping operators to processors are presented in

Section 4. Section 5 discusses how these algorithms can be combined to produce a comprehensive

processor allocation scheme. The simulation model used for the performance evaluation is described

in Section 6 followed by a description of the experimental parameters in Section 7. Section 8 presents

a performance evaluation of algorithms for determining the degree of parallelism and Section 9

contains the evaluation of algorithms for mapping the operators to processors. Related work is

discussed in Section 10 and Section 11 contains our conclusions and suggestions for future work.

2 System Architecture

Highly parallel systems are typically constructed using a shared-nothing [Ston86] architecture. Fig-

ure 1 shows a schematic description of a typical shared-nothing parallel database system.
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Figure 1: Shared-Nothing Parallel Database System

The system consists of a set of external terminals from which transactions are submitted. The

transactions are sent to a randomly-selected scheduling node. The execution of each transaction

on the processing nodes is coordinated by a specialized process called the scheduler . The scheduler

allocates resources (memory and processors) to the transaction and is responsible for starting and

terminating all the operators in a transaction. The processing nodes are composed of a CPU,

memory, and one or more disk drives3. There is no shared memory/disk between the nodes, hence the

term Shared-Nothing. All inter-node communication is via message passing on the interconnection

network.

3For the rest of this paper, the term node is used to collectively refer to a processor, its local memory and the

attached set of disks.
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3 Determining the Degree of Operator Parallelism

In most shared-nothing database systems, the only way to access data on a node is to schedule a

select operator on that node. This implies that the degree of parallelism of select operators is �xed

a-priori by the data placement mechanism. However, the degree of parallelism for other operators,

like joins and stores, can be chosen independently of the initial data placement. We consider four

algorithms for determining the degree of parallelism of such operators.

3.1 Maximum

The degree of parallelism chosen by this algorithm is equal to the number of nodes in the system.

Maximum therefore achieves the highest parallelism, but it also has the highest startup and termi-

nation costs and leads to the highest resource contention. Moreover, it is a static algorithm that

selects the same degree of parallelism for all operators regardless of the query type and the workload.

3.2 MinDp

The degree of parallelism selected by this algorithm is equal to the minimum of the degree of

parallelism of all the input streams. For example, consider a binary hash-join query where the

degrees of parallelism of the selects on the inner and outer relations are Inner-dp and Outer-dp,

respectively. The MinDp algorithm will select the join's degree of parallelism as min(Inner-dp,

Outer-dp).

3.3 MaxDp

The MaxDp algorithm is sets the degree of join parallelism to be the maximum of the degree of

parallelism of the input streams. Note that in the case of unary operators like store, the MaxDp

and MinDp algorithms are identical.

3.4 RateMatch

The RateMatch algorithm is based on the idea of matching processing rates of operators. If the

rate at which tuples are sent to an operator is much higher than the rate at which the tuples can be

processed by the operator, incoming messages will accumulate and the message bu�er can overow,

forcing the sender to block. On the other hand, if the rate at which tuples are received by an

operator is much lower than the maximum possible processing rate, the operator will frequently be

idle and will waste system resources (speci�cally memory). By matching operator processing rates,
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the RateMatch algorithm prevents senders from blocking and, at the same time, conserves system

resources by avoiding idle operators.

We next present the formulas used by the RateMatch algorithm to calculate the rate at which

tuples are processed by the select and hash-join operators. Similar formulas can also be developed

for other database operators. These formulas adjust the degree of parallelism based on the current

CPU utilization and disk response times, and therefore allow the RateMatch algorithm to adapt to

di�erent workloads and con�gurations. We �rst develop formulas for a single-user system assuming

no bu�ering of messages, and then incorporate the e�ect of multiple users and message bu�ering.

3.4.1 Processing Rate of Select Operators

The total time (in seconds) taken by each select operator to process a data page is

Tselect = MAX(TI=OSelect
; TCPUSelect)

where TI=OSelect
is the time taken to perform one I/O and TCPUSelect is the CPU time taken

for processing one data page. Note that the above equation assumes an overlap in CPU and I/O

processing. TI=OSelect
is calculated as the sum of the time taken to initiate an I/O request and the

actual time taken to perform the I/O. Therefore,

TI=OSelect
=

InstrI=O

CPUSpeed
+AverageDiskReadTime

where InstrI=O is the number of instructions needed to initiate an I/O and CPUSpeed is the speed

of the CPU in instructions per second (MIPS * 106). TCPUSelect includes the time taken by the

selects to examine each tuple on the data page, apply the selection predicate, and send the selected

tuples to the next operator. Therefore,

TCPUSelect =
(InstrRead + InstrPred) � TuplesPerPage+ InstrSend � SelectionSelectivity

CPUSpeed

where InstrRead is the number of instructions for reading a tuple in memory, InstrPred is the

number of instructions for applying a predicate, InstrSend is the time taken to send a page (including

the cost of copying tuples to the network bu�er), and SelectionSelectivity is the fraction of tuples

that satisfy the selection predicate.

Therefore the total rate at which pages are processed by the select operators is

ProcRateSelect =
NumberSelects

Tselect
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where NumberSelects is the degree of parallelism of the select operator. Similarly, the total rate (in

pages/second) at which tuples are produced by the select operators is

RateSelect = ProcRateSelect � SelectionSelectivity =
NumberSelects � SelectionSelectivity

Tselect

Finally, since the rate at which tuples are produced may be di�erent in the build and probe

phases due to a di�erent degrees of select parallelism in the build and probe phase, the above

calculation is carried out for each phase separately. These rates are denoted as RateSelectBuild
and

RateSelectProbe , respectively.

3.4.2 Processing Rate of Hash-Join Operators

The rate at which tuples are processed by a hash-join operator depends on the amount of memory

allocated to it. Here, we present formulas only for maximum and minimum join memory allocation.

The formulas for intermediate memory allocations can be developed similarly.

� MaximumMemory Allocation In the case of maximum memory allocation, join operators

do not perform any I/Os. During the build phase, the join operators read each incoming tuple

and insert them into a hash table. Therefore, the time taken to process a data packet in the

build phase is

TBuild =
InstrRecv + (InstrRead + InstrHash) � TuplesPerPacket

CPUSpeed

where InstrRecv is the number of instructions needed to receive a data packet and InstrHash

is the number of instructions needed to hash a tuple (this assumes that the tuple is already in

memory and no copying is required). In the probe phase, the join reads incoming tuples and

probes the hash table for matches. If a match is found, the result tuples are composed and

sent to the parent operator. Therefore,

InstrPerTuple = InstrRead + InstrProbe + InstrCompose � JoinSelectivity

TProbe =
InstrRecv + InstrPerTuple � TuplesPerPacket + Instrsend � JoinSelectivity

CPUSpeed

where InstrProbe is the number of instructions needed to probe the hash table and InstrCompose

is the number of instructions needed to produce a result tuple.
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� MinimumMemory Allocation If the joins are allocated their minimum memory allocation,

the incoming tuples are divided into disk-resident partitions. Since select operators send tuples

to join operators only during the partitioning phase, the rate calculation matches processing

rates only for the partitioning phase. In both the build and probe phases, the incoming tuples

are read, hashed and then written to the corresponding disk partition4. Therefore,

TBuild=Probe =
InstrRecv + InstrI=O + (InstrRead + InstrHash + InstrCopy) � TuplesPerPacket

CPUSpeed

+AverageDiskWriteT ime

where InstrCopy is the number of instructions needed to copy the tuples to the outgoing disk

page.

Once the time taken for processing in each phase has been calculated, the number of join pro-

cesses needed to absorb the incoming tuples in the build phase, NJoinBuild
, is calculated by equating

the rate at which tuples are processed by the joins to the rate at which tuples are produced by the

selects.

RateJoinBuild
=

NJoinBuild

TBuild
= RateSelectBuild

Therefore:

NJoinBuild
= RateSelectBuild

� TBuild

Similarly:

NJoinProbe
= RateSelectProbe � TProbe

Finally, the number of join sites should be such that select operators do not block in either the

build or the probe phase, so:

NJoin = Min(TotalNumberofNodes; Max(NJoinBuild
; NJoinProbe

))

3.4.3 Extension to Multiple Users

The only extension needed in the formulas for a multiple-user system is to modify the value of the

CPU CPUSpeed parameter to incorporate the fact that other users in the system will also be using

the CPU simultaneously. Note that the e�ect of multiple users at the disk is already incorporated

4Recall that if joins are given their minimum memory allocation, the build and probe phases refer to the initial

phases that distribute the inner and outer relations, respectively. The result tuples are produced in a third phase

where each participating join processor processes its disk-resident partitions.
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in the value of the Average Disk Read/Write parameters. Therefore, the value of CPUSpeed is

modi�ed to E�ectiveCPUSpeed using the formula for service time, S(x), for a task with service

demand x on an M/G/1 server with round-robin scheduling [Klei76], i.e.:

S(x) =
x

1� Utilization

where x is the service demand of the arriving job. Therefore, the time taken for each CPU processing

task should be modi�ed using the following equation.

TCPU =
CPUInstructions

CPUSpeed � (1� Utilization)
=

CPUInstructions

EffectiveCPUSpeed

where EffectiveCPUSpeed = CPUSpeed � (1� Utilization).

3.4.4 E�ect of Message Bu�er Size

The previous formulas assumed that there is no message bu�ering and therefore that the processing

rates need to match exactly. However, in practice, the operators bu�er only a limited number of

message packets. In this case, the join processing rate may be slower than the select processing rate

as long as there is no message bu�er overow. Let M be the size of the message bu�er, T the time

taken by the select to process all of the tuples, and NumberJoins the degree of join parallelism. The

total number of message packets accumulated per second at the join operators is the di�erence in

the rate at which tuples are sent by the select operators and the rate at which they are consumed

by the join operators. Therefore, the total number of data packets accumulated over the period of

the query is given by:

NumberofAccumulatedMessages = (NumberSelects �RateSelect �NumberJoins �RateJoin) � T

If this number is equal to the total message bu�er size of the join operators (i.e. M�NumberJoins),

there will be no message overow. Therefore,

(NumberSelects �RateSelect �NumberJoins �RateJoin) � T = M �NumberJoins (1)

The total time taken to process the input is, in turn, estimated as

T =
TSelect � InputSize

NumberSelects

where InputSize is the number of pages accessed from the input relation. Substituting the value of

T in Equation 1 and simplifying, the degree of join parallelism is calculated as:

NumberJoins =
NumberSelects �RateSelect � TSelect � InputSize

M �NumberSelects + RateJoin � TSelect � InputSize

where TSelect is the time taken by a select operator to process one data page.
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4 Processor Assignment Algorithms

Once the degree of parallelism for an operator has been determined, each instance of an operator

must be assigned to a speci�c processor. Six algorithms for processor assignment are considered in

this paper:

4.1 Random

The desired number of processors are chosen randomly in this algorithm. Although the Random

algorithm is simple to implement, it can lead to load imbalance (since it does not use any information

about the present state of the system).

4.2 Round-Robin

The Round-Robin algorithm chooses processors in a round-robin fashion (i.e. if the �rst operator

is executed on nodes 1{10, the next operator is executed on nodes 11 onwards). This algorithm

distributes the processing load better than Random, but it can also lead to load imbalances because

it ignores the actual distribution of the load in the system.

4.3 Avail-Memory

The third algorithm assumes that the processing load of an operator is proportional to its memory

requirement and chooses the processors with the most free memory. This assumption is applicable

to memory-intensive operators like joins and sorts. Since memory allocation is performed at the

scheduling nodes, memory utilization �gures are already available to the query schedulers. Therefore,

this algorithm does not entail any extra communication between the scheduling and processing

nodes5.

4.4 CPU-Util

The CPU-Util algorithm was �rst proposed in [Rahm93a] and assigns the least-utilized processors

to an operator. The performance of this algorithm depends on the frequency with which CPU

utilization statistics can be updated at the scheduling nodes. Also, in order to prevent two successive

operators from being scheduled on the same set of nodes, once a set of processors have been chosen,

their CPU utilizations are increased \arti�cially". This arti�cial increase in CPU utilization prevents

5Since there are multiple scheduling nodes, some communication is needed among the scheduling nodes to maintain
an accurate estimate of memory consumption at the processing nodes. However, these costs are ignored in this paper

since inter-scheduler communication for memory management is needed in all processor allocation algorithms.
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successive operators from being scheduled on the same set of processors, and it is cancelled the next

time the statistics are updated. The amount by which the utilization should be increased is di�cult

to estimate, however. If the amount is too low, it may not prevent two successive operators from

being executed on the same set of nodes. Conversely, if the amount is too high, it can lead to a

large di�erence between the actual utilization of the node and the utilization as seen by the query

schedulers, leading the CPU-Util algorithm to schedule queries on nodes that are already more

heavily utilized.

In order to select these parameters, we performed a detailed sensitivity analysis of CPU-Util

[Meht94]. As a result of the analysis, our simulation model updates utilization statistics at the

scheduling nodes every 5 seconds. Also, once an operator is scheduled on a node, its utilization is

increased \arti�cially" by 5%. Note that this algorithm is not useful for operators like store, that

do not perform much CPU processing.

4.5 Disk-Util

The Disk-Util algorithm chooses the processors on the nodes with the least disk-utilization. Similar

to the CPU-Util algorithm, disk utilization statistics are reported to the scheduling nodes every 5

seconds, and disk-utilization is arti�cially increased by 5% in-between periods of statistics collection.

This algorithm is not useful for operators that do not perform a signi�cant amount of disk I/O. An

example is a hash-join operator with maximum memory allocation. Such a join operator performs

only CPU processing since the input relations are read by separate select operators.

4.6 Input

The Input strategy can only be used with the MinDp and the MaxDp algorithms. Recall that

the degree of parallelism selected by the MinDp and MaxDp algorithms is equal to the degree of

parallelism of one of the input operators; the input operator with the maximum parallelism for

MaxDp and minimum parallelism for MinDp. The Input strategy executes an operator on the same

set of processors as the selected input operator. For example, if the MinDp policy selects the inner

relation data stream for a hash-join operator, the Input strategy will assign the join operator to the

set of nodes where the inner relation is being accessed.

5 Processor Allocation Strategies

The algorithms for determining the degree of operator parallelism can be combined with the algo-

rithms for processor assignment to obtain a wide variety of processor allocation algorithms. Most
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of the combined algorithms perform processor allocation in two phases. The degree of parallelism is

determined in the �rst phase. The degree of operator parallelism and the total memory allocation

to the operator are then used to determine the memory needed per processor. In the second phase,

a list is made of candidate processors that have enough memory available in their bu�er pools.

Finally, the processor assignment algorithm is used to select a subset of the processors from the

candidate list. If the number of processors in the candidate list is less than the degree of parallelism

of the operator, the query blocks and waits for memory to become available. The only exceptions

to this process occur with the Maximum policy, which executes each operator on all processors, and

the Input processor assignment policy, which executes the operator wherever the chosen input data

stream is produced (i.e. blocking if memory is not available there).

6 Simulation Model

The performance studies presented in this paper are based on a detailed simulation model of a

shared-nothing parallel database system. The simulator is written in the CSIM/C++ process-

oriented simulation language [Schw90] and models the database system as a closed queueing system.

The following sections describe the con�guration, database and workload models of the simulator

in more detail.

6.1 Con�guration Model

The terminals model the external workload source for the system. Each terminal sequentially

submits a stream of transactions. Each terminal has an exponentially distributed \thinktime" to

create variations in arrival rates. All experiments in this paper use a con�guration consisting of 128

nodes. The nodes are modeled as a CPU, a bu�er pool of 16 Mbytes6 with 8 Kbyte data pages,

and one or more disk drives. The CPU uses a round-robin scheduling policy with a 5 millisecond

timeslice. The bu�er pool models a set of main memory page frames whose replacement is controlled

via the LRU policy extended with \love/hate" hints [Haas90]. These hints are provided by the

various relational operators when �xed pages are unpinned. For example, \love" hints are given by

the index scan operator to keep index pages in memory; \hate" hints are used by the sequential

scan operator to prevent bu�er pool ooding. In addition, a memory reservation system under the

6The simulated bu�er pool size is smaller than bu�er pools in typical con�gurations. Unfortunately, simulating a
larger bu�er pool size would require enormous amounts of resources. Some of our simulations took up to 36 MBytes and

ran for 24 hours on an IBM RS/6000 even with 16 Mbytes of memory per node. On the other hand, our con�guration

is much more realistic than previous simulation studies ([Rahm93a] studied a con�guration with 80 nodes and only 2
Mbytes/node memory).
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control of the scheduler task allows bu�er pool memory to be reserved for a particular operator.

This memory reservation mechanism is used by hash join operators to ensure that enough memory

is available to prevent their hash table frames from being stolen by other operators.

The simulated disks model a Fujitsu Model M2266 (1 Gbyte, 5.25") disk drive. This disk provides

a cache that is divided into 32 Kbyte cache contexts for use in prefetching pages for sequential scans.

In the disk model, which slightly simpli�es the actual operation of the disk, the cache is managed as

follows: each I/O request, along with the required page number, speci�es whether or not prefetching

is desired. If prefetching is requested, four pages are read from the disk into a cache context as part

of transferring the page originally requested from the disk into memory. Subsequent requests to one

of the prefetched blocks can then be satis�ed without incurring an I/O operation. A simple round-

robin replacement policy is used to allocate cache contexts if the number of concurrent prefetch

requests exceeds the number of available cache contexts. The disk queue is managed using an

elevator algorithm.

The interconnection is modeled as an in�nite bandwidth network so there is no network con-

tention for messages. This is based on previous experience with the GAMMA prototype [DeWi90]

which showed that network contention is minimal in typical shared-nothing PDBs. Messages do,

however, incur an end-to-end transmission delay of 500 microseconds. All messages are \point-to-

point" and no broadcast mechanism is used for communication. Table 1 summarizes the con�gu-

ration parameters and also shows the instruction costs used in the simulator for various database

operations.

Parameter Value Operation Instr.

Number of Nodes 128 Initiate Select Operator 20000

Memory Per Node 16 Mbytes Terminate Select Operator 5000

CPU Speed 10 MIPS Initiate Join Operator 40000

Number of Disks per Node 1 Terminate Join Operator 10000

Page Size 8 Kbytes Apply a Predicate 100

Disk Seek Factor [Bitt88] 0.617 Read Tuple from Bu�er 300

Disk Rotation Time 16.667 msec Probe Hash Table 200

Disk Settle Time 2.0 msec Insert Tuple in Hash Table 100

Disk Transfer Rate 3.09 Mbytes/sec Start an I/O 10000

Disk Cache Context Size 4 pages Copy a Byte in Memory 1

Disk Cache Size 8 contexts Send(Receive) an 8K Message 10000

Message Wire Delay 500 �sec

Table 1: Simulator Parameters
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7 Experimental Parameters

7.1 Con�guration

Although we have experimented with both a disk-intensive and CPU-intensive con�guration, for

the sake of brevity, results are presented in this paper only for a CPU-intensive con�guration. The

results of the disk-intensive con�guration are briey summarized in each performance section and

the interested reader is referred to [Meht94] for detailed experimental results. The CPU-intensive

con�guration consists of a 10 MIPS CPU and four disks per processor. The CPU speed was chosen

to be arti�cially low so that the processors could be saturated with only 4 disks per node, thus

reducing the running time of the simulations time7.

A message bu�er of 256 Kbytes is provided for each operator. This implies that at most 32

8Kbyte pages can be bu�ered by each operator. Operators stop sending messages when they detect

that the receiver's message bu�er is full.

7.2 Database

A simpli�ed database is used in all of the experiments. Each database relation contains �ve million

tuples and is fully declustered. Although the relations are fully declustered, we model range queries

to explore the e�ect of reading data on only a subset of nodes. The tuple size is �xed at 200 bytes

and a clustered index is modeled on each relation.

7.3 Workload

The workload contains only binary hybrid hash-join [DeWi84] queries. The hybrid hash-join method

was chosen since it has been shown to be superior to other join methods. Binary join queries were

chosen so that issues, like pipelining and query scheduling, that arise while processing complex

queries could be ignored. This is a reasonable simpli�cation as most commercial database systems

execute queries comprised of multiple joins as a series of binary joins, and do not pipeline tuples

between adjacent joins in the query tree. Each binary join query is composed of two select operators

(one for the inner and one for the outer relation) plus a join operator and a store operator. The

select operators execute wherever the input relations are declustered. Therefore, processor allocation

needs to be determined only for the join and store operators. In order to simplify this performance

study, a simplistic processor allocation policy is used for store operators { the store operator of each

query executes on the same set of nodes as the join operator of the query. Therefore, the degree of

7For a faster processor, we would need to simulate many more disks per processor. For instance, it takes upto 16

disks with high I/O prefetching to saturate one Alpha AXP processor [Nybe94].
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parallelism and speci�c processor assignments need to be determined only for the join operator in a

query. Moreover, the join selectivity has been �xed at 1% to make the size of the join output small

to reduce the impact of store operators on the performance results. Based on the results of earlier

memory allocation studies [Meht93, Yu93, Brow94, Davi95], joins are given either their maximum

or their minimum memory allocation. Three kinds of workloads are considered: Small, Medium and

Large. Table 2 summarizes the important parameters of these three workloads.

Workload Name Access Method indexSelectivity

Small Clustered Index Scan 1%

Medium Clustered Index Scan 25%

Large File Scan (not applicable)

Table 2: Workload Parameters

We also assume the presence of some mechanism that can be used to direct the select operators to

only a subset of the nodes.8 Therefore, the degree of select operator parallelism is chosen randomly

from 1 to 128. The performance of all of the algorithms is examined under various system loads by

increasing the number of query terminals from 10 to 40.

8 Comparing Algorithms for Determining Degree of Parallelism

This section presents a performance comparison of algorithms that determine the degree of paral-

lelism. The CPU-Util algorithm is used in all the experiments to perform processor assignment; the

reason for using this algorithm here will become evident in Section 9.

8.1 Maximum Memory Allocation

The �rst experiment compares the performance of the algorithms on the Small workload (clustered

index scans with 1% indexSelectivity) when each query is given its maximum memory allocation.

We assume that range declustering is used and the degree of parallelism of the select operators

varies uniformly between 1 and 128. Figure 2 shows the average query response time as the load

increases from 10 to 40 terminals, and Figure 3 shows the degree of join parallelism chosen by each

algorithm.

Since the queries in this workload are small, startup and termination costs form a large fraction

of the query response time. Therefore, the relative order of the algorithms is determined by the

8Even though all the relations are fully declustered, select operators can be directed to a subset of nodes in several

cases (e.g. when range declustering [Ghan90] is used to map tuples to relation partitions.
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Figure 2: Response Times Figure 3: Degree of Parallelism

Performance of Algorithms for Determining the Degree of Parallelism { Small Workload

Maximum Memory Allocation

startup and termination costs, which, in turn, are determined by the degree of join parallelism.

The Maximum algorithm, which selects the highest degree of join parallelism (128), has the highest

startup and termination costs and, consequently, the highest average query response time. The

MaxDp and MinDp algorithms choose smaller degrees of parallelism (85 and 38, respectively) and

therefore achieve lower average query response times (as compared to the Maximum algorithm).

The lowest query response time is achieved by the RateMatch algorithm. This algorithm realizes

that the sizes of the inner and outer relations of the join queries are small, and that the join and

select processing rates can be matched with a low degree of join parallelism. Moreover, unlike the

other algorithms, the RateMatch algorithm dynamically adapts to the query workload: it selects a

higher degree of join parallelism as the system load increases because the CPU-utilization increases.

The degree of join parallelism increases from 25 to 32 as the load increases from 10 to 40 terminals.

The next experiment explores the relative performance of the algorithms on the Medium work-

load (clustered index scans with 25% indexSelectivity). Figure 4 shows the average query response

time achieved by the algorithms and Figure 5 shows the degree of join parallelism. Note that, except

for the RateMatch algorithm, the degrees of join parallelism chosen by all the other algorithms are

the same as in the previous experiment. This is, because, their choice of the degree of parallelism

depends only on the data placement and con�guration size, both of which remain static for all

workloads.
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Figure 4: Response Times Figure 5: Degree of Parallelism

Performance of Algorithms for Determining the Degree of Parallelism { Medium Workload

Maximum Memory Allocation

The performance results for the Medium workload are quite di�erent from those of the Small

workload. Figure 4 shows that for less than 30 terminals the MinDp algorithm has the highest

average query response time for the Medium workload, followed by the Maximum, then the MaxDp,

and �nally the RateMatch algorithm. The important thing to note is that MinDp has the worst

performance, even though Figure 5 shows that it chooses the smallest degree of join parallelism (38).

The inferior performance of MinDp is due to the fact it selects a degree of join parallelism that

is so low that the join operators cannot process tuples at the rate at which they are produced by

the selects, so the message bu�ers of the join operators overow. This causes the select operators

to block leading to lower CPU and disk utilizations and higher query response times. Note that

message bu�er overow was not observed in the previous workload since the queries were much

smaller (1% indexSelectivity) and the message bu�er size (256 KB) was large enough to prevent

overow. The RateMatch algorithm dynamically selects a higher degree of join parallelism for this

workload to prevent the message bu�ers of the join operators from overowing. The MaxDp and

Maximum algorithms avoid message bu�er overow but they incur higher startup and termination

costs than the RateMatch algorithm since they select degrees of join parallelism that are \too"

high. However, startup and termination costs are a smaller fraction of the total response time of the

queries in this workload, so the average query response times achieved by the Maximum and MaxDp

algorithms are only 17% and 9% higher, respectively, than those of the RateMatch algorithm.
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However, as the number of terminals is increased, the relative performance of the MinDp al-

gorithm improves as the load increases (more than 20 terminals). This is, because, even though

some of the operators block in the MinDp algorithm due to message bu�er overow, there is enough

concurrent activity in the system to achieve high processor utilization, and there is no increase in

the average response time. The Maximum and MaxDp algorithms, on the other hand, perform

relatively worse because of their higher startup and termination costs. The RateMatch algorithm

chooses a much smaller degree of join parallelism (compared to Maximum and MaxDp), and there-

fore performs well. At the highest load of 40 terminals, RateMatch results in an average response

time that is only 2% higher than the average response time achieved by MinDp.

The next experiment examines the performance of the algorithms on the Large query workload

(�le scans with 100% selectionSelectivity). Figure 6 shows the average query response time, and

Figure 7 shows the degree of join parallelism for each algorithm. The results show that RateMatch

still has the best performance, but the performance of the other algorithms is much closer; Maximum

and MaxDp provide response times that are only 11% and 9% higher, respectively. The reason is the

same as before { �le scans increase the execution time of the queries, so the e�ect of extra startup

and termination costs in the MaxDp and Maximum algorithms become less and less signi�cant.

The MinDp algorithm behaves similar to the last experiment. It selects a low degree of parallelism,

causing the select operators to block; thus, leading to high average query response times at low

query loads. As the load increases, the e�ect of blocking diminishes and MinDp is able to achieve

lower average query response times.

It is interesting to note that the degree of join parallelism chosen by the RateMatch algorithm

for the Medium and for the Large workloads is nearly identical (even though the Large queries

process nearly four times the data processed by the Medium queries). The reason is that the rate at

which tuples are sent by the select operators is the same for both workloads. The rate depends on

the degree of parallelism of the select operators. Since the degree of parallelism of select operators

is identical for both workloads, the rate at which tuples are sent to the join operators in the two

workloads is also identical. Therefore, the same degree of join parallelism can be used for both

the workloads. This implies that any algorithm which chooses the degree of join parallelism based

on the size of the input relations will be non-optimal. The degree of join parallelism chosen by

such an algorithm for the Large workload would be four times that of the Medium workload, while

these experiments have shown that the degree of join parallelism should remain the same for both

workloads.
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Figure 6: Response Times Figure 7: Degree of Parallelism

Performance of Algorithms for Determining the Degree of Parallelism { Large Workload

Maximum Memory Allocation

The last three experiments have shown that the MinDp algorithm performs well for small-query

workloads but can lead to a underutilized system and higher query response times for larger queries

(since it can underestimate the proper degree of join parallelism causing select operators to block).

The Maximum and MaxDp algorithms perform poorly for small query workloads due to high startup

and termination costs but can provide reasonable performance as query sizes increase. Finally, the

RateMatch algorithm consistently shows good performance. The RateMatch algorithm performs

well for the small query workload because it reduces startup and termination costs. At the same

time, it can dynamically increase the degree of parallelism for larger queries to prevent operators

from blocking.

8.1.1 Minimum Memory Allocation

In each of the previous experiments, queries were given their maximum memory allocation. The

next experiment compares the performance of the algorithms when queries are given their minimum

memory allocation. Figure 8 shows the average query response time for the Medium workload. The

degree of join parallelism selected by the algorithms is shown in Figure 9. Results are not presented

for the Small workload since there is not much of a di�erence between maximum and minimum

memory allocation for queries in the Small workload. Additionally, Large workload results were

qualitatively very similar to the Medium workload results and have therefore been omitted.
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Figure 8: Response Times Figure 9: Degree of Parallelism

Performance of Algorithms for Determining the Degree of Parallelism - Medium Workload

Minimum Memory Allocation

Figures 8 and 9 show that if queries are allocated their minimum memory allocation, the higher

the degree of join parallelism, the lower the average query response time. This occurs for two

reasons. First, minimum memory allocation implies that input relations must be partitioned by the

join operators into disk-resident buckets. Since writing out tuples to disk is slow, the processing rate

of join operators decreases. Therefore, too little join parallelism can cause the select operators to

block. Second, once partitioning of the input relations is complete, a higher degree of join parallelism

implies faster processing for each disk-resident bucket. Consequently, the Maximum and RateMatch

algorithms, which both select high degrees of join parallelism (128 and 122, respectively), provide

better performance than the MinDp and MaxDp algorithms, which select lower degrees of join

parallelism (85 and 38, respectively).

8.2 Result Summary

The results of the previous experiments have shown that when queries are allocated their maximum

memory allocation, the MinDp algorithm performs well for small queries since the cost of startup

and termination constitutes a large fraction of their response time. However, the MinDp algorithm's

performance can deteriorate as the size of the input relations increases because it can underestimate

the degree of operator parallelism, thus causing other operators to block. The Maximum and MaxDp

algorithms perform poorly for small query workloads due to high startup and termination costs, but
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they provide reasonable performance for larger query sizes. On the other hand, the RateMatch

algorithm can dynamically adapt the degree of parallelism to provide good performance for both

small and large query workloads.

If minimum memory allocation is used for queries, a higher degree of join parallelism improves

response times. Therefore, the Maximum and RateMatch algorithms perform well, but the MinDp

and MaxDp algorithms lead to higher response times.

The relative performance of the algorithms is also the same in a disk-intensive con�guration

[Meht94] except that all the algorithms have nearly identical performance when queries are given

their maximum memory allocation. Response times are dominated by I/O processing time in a

disk-intensive con�guration; since all the algorithms perform the same I/O processing if queries are

allocated their maximum memory allocation, their performance is also identical.

9 Comparing Processor Assignment Algorithms

So far we have compared the performance of the algorithms for selecting the degree of join paral-

lelism. This section presents a performance evaluation of the six processor assignment algorithms

discussed in Section 4.

9.1 Maximum Memory Allocation

The �rst experiment in this section compares the performance of the algorithms on the Small work-

load. Maximum memory allocation is used for the queries and the degree of select parallelism

varies varies uniformly between 1 and 128. Figure 10 shows the performance of the various proces-

sor assignment algorithms when the RateMatch algorithm is used to determine the degree of join

parallelism9 . As explained previously, the Input algorithm cannot be used with the Rate algorithm,

so it is not shown in Figure 10. The Disk-Util algorithm is also absent since it is used only with

minimum memory allocation.

Figure 10 shows that the Random algorithm leads to the highest response times since it some-

times assigns even heavily loaded processors to a join. The Round-Robin and Avail-Memory al-

gorithms distribute the join workload more uniformly than the Random algorithm and therefore

achieve lower response times. However, both these algorithms ignore the CPU load from the select

operators, and thus do not perform as well as the CPU-Util algorithm. The CPU-Util achieves

the lowest query response times, but it is only about 10% better than the Round-Robin algorithm.

9[Meht94] also contains experimental results when other algorithms like MaxDp are used determine the degree of
join parallelism and the results are qualitatively very similar.
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Figure 10: Small Workload Figure 11: Medium Workload

Performance of Processor Assignment Algorithms

Maximum Memory Allocation

This is because the CPU-Util algorithm uses utilization statistics that are updated every 5 sec-

onds. Since queries in this workload are very small (1% selectivity on the input relations), multiple

queries often arrive in the system within the 5 second intervals when the CPU-utilization statistics

are out-of-date. These queries therefore get executed on nodes that do not necessarily have the

lowest CPU-utilization. As a result, the performance of the CPU-Util algorithm is only slightly

better than the simpler Round-Robin algorithm.

The relative performance of the processor assignment algorithms is also similar with the Medium

workload. Figure 11 shows the performance of the di�erent algorithms when the RateMatch algo-

rithm is used to select the degree of join parallelism. CPU-Util provides the best performance in all

the cases, followed by the Avail-Mem, Round-Robin, and the Random algorithms. Results for the

Large workload were qualitatively similar and have been omitted.

The results of these experiments show that the CPU-Util algorithm for processor assignment

achieves the lowest response times when queries are given their maximum memory allocation. How-

ever, as query sizes increase, simpler algorithms like Round-Robin and Avail-Mem can also perform

quite well.
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9.2 Minimum Memory Allocation

The next experiment with the CPU-intensive con�guration explores the performance of the processor

allocation algorithms when joins are given their minimum memory allocation. As in Section 8.1.1,

results are reported only for the Medium workload (since there is not much di�erence between the

maximum and minimum memory allocations for the Small workload and the results for the Large

workload are similar to the results of Medium). Figure 12 shows the average query response times

for the di�erent processor assignment algorithms under various system loads. Since join operators

perform I/Os with minimum memory allocation, the performance of the Disk-Util algorithm is also

included.
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Figure 12: Medium Workload: Rate Match

Performance of Processor Assignment Algorithms

Minimum Memory Allocation

Figure 12 shows that all the processor assignment algorithms have virtually identical performance

in this case. This is mainly because the number of processors chosen by RateMatch is high for this

workload. The average degree of join parallelism is 122. Therefore, the set of processors chosen

by the CPU-Util algorithm, for example, is not very di�erent from the set of processors chosen

by the Random algorithm. As a result, all of the algorithms have basically the same performance

for this workload. This experiment shows that as the degree of operator parallelism increases, the

di�erences in the performance of the various processor allocation algorithms virtually disappear.

21



9.3 Result Summary

This section has presented the performance of several processor assignment algorithms. The results

show that the choice of the processor assignment algorithm has a signi�cant performance impact

only if the workload is CPU-intensive and queries are given their maximum memory allocation. In

this case, the CPU-Util algorithm, which selects the least utilized processors, achieves the lowest

response time.10 In all other cases11, the choice of a processor assignment algorithm has a small

performance impact and therefore a simple algorithm like Round-Robin is su�cient to obtain rea-

sonable performance. Finally, the experiments show that the choice of the processor assignment

algorithm is not as important as the choice of the algorithm used to decide the degree of join paral-

lelism; the di�erences between the performance of the processor assignment algorithms are smaller

than the di�erences in the performance of the algorithms for selecting join parallelism.

10 Related Work

Intra-operator parallelism and processor assignment has been an active area of database research.

The topic has been studied extensively in the context of load balancing in shared-everything systems

[Hira91, Hong91, Hong92, Lu92]. Several researchers have focused on processor assignment for

queries with multiple join operators [Chen92a, Chen92b, Lo93]. Processor assignment has also been

studied examined in the context of distributed database systems [Care85, Lu85, Care86].

[Wils91] presents a formula for determining the optimal degree of parallelism of database op-

erators. The formula assumes that if S is the startup cost of an operation, and P is the per-tuple

processing cost, then the total response time to process N tuples, R(N), for a degree of parallelism

of n can be estimated as

R(N) = Sn+
PN

n

Di�erentiating the above equation with respect to n and equating it to 0 yields the optimal degree

of parallelism, nopt, as

nopt =

s
PN

S

Note that this formula is based only on the size of the operand and disregards the rate of ow of

tuples between operators. The results presented earlier in the paper (Section 8) show that this can

10These results explain the use of the CPU-Util algorithm in all of the experiments comparing algorithms for selecting

join performance (Section 8).
11The experiments with the disk-intensive con�guration [Meht94] also show that all the algorithms perform similarly.
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lead to excessively high degrees of parallelism. The formula presented in [Ghan92] is also based on

relation sizes and therefore has the same drawback.

[Rahm93a] studies algorithms to determine the degree of parallelism for the join operator and

also studies processor assignment algorithms. The authors presents an algorithm that takes the

optimal degree of parallelism in single-user mode as input and reduces the degree of parallelism

based on the CPU-utilization in a multi-user environment. The speci�c formula used is

Nmulti user = Nsingle user � (1� Average CPU Utilization3)

where Nmulti user is the degree of join parallelism in multi-user mode and Nsingle user is the degree

of join parallelism in single-user mode. This algorithm, coupled with the CPU-Util algorithm for

selecting processors, was shown to perform well on a workload consisting of very small queries (with

an inner relation size of less than 5000 tuples). The problem with this approach is that the authors

do not present a method to calculate Nsingle user and the results presented in this paper show that

Nsingle user can be di�cult to estimate since it is a complex function of the con�guration, workload

and the memory allocation policy.

[Rahm94] also studies the performance of processor assignment algorithms for joins in a shared-

nothing systems. The authors extend algorithms presented in [Rahm93] and also propose new

algorithms that perform both memory allocation and processor assignment. These algorithm aim

towards avoiding memory overow and controlling CPU contention at the same time. However,

there are several drawbacks in this study. All the experiments in the paper are reported for very

small queries (less than 5000 tuples in each input relation) and very small memory sizes (0.16 MB

per node). These results will not scale for larger query sizes. Several of the proposed algorithms try

and avoid temporary I/O by allocating as much memory as possible to a join. This approach can

lead to disastrous performance especially in the presence of large queries. These algorithms could

allocate all of the memory to a single large query in an e�ort to reduce temporary I/Os. The other

proposed algorithms use the optimal degree of parallelism for single-user mode to control the degree

of parallelism, but the authors again do not o�er any mechanism to calculate this optimal degree of

parallelism.

The work reported in [Murp91] is also related since it uses the concept of matching processing

rates of operators in a query plan to determine bu�er allocation. However, formulas are presented in

the paper only for nested-loop joins. Moreover, the paper does not show how to modify the formulas

in a multi-user environment.

Finally, there is a large body of work dealing with processor allocation for general purpose (non-

23



database) parallel systems ([Mans93] contains an excellent survey of this sort of work). However,

these algorithms cannot be applied directly to database systems for three reasons. First, they assume

that there is no pipelining of data between operators belonging to a single job in the workload.

Second, it is assumed that each job can fully utilize processors that are allocated to it. Finally,

some processor allocation algorithms also assume that the degree of parallelism of jobs is known

before they begin execution. Since all of these assumptions are invalid for database query workloads,

the proposed algorithms are not applicable to database systems.

11 Conclusions

This paper has investigated the problem of managing intra-operator parallelism in a multi-query

environment for a parallel database system. Four algorithms for deciding the degree of operator

parallelism and six algorithms for selecting the assignment of operator instances to processors were

considered. A detailed performance evaluation of the algorithms showed that using the RateMatch

algorithm for deciding the degree of parallelism and the CPU-Util algorithm for selecting proces-

sors achieves the best performance irrespective of the workload and hardware con�guration. The

RateMatch algorithm calculates the degree of parallelism based on the rate at which tuples are

processed by various operators, while the CPU-Util algorithm selects the processor with the least

CPU-Utilization. Both algorithms use information about the current system state and can there-

fore dynamically adapt to di�erent workloads. However, experiments also show that if the workload

consists of large queries, or if the con�guration is disk-intensive, simpler allocation algorithms like

MaxDp can perform equally well. This implies that processor allocation can be signi�cantly simpli-

�ed in several cases.

In this paper, the RateMatch algorithm was used only to determine the degree of join parallelism

for binary join queries in a shared-nothing system. However, we feel that the paradigm of matching

the rate of tuple ow between operators can be used in other cases also. For example, it can be used

in a complex query to match the rate of ow between the operators in a parallel-query pipeline.

Similarly, the algorithm can be used to decide the degree of parallelism for other operators like sorts

and aggregates. We plan to explore these issues further in the future. Another direction of future

research is the application of the RateMatch algorithm to shared-memory and shared-disk systems.

The results presented in this study have also shown the importance of decoupling processor

allocation from data placement. The MinDp algorithm, for instance, can underestimate the degree

of operator parallelism and cause high query response times. Similarly, the MaxDp algorithm can
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overestimate operator parallelism and lead to higher startup and termination costs. The decoupling

of processor allocation and data placement can have a signi�cant impact on several other areas

of research in shared-nothing parallel database systems as well. For example, all of the studies

on declustering policies [Ghan90, Hua90, Ghan92, Falo93] also make the implicit assumption that

operations like joins are executed on the nodes where data is accessed. A re-examination of the

algorithms proposed in these studies will be required if this assumption is removed.
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