
Interleaved Multi-Vectorizing

Zhuhe Fang, Beilei Zheng, Chuliang Weng∗

School of Data Science and Engineering, East China Normal University, China
{zhfang, zhengbeilei}@stu.ecnu.edu.cn, clweng@dase.ecnu.edu.cn

ABSTRACT
SIMD is an instruction set in mainstream processors, which pro-
vides the data level parallelism to accelerate the performance of
applications. However, its advantages diminish when applications
suffer from heavy cache misses. To eliminate cache misses in
SIMD vectorization, we present interleaved multi-vectorizing (IMV)
in this paper. It interleaves multiple execution instances of vec-
torized code to hide memory access latency with more computa-
tion. We also propose residual vectorized states to solve the con-
trol flow divergence in vectorization. IMV can make full use of the
data parallelism in SIMD and the memory level parallelism through
prefetching. It reduces cache misses, branch misses and computa-
tion overhead to significantly speed up the performance of pointer-
chasing applications, and it can be applied to executing entire query
pipelines. As experimental results show, IMV achieves up to 4.23X
and 3.17X better performance compared with the pure scalar imple-
mentation and the pure SIMD vectorization, respectively.

PVLDB Reference Format:
Zhuhe Fang, Beilei Zheng, Chuliang Weng. Interleaved Multi-Vectorizing.
PVLDB, 13(3): 226-238, 2019.
DOI: https://doi.org/10.14778/3368289.3368290

1. INTRODUCTION
SIMD (Single Instruction Multiple Data) is an instruction set

available in modern processors. With SIMD, a single instruction
is executed in parallel on multiple data points as opposed to exe-
cuting multiple instructions. SIMD offers higher data parallelism
with larger vectors, which today are up to 512 bits in the latest
AVX512 instruction set. It is widely studied to speed up operations
in databases, graphs and other domains, including join, partition-
ing, sorting, bloom filter, selection, and compression [28, 9, 29, 13,
14]. These operations benefit from the vectorized execution using
SIMD to reduce computation overhead and branch misses.

However, gains from SIMD diminish when operations frequently
access memory data, such as probing hash tables, probing bloom
filters and searching trees [28, 17], because these operations are
dominated by memory access latency, when they working on large
datasets that cannot fit into the processor’s cache. The memory
access latency is not alleviated with SIMD, although SIMD issues
∗Chuliang Weng is the corresponding author.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 3
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3368289.3368290

0 . 5 M B 2 M B 8 M B 1 6 M B 3 2 M B 1 2 8 M B 5 1 2 M B 1 G B 2 G B0

3 0

6 0

9 0

1 2 0 N a i v e S I M D A M A C I M V

H a s h T a b l e S i z e

Tu
ple

s p
er

Sec
ond

(m
illi

on)

Figure 1: The performance of hash join probe

more memory accesses in a vector. Due to the lockstep in SIMD,
even if some requested data elements from a vector hit in cache,
they still cannot continue until cache misses of the others in the vec-
tor are solved. Besides, the growing gap between CPU and memory
speeds makes the bottleneck of memory access worse, while SIMD
just accelerates the CPU processing instead of data accessing.

We demonstrate the impact of memory accesses on the hash join
probe through an experiment, and we defer a description of the
experimental setup (hardware configuration, workloads) to Sec-
tion 5.1. The probe works on a chained hash table, which size
ranges from 0.5 MB to 2 GB. The probing table contains 800 MB
data. The two tables are generated with zipfian factor 1. We take the
state-of-the-art full vectorization to vectorize probe on the chained
hash table, and compare the vectorized probe with its scalar coun-
terpart. In this experiment, we execute the probe operation using a
single thread to eliminate the effects of multi-threading. As shown
in Figure 1, the throughput of the vectorized probe using SIMD is
comparable to that of the naive probe in scalar code with increas-
ing hash table size. Their throughput significantly declines with
increasing hash table size until the size approaches the capacity
of memory cache (about 12 MB). Beyond that, their throughput
slightly drops with increasing data, due to heavy cache misses.

In scalar code, such cache misses can be effectively reduced us-
ing software prefetching, i.e., manually inserting prefetching in-
structions to load data beforehand into cache. With prefetching,
GP and SPP [6] are two ways to improve hash join performance,
but they cannot solve irregular data accesses well, thus AMAC [20]
is proposed. In fact, irregular data accesses are common in pointer-
chasing applications, such as probing a hash table and traversing a
tree or a graph. Therefore, we also take AMAC to speed up probe
on a chained hash table. Figure 1 demonstrates AMAC can double
the throughput of probe on a large hash table.

Prior work has not studied the effect of cache misses on SIMD
operations. Specifically, a part of previous studies attempt to re-
arrange data layout to increase data locality, and then benefit from
the hardware prefetching [14, 32, 18]. Other studies just prelimi-
narily take the software prefetching. For example, SPP prefetches
data while traversing trees. However, these paths are of uniform
depth [18], and this method cannot be applied to irregular data ac-

226

cesses. Besides, the software prefetching is also adopted to speed
up sequential data accesses in [7, 15], slightly reducing cache
misses. Furthermore, ROF [26] links SIMD-optimized code and
prefetching-optimized code in an entire query plan, instead of fully
combining SIMD and prefetching, thus ROF improves performance
to some extent, but could not benefit from SIMD and prefetching
within an operator at the same time.

Since GP, SPP and AMAC successfully avoid cache misses in
scalar code, combining them with SIMD vectorization is a straight-
forward way to solve cache misses in vectorized code. It is easy
to vectorize each stage in prefetching-optimized techniques. How-
ever, such a method suffers from bubbles in vectors due to the con-
trol flow divergence in irregular data accesses. For example, when
a vector of tuples probe multiple hash buckets in parallel, a part of
which may terminate earlier due to fewer nodes in buckets, leav-
ing their vector lanes idle in the following processing. To avoid
the bubbles, it is better to apply the full vectorization [28] to the
prefetching-optimized algorithms. This can entirely occupy vec-
tors but not fully use vectors, because after filling the idle vector
lanes with new tuples, the older tuples have to repeat some steps to
keep pace with new ones, still wasting vector lanes. Even worse,
such full vectorization cannot handle the control flow divergence
from the general if and loop statements with more valid branches,
because it cannot handle more branches within a vector.

Combining the prefetching-optimized techniques with SIMD vec-
torization can neither make full use of vectors nor be applied to gen-
eral cases, wasting the data level parallelism and the memory level
parallelism. In response, we propose interleaved multi-vectorizing
(IMV), which runs multiple instances of vectorized code in an in-
terleaved way. Once an instance encounters immediate memory
accesses, it issues data prefetching and switches to other running
instances, trying to overlap memory accesses with computation
among these instances. We also introduce residual vectorized states
to solve the control flow divergence. In a running instance, when
vectors in a state become not full, such a divergent state will inte-
grate with the residual state at that point, after which vectors in the
state become full and continue to execute its next states, or become
empty to restart. So the divergent state does not influence the fol-
lowing execution, and all instances could make full use of vector
lanes. This can better solve the divergence in general if and loop
statements. As illustrated in Figure 1, IMV significantly speeds up
the throughput of the hash join probe, and it is faster than AMAC
because of reducing branch misses.

The contributions of this paper are concluded as follows.

(1) We are the first to comprehensively study how to reduce cache
misses in SIMD vectorization. Combining prefetching into
SIMD vectorization could exploit data-level and memory-level
parallelism simultaneously, not just for a single operator but
also in a query pipeline.

(2) We directly or fully apply SIMD vectorization to accelerate
prefetching-optimized techniques, and find those two ways nei-
ther solve the control flow divergence well, nor are generally
applied to if and loop statements.

(3) We propose Interleaved Multi-Vectorizing (IMV) to perfectly
combine SIMD vectorization and prefetching.

(4) We introduce the residual vectorized state to solve the control
flow divergence well in IMV, which could be applied to general
if and loop statements.

(5) We conduct comprehensive experiments on a CPU processor
and a Phi co-processor. As the results show, IMV achieves up
to 4.23X and 3.17X better performance compared with the pure
scalar implementation and the pure vectorization, respectively.

src
vector

8-bit
mask

dest
vector

A B C D E F G H

 A C F

0 1 0 01 0 1 0

Figure 2: Compress

src
vector

8-bit
mask

dest
vector

A B C D E F G H

 C A B

0 1 0 01 0 1 0

Figure 3: Expand

The remainder of this paper is organized as follows. Section 2
describes some related background, including SIMD vectorization
and prefetching. Section 3 analyzes how to combine SIMD with
previous prefetching-optimized techniques. Section 4 presents IMV
and the residual vectorized state to solve the control flow diver-
gence. Section 5 demonstrates our experimental evaluation. Sec-
tion 6 discusses IMV in complex queries and IMV automation. Fi-
nally, we introduce some related work in Section 7 and conclude
this paper in Section 8.

2. BACKGROUND
In this section we first briefly discuss advantages of SIMD, and

introduce the instructions accelerating operations in databases. Then
we focus on the issue of cache misses, and its potential solutions,
including hardware and software prefetching. Furthermore, we an-
alyze existing prefetching-based research efforts.

2.1 SIMD Vectorization
Modern (co-)processors provide SIMD instructions to operate

multiple data elements using a single instruction. SIMD offers
higher data level parallelism (DLP) with the larger vectors, which
today are up to 512 bits in AVX512, the latest instruction set1. So a
vector has 8 lanes to process 64-bit integers in AVX512. SIMD not
only reduces computation overhead, but also can convert control
flow to data flow to avoid branches [13] in some cases. For exam-
ple, in a simple if statement, SIMD executes all branches then com-
bines the results from branches instead of entering some branches
according to conditions.

SIMD instructions can not only accelerate computation but also
facilitate accessing data from memory and swizzle data elements
among SIMD vectors. In detail, gather selectively reads data
from non-contiguous memory addresses into a vector. The revers-
ing operation can be implemented by scatter. In particular, a
sub-collection of AVX512 called AVX512PF supports prefetching
for gather/scatter. Additionally, compress packs active
data elements (indicated by a mask) contiguously to a target vector.
In contrast, expand stores the contiguous elements of a vector to
some specific positions (hinted by a mask) of another vector. The
latter two operations are illustrated in Figures 2 and 3.

The design principles are presented to fully vectorize main mem-
ory database operations in [28]. It defines that an algorithm is fully
vectorized, only if its vectorized counterpart executes O(f(n)/W)
vector instructions instead of O(f(n)) scalar instructions, where
W is the vector length. Actually the definition excludes random
memory accesses, because executing W cache accesses per cycle
is an impractical hardware design. As a result, the full vectorization
is difficult to be achieved in memory-intensive operations.

2.2 Prefetching
The much growing gap between processor speed improvements

and memory speed improvements results in the former’s improve-
ments being masked by the relatively slow improvements of the
latter, known as “memory wall” [25][34]. Caching is an effec-
tive mechanism to mitigate the negative influence. However, cache

1https://software.intel.com/sites/landingpage/IntrinsicsGuide/

227

misses are time-consuming, almost costing 80ns - 200ns. The hard-
ware structures called Miss Status Holding Registers (MSHR) or
Line Fill Buffers (LFB) [20, 19] are introduced to track outstand-
ing cache misses. There are 6-10 L1 cache MSHRs per processor
core, which allow 6-10 in-flight memory requests per core, forming
memory level parallelism (MLP). Specifically, the Intel’s Skylake
micro-architecture supports 10 L1 MSHRs and 16 L2 MSHRs.

MSHRs are usually not fully used in current software because
the instruction dependency limits the issuing of enough memory
accessing requests. Such a problem would be alleviated in some
cases by the two techniques, hardware prefetching and speculative
execution (after branch prediction). The former is able to detect and
prefetch regular stridden access patterns, however it cannot hold
other more complex accesses, especially for random accesses. The
latter speculatively issues more but limited instructions (possibly
with memory access) to execute in advance, but it wastes memory
bandwidth when misprediction occurs. In all, the above two tech-
niques still cannot fully use available MSHRs in most cases.

Software prefetching is a practical way to fully exploit MLP. It
can proactively issue memory requests to move data from memory
to caches before the data is needed, and the distance ahead of which
a prefetching should be requested on a memory address is defined
as prefetching distance. Note that the prefetching distance is con-
trolled by programs. If the prefetching distance is too short, the
requested data is not fetched into caches. But if it is too large, the
requested data is evicted out of caches. Those two cases degrade
the work of the software prefetching. Software prefetching with
desirable prefetching distance can eliminate cache misses when the
data addresses are known in advance, such as sequential accessing
or looking up according to known indexing.

However, software prefetching does not work if the data ad-
dresses are not known in advance. To the operations in pointer-
chasing applications, e.g., traversing skip lists, looking up hash ta-
bles and searching trees, the addresses of next nodes are not known
until current nodes are processed. The time between when the ad-
dresses are known and the data are needed is much less than the
desirable prefetching distance. We call the accesses with such a pat-
tern as immediate memory accesses. Such accesses can only benefit
from the software prefetching by taking inter-task parallelism [21].
Specifically, after a task issues memory prefetching, it will not con-
tinue because the prefetched data is not ready in time. Instead, the
execution switches to other tasks, and then goes back to process the
prefetched data after a while.

According to this idea, previous solutions [6, 20] share a com-
mon theme that launches G identical tasks working on different
data inputs, then splits each task with N dependent memory ac-
cesses into N+1 code stages, where each stage consumes the data
prefetched by the previous stage and initiates new prefetching for
its next stage. How to interleave G stages from different G tasks
to hide memory access latency differs in the following three ap-
proaches. Group prefetching (GP) [6] repeatedly executes N+1
stages, and each stage involves G identical stages from different
tasks. Software Pipelined Prefetching (SPP) [6] runs G tasks at
each stage in a pipelined fashion. Since GP and SPP couple G
stages in a group or in a pipeline, they are not flexible with dealing
with irregular memory access patterns. To this end, Asynchronous
Memory Access Chaining (AMAC) [20] encodes N+1 stages of a
task as a Finite State Machine (FSM). G running instances of the
FSM execute independently but interleavingly, and each running
instance goes forward to next one state circularly. AMAC is the
state-of-the-art technique to exploit the software prefetching for im-
mediate memory accesses, especially in irregular pointer-chasing
applications.

Ta

Tb

Tc

Td

.

.

.

Hash Table on Relation R

Buckets

Relation S

Ti: i-th Tuple

tuple next

Node

(a) Probe on a chained hash table

HMM...M
n

H M1 n-1

(b) FSM of a probe

H M

n
(HM) (HM)

n
n

(c) FSM of a fully vector-
ized probe

Figure 4: Hash join probe and its FSMs (H: Hash, M: Match)

3. COMBINING PREFETCHING AND SIMD
Previous studies take either SIMD or prefetching to optimize

a single operator, instead of completely combining both of them.
Combining SIMD and prefetching in an operator can achieve better
performance, because it can reduce branch misprediction, compu-
tation overhead, as well as cache misses. To achieve this goal, it is
a straightforward approach to apply SIMD to existing prefetching-
optimized techniques. SIMD can be exploited directly or fully, and
the prefetching-optimized techniques include GP, SPP and AMAC.
There are six cases in total that need to be discussed. For the sake
of simplicity, AMAC is chosen as an example to be vectorized di-
rectly or fully in detail, and the vectorization of GP and SPP is
briefly discussed, because AMAC is able to handle irregular mem-
ory accesses.

The following analysis is conducted on the hash join probe, a
typical pointer-chasing application, and its results still stand on
other similar applications. The hash join probe is illustrated in Fig-
ure 4(a), which is similar to that in the paper proposing AMAC
[20]. The probe works on a chained hash table, where each hash
bucket may contain many nodes due to hash collisions, and each
node is composed of one tuple and a pointer of its next node. In
the hash join probe, a tuple is sequentially fetched from a relation
table, then probes the hash table in two steps: (1) computing the
hash value of the join key in the tuple to find the address of a cor-
responding bucket; (2) iteratively matching the join keys from the
tuple and each node of the bucket. Such probing process is mapped
in an FSM in Figure 4(b). We can see that n times of matching
causes random access of n nodes of a bucket, which is the perfor-
mance bottleneck of the probe.

3.1 Direct Vectorization in Prefetching
AMAC maps the logic of a procedure into an FSM, where its

states are split by immediate memory accesses, then interleaves
multiple running instances of the FSM. Following such a main idea,
SIMD can be directly applied to vectorizing each state of an FSM,
forming directly vectorized AMAC (DVA). Note that SIMD works
on a batch of tuples rather than only one tuple. The batch size
equals to the number of vector lanes (W) of a vector. Particularly,
a vectorized state is done only when a batch of tuples in the state
are finished processing, then it can transfer to other states. In other
words, a vectorized state is still active even if only one of the batch
is not finished processing. It should guarantee completion of all W
tuples, then goes forward to its next state.

The directly vectorized AMAC probe (DVAP) is shown in List-
ing 1, where each vectorized variable is prefixed with a v prefix.
It processes a batch of tuples in lockstep at each state. The match-
ing state first loads W tuples and computes their hash values, then
prefetches needed hash bucket nodes and points to its next state.
The matching state iteratively compares join keys and prefetches
its next bucket nodes. It should terminate all matches of current W
tuples before returning to the hashing state. In fact, the matching of

228

W tuples may not finish at the same time due to the differing sized
hash buckets. As a result, each vector in the matching states may
have inactive lanes due to the early finished matches, wasting the
available vector lanes.

Such inactive vector lanes are further illustrated in Figure 5(a),
supposing the group size is two and each vector has four lanes to
accommodate four tuples. At first, four tuples a-d are loaded in the
left vector (i.e., H0) to compute hash values, and H1 computes the
hash values of tuples e-h in the right vector. Then the two vectors
shift to the matching state, i.e., M2-M6. Note that tuples a-h have
1, 2, 1, 3, 1, 1, 2 and 1 candidate matching nodes in corresponding
hash buckets. After the matching state, the two vectors load new
tuples i-p to proceed. Even though such interleaving in the two
vectors can overlap computation and memory access, there are still
many bubbles, i.e., the white vector lanes, denoting inactive pro-
cessing. For example, in the operation M6, the left vector has three
inactive lanes due to early termination of matches from Ta, Tb and
Tc.

1 struct fsm t{v key, v payload, v ptr /∗ ptr of bucket nodes∗/,
state};

2 void dva probe(tuple t∗ tuple, hashtable t∗ ht, table t∗ out){
3 fsm t fsm[G]; all done = 0;
4 while(all done < G) {
5 k = (k == G) ? 0 : k;
6 switch(fsm[k].state) {
7 case H:{ // hash the input key, prefetch buckets
8 if(i < tuple num) {
9 fsm[k].v key = load(tuple[i].key);
10 v hashed = HASH(fsm[k].v key);
11 fsm[k].v ptr = ht→buckets + v hashed;
12 v prefetch(fsm[k].v ptr);
13 fsm[k].state = M;
14 i += W; //suppose tuple num % W = 0
15 } else {
16 fsm[k].state = D; // the fsm is done
17 ++all done;
18 }
19 }break;
20 case M:{ // match join keys, prefetch next bucket nodes
21 m match = fsm[k].v ptr→v key == fsm[k].v key;
22 out[num] = store(fsm[k].v ptr→v payload, m match);
23 num += |m match|;
24 m valid = fsm[k].v ptr→next == v null;
25 if(m valid) {
26 v prefetch(fsm[k].v ptr→next, m valid);
27 fsm[k].v ptr = (fsm[k].v ptr→next, m valid);
28 } else {
29 fsm[k].state = H; // initiate new probe in H
30 }
31 }break;
32 } ++k;
33 }}

Listing 1: Directly vectorized AMAC probe
Such inactive lanes result from control flow divergence, which

generally happens when a vector of data elements encounter condi-
tions in branches or loops but cause different results. For example,
the divergence in the matching state of DVAP lays at line 24 in List-
ing 1, which judges whether a vector of next pointers are NULL or
not. Such divergence underutilizes the data parallelism provided
by SIMD. In the worst case, only one lane is active in a vector,
degrading the vectorized processing to the scalar execution. Ad-
ditionally, such divergence prevents DVA from making full use of
MLP, because the inactive vector lanes do not issue useful memory
accesses.

Such control flow divergence from irregular memory accesses
seriously worsens GP and SPP. Specifically, each iteration of GP

and SPP executes the same or different vectorized states of G run-
ning instances of an FSM. If any running instance of the FSM ter-
minates earlier, then the corresponding entire vector becomes idle
and cannot load new tuples to continue, so directly vectorized GP
and SPP waste more vector lanes compared with DVA. For exam-
ple, when applying GP to the case in Figure 5(a), H7 has to be de-
ferred to the next iteration, and an idle vector conducts the match-
ing state, because another running instance does not finish at that
iteration.

3.2 Full Vectorization in Prefetching
Fortunately, such divergence can be avoided in the full vectoriza-

tion, which is introduced to vectorize most operators in databases
using SIMD, including the hash join probe [28, 29]. To achieve the
full vectorization for the probe, the FSM of a probe HMM...M

in Figure 4(b) is changed to ~HM... ~HM in Figure 4(c) so that all
states in a probe are repeated regularly, regardless of the variable
size of hash buckets. Consequently, this fully vectorized probe can
avoid the divergence from the loop of matching. After each match-
ing state, the inactive vector lanes are replaced with new probing
keys in the next hashing state, so there are no any idle vector lanes
during execution.

Such full vectorization can be applied to AMAC to avoid the di-
vergence problem, forming fully vectorized AMAC (FVA). States
in FVA are repeated regularly so that inactive vector lanes are re-
filled in time. For example, as depicted in Listing 2, the fully vec-
torized AMAC probe (FVAP) repeats the two states, i.e., hashing
and matching, in a group of running instances of the hash join
probe. In contrast to DVAP in Listing 1, the matching state in FVAP
is just conducted once then shifted to the hashing state, instead of
repeating n times as the size of hash buckets in DVAP. The hashing
state also selectively loads probing keys to fill inactive vector lanes
in FVAP, rather than loading W new probing keys in DVAP.

1 struct fsm t{v key, v payload, v ptr, state, m valid};
2 void fva probe(tuple t∗ tuple, hashtable t∗ ht, table t∗ out){
3 fsm t fsm[G]; all done = 0;
4 while(all done < G) {
5 k = (k == G) ? 0 : k;
6 switch(fsm[k].state) {
7 case H:{ // hash the input key, prefetch buckets
8 if(i < tuple num) {
9 fsm[k].v key = load(tuple[i].key, !fsm[k].m valid);
10 v hashed = HASH(fsm[k].v key);
11 v ptr = ht→buckets + v hashed;
12 fsm[k].v ptr = (v ptr, !fsm[k].m valid);
13 v prefetch(fsm[k].v ptr);
14 fsm[k].state = M;
15 i += |!fsm[k].m valid|;
16 fsm[k].m valid = !fsm[k].m valid || fsm[k].m valid;
17 } else {
18 fsm[k].state = D; // the fsm is done
19 ++all done;
20 }
21 }break;
22 case M:{ // match join keys, prefetch next bucket nodes
23 m match = fsm[k].v ptr→v key == fsm[k].v key;
24 out[num] = store(fsm[k].v ptr→v payload, m match);
25 num += |m match|;
26 fsm[k].m valid = fsm[k].v ptr→v next == v null;
27 fsm[k].v ptr = (fsm[k].v ptr→v next, fsm[k].m valid);
28 fsm[k].state = H; // add new probe in H
29 }break;
30 } ++k;
31 }}

Listing 2: Fully vectorized AMAC probe

229

H0

M2

Ta Tb Tc Td
Te Tf Tg Th

Ti Tj Tk Tl
Tm Tn To Tp

H1

H8

H7

M3

M5
M4

M10

M12

M11

M9

M6

(a) Directly vectorized AMAC probe

Ta Tb Tc Td
Te Tf Tg Th

Ti Tj
Tk Tl Tm

Tn To
Tp

H0

M2

H4

H8

H12

M6

M10

M14

H1

M3

M7

M11

H5

H9

H4

(b) Fully vectorized AMAC probe

 T
im

e
Te Tf Tg Th

H1

M4

M10

H7

db

d og m

Ta Tb Tc Td
H0

M2

H6

M8

M12

M14

b d

gb d

og m

V3
V5

V11

g
F9

F13

Residual
Vectorized States

H: Hash
M: Match
V: moVe
F: Fill
T: Tuple

: Vectorized
computation

: Memory access

Legend:

Ti Tj Tk Tl
Tm Tn To Tp

(c) Interleaved multi-vectorizing probe

Figure 5: Execution patterns of three interleaved approaches on the hash join probe

The execution pattern of FVAP is shown in Figure 5(b), where
the workloads are the same as those in Figure 5(a). At first, tuples
a-h repeat the hashing state and the matching state, but after M2,
Ta and Tc finish their matches, their corresponding vector lanes
are then replaced with Ti and Tj . These two new tuples work to-
gether with original two tuples Tb and Td. In this way, all new in-
active vector lanes are filled with new probing keys of subsequent
tuples. In consequence, there are no bubbles in Figure 5(b) com-
pared with Figure 5(a), even though suffering from the control flow
divergence.

Figure 5(b) shows the full vectorization can eliminate idle vector
lanes, but it induces redundant hash computation for each match
of tuples except the first match. For example, Td only has three
matches but brings in three times of hash, the latter two of which are
unnecessary. This is essentially because FVAP changes the original
FSM of the probe in Figure 4(b) (i.e., HMM...M) to the regular
FSM of the probe in Figure 4(c) (i.e., ~HM... ~HM). As a result,
such redundant hashing computation may offset the benefits from
the full vectorization in contrast to the direct vectorized execution
in Figure 5(a). In fact, the redundant computation is another way
to waste vector lanes.

Additionally, the full vectorization is hard to be exploited in
complex FSMs in following two cases. (1) An FSM has more di-
vergent states, e.g., the FSM generated from a pipeline. Suppose
an FSM has six serial states ABCDEF, where C and E may induce
divergence. When its execution in E meets divergence, the execu-
tion returns to A to fill inactive vector lanes; but when it enters C,
divergence may happen again, then it has to return to A again to
fill new inactive vector lanes. At this point, the valid data in active
vector lanes may come from state E or state C, which should be
separately protected from being overrided or modified in later pro-
cessing. Besides, such protected vector lanes introduce redundant
operations to keep pace with the following processing. In summary,
such recursive filling not only requires complex control but also se-
riously wastes vector lanes. (2) An FSM comes from an application
with branches, like the projection operator in databases containing
case...when... or if...else... statements. When a vector of data el-
ements meet more branches, if the execution attempts to use an
entire vector in any branch, then it returns to fill unqualified vector
lanes that enter other branches. Note that these unqualified lanes
are not invalid so that they cannot be overridden, thereby leaving
no way to completely fill the vector.

We could easily apply the full vectorization to GP and SPP for
the regular probe. Similar to FVAP, this eliminates idle vector lanes
but induces redundant hash computation. It is more difficult to han-
dle complex FSMs as GP and SPP that require execution in a group
or a pipeline.

4. INTERLEAVED MULTI-VECTORIZING
The previous section illustrates how to combine the widely used

SIMD vectorization principle with the prefetching-optimized tech-
niques, but it neither nicely solves the divergence problem nor is
applied to complex but general FSMs. To this end, we propose a
novel technique called interleaved multi-vectorizing (IMV) to fully
use SIMD vectorization and prefetching. IMV splits a vectorized
program into multiple states wherever the program meets the con-
trol flow divergence or immediate memory accesses, forming a vec-
torized FSM. Then it interleaves the execution of vectorized states
from those running instances of the FSM. Besides, IMV uses a
residual vectorized state to solve the divergence within a state.

4.1 Interleaved Execution
To hide memory access latency, modern processors provide si-

multaneous multi-threading (i.e., SMT, also called hyper threading
(HT)) to run several threads per physical core. Typically, a modern
CPU core supports two logical threads. When one logical thread
is stalled on memory accesses, another can use instruction units.
However, the two interleaving logical threads of SMT are too few to
hide memory access latency, especially in memory-intensive appli-
cations. Such deficiency still stands in vectorization, even though
each thread issues more memory accesses. Therefore, it is also
necessary to interleave more instruction streams in vectorization,
letting more instruction streams hide cache misses among them.

The interleaved execution requires an efficient way to suspend
and resume each instruction stream. It can be achieved in user
space by the following two ways. (1) Coroutine [19, 16, 31]. It
is a “resumable function” that can suspend its execution and return
a handle to its caller before it completes, then the caller uses the
handle to resume the function. So several coroutines can be inter-
leaved by scheduling their suspension and resumption. However,
the coroutine is not available in the current C++ standard. It is
under review to become a part of the C++20 standard. Some exper-
imental features are explored in [16, 31], but this method does not
outperform the implementation based on GP or AMAC in pointer-
chasing applications. To this end, we adopt the second way below
and defer the discussion about combining coroutines and SIMD to
Section 6. (2) Interleaved FSMs [20]. Although current C++ does
not support the suspension and resumption mechanisms, they can
be manually implemented in programs. Taking AMAC for exam-
ple, a program is split into many states wherever it issues immediate
memory accesses, forming an FSM. After a state issues memory ac-
cess requests through the software prefetching, it is suspended by
storing its contexts to a circular array, and another state of other
running instances of the FSM is resumed by restoring its contexts
from the circular array. In this way, the memory access latency

230

from an instruction stream can overlap with the computation from
other instruction steams. In particular, the context switch among
states induces less time than a memory stall. Moreover, this way in
AMAC performs well in pointer-chasing applications, so we adopt
this method to interleave multiple vectorized programs.

4.2 Splitting States for a Vectorized Program
According to the principle of interleaved FSMs, a vectorized pro-

gram is split into a series of states, forming a vectorized FSM. Dur-
ing the interleaved execution, after a vectorized state ends with re-
questing accessing memory data through prefetching, it does not
continue to its next states but switches to the state of other running
instances of the vectorized FSM. In such a way, a group of inter-
leaved running instances of the FSM are suspended and resumed in
turn, and each running instance has its own running contexts. The
group size should be large enough so that the interleaved compu-
tation can overlap with memory accesses. We will test the optimal
group size through experiments.

However, the vectorized states suffer from the control flow di-
vergence as analyzed earlier in Section 3. Even worse, going either
forward or back with the non-full vectors cannot make full use of
DLP and MLP in the direct or full vectorization. The essence of the
problem is that the non-full vectors from current execution have an
impact on the subsequent processing, so it is necessary to prevent
the non-full vectors of current execution from involving in the next
processing. To achieve this goal, we further split a vectorized state
into several smaller states wherever meeting divergence; the diver-
gence of each smaller state is then solved within the state by the
residual state vectors below. Finally, any divergent state would not
pollute its next states. Such splitting from divergence guarantees
each vectorized state fully utilizes available vector lanes.

4.3 Residual Vectorized States
To solve the divergence within a vectorized state, we propose at-

taching a residual vectorized state (RVS) with each divergent vec-
torized state (DVS), which stores the contexts of the DVS with non-
full vectors. Before a DVS continues to its next states, it integrates
with its RVS. If the active vector lanes in the DVS and its RVS are
not less than the size of an SIMD vector (i.e., W), the RVS will fill
the DVS. Consequently, a new fully vectorized state can go forward
to the next state while the remaining active lanes reside in the RVS.
Otherwise, the active vector lanes in current DVS are moved to its
RVS, leaving an empty state that will return to a previous state to
restart new execution, i.e., its nearest data source state. The inte-
gration between a DVS and its RVS is shown in Listing 3. After the
integration in such two cases, the DVS becomes full or empty, so
current non-full vectors do not pollute subsequent processing. To
this end, each vectorized state fully utilizes DLP.

1 if(DVS active lane cnt + RVS active lane cnt < vector size) {
2 DVS = compress(DVS); // left packing valid lanes in DVS
3 RVS = expand(RVS, DVS); // filling RVS
4 // return to a previous state to restart new execution
5 } else {
6 DVS = expand(DVS, RVS); // filling DVS
7 RVS = compress(RVS); // left packing valid lanes in RVS
8 // go to its original next state
9 }

Listing 3: The integration between a DVS and its RVS

After the RVS being introduced, any DVS has to integrate with
its RVS before continuing its subsequent processing, thus changing
the original FSM. Such change is analyzed for if and loop state-
ments, respectively. For an if statement in vectorization, more than

RR

FullFull

Empty

Empty

Data Source State

State R : RVS

(a) A branch statement

Empty

Full

RD

Done

R

Full

Empty

(b) A loop statement

Figure 6: Updated FSMs

H M R

Full

Empty

Figure 7: The FSM of the IMV probe

one of the branches may be processed after evaluating conditions.
Before entering any branch, a residual vectorized state is added
to update the divergent vectorized state from the conditions. This
change is shown in Figure 6(a). After the integration in the RVS,
if vectors in the DVS become full, the execution continues to its
next state. Otherwise, the active vector lanes in the DVS are moved
to the RVS, leaving empty vectors. After these two cases, the ex-
ecution returns to sequentially process other branches in a similar
way. Note that after the last branch is completed, the execution
goes back to its nearest data source state, restarting new execution.
However, such sequential processing in branches becomes sophis-
ticated if the branch body contains complex statements, like if or
loop statements. In such a case, the full DVSs after integration
are stored in a task queue, instead of being processed immediately,
then each task in the queue will be executed by coming idle running
instances. With regards to a general loop statement illustrated in
Figure 6(b), after an iteration of the loop, a current state becomes
divergent, then this divergent state can be processed according to
the way in the if statement.

RVSs cost little overhead in space and time during the inter-
leaved execution, because each RVS is shared among a group of
running instances of the DVS. The number of RVS instances equals
the number of DVSs of an FSM. They cost less vectors thus reside
in memory caches. In particular, all instances of RVSs are owned
by the current running instance of an FSM, and their ownership
changes with the switching of running instances of an FSM. In
other words, each RVS is sequentially read and written by a run-
ning instance of an FSM, so there are no conflicts among read and
write in an RVS. Additionally, the integration between RVSs and
DVSs is processed among vectors, thus its overhead is far less than
accessing memory.

4.4 Example Analysis
The key idea of IMV is to interleave vectorized states from mul-

tiple running instances of an FSM. Each instance independently
processes a batch of data. Thus IMV can be used in once-a-batch
execution model in databases. In particular, IMV is able to speed up
pointer-chasing applications, such as traversing skip lists, searching
trees and looking up hash tables. Besides, it can directly acceler-
ate a series of operators in a query pipeline, forming a fully SIMD
vectorized execution model. Here, we take the hash join probe and
a pipeline as examples to illustrate how IMV works.

The FSM of the IMV probe is illustrated in Figure 7. The match-
ing state may become divergent, so an RVS is added. After the in-
tegration in RVS, the vectors may be fully filled with valid data to

231

do matching again, or become empty after moving valid data to the
RVS, and then return to the hashing state. Such integration is the
main difference between the IMV probe and the DVA probe. So
we just add an RVS to Listing 1, then the DVA probe is changed
to the IMV probe, which is shown as Listing 4. The integration
is added at line 26 when divergence may happen at the previous
line. After integration, if the FSM instance continues to do match-
ing (i.e., fsm[k] is full), then it will prefetch data; otherwise, it will
directly shift to the hashing state. In particular, if there are many
empty buckets in the hash table, the state is not full before entering
the matching state. Such divergence requires adding a new state to
check valid buckets after the hashing state, but this is omitted here
for simplicity.

1 struct fsm t{v key, v payload, v ptr, state, m valid};
2 void imv probe(tuple t∗ tuple, hashtable t∗ ht, table t∗ out){
3 fsm t fsm[G], RVS; all done = 0;
4 while(all done < G) {
5 k = (k == G) ? 0 : k;
6 switch(fsm[k].state) {
7 case H:{ // hash the input key, prefetch buckets
8 if(i < tuple num) {
9 fsm[k].v key = load(tuple[i].key);
10 v hashed = HASH(fsm[k].v key);
11 fsm[k].v ptr = ht→buckets + v hashed;
12 v prefetch(fsm[k].v ptr);
13 fsm[k].state = M;
14 fsm[k].m valid = 0xFF;
15 i += W; //suppose tuple num % W = 0
16 } else {
17 fsm[k].state = D; // the fsm is done
18 ++all done;
19 }
20 }break;
21 case M:{ // match join keys, prefetch next bucket nodes
22 m match = fsm[k].v ptr→v key == fsm[k].v key;
23 out[num] = store(fsm[k].v ptr→v payload, m match);
24 num += |m match|;
25 fsm[k].m valid = fsm[k].v ptr→next == v null;
26 integration(fsm[k], RVS);
27 if(fsm[k].state==M) {
28 v prefetch(fsm[k].v ptr→next, fsm[k].m valid);
29 } else {
30 k = k−1; // directly shift to H
31 }
32 }break;
33 } ++k;
34 }}

Listing 4: Interleaved multi-vectorizing probe
The execution pattern of the IMV probe is shown in Figure 5(c).

The data distribution is the same as that in Figure 5(a). The main
difference lays at the integration. After M2, Ta and Tc terminate,
Tb and Td are left active in the two vector lanes. At this time, Tb and
Td are moved to the residual vectorized state of the matching state,
then a fully empty vector loads subsequent tuples i-l to process.
Similar cases happen after M4 and M10. After M8, the remain-
ing two active lanes of Tj and Tl plus the three active lanes in its
RVS can fully fill a vector, so Tb and Td are reloaded to the vector.
Then prefetching instructions are issued, subsequently M12 occurs.
An analogous case happens in M14. Figure 5(c) demonstrates that
IMV fully utilizes DLP and MLP in contrast to Figure 5(a) and
Figure 5(b).

IMV provides a mechanism to benefit from prefetching in vector-
ized programs, instead of only in one operator. Next, we illustrate
how IMV works in a query pipeline that suffers from the control
flow divergence and heavy memory accesses. An example pipeline
is shown in Figure 8(a). In the pipeline, tuples come from the scan

Scan (S) Filter
(F)

Probe
(H+M)

Count
(C)

(a) A pipeline

Empty

Full

Empty

S->F R R

Full

H P

Interleave

M->C

(b) The FSM of the pipeline (P: Prefetching)
Figure 8: A pipeline example using IMV

Table 1: Details of hardware configurations
SKX KNL

Cores 8 64
Threads 2 threads/core 4 threads/core
Frequency 2.10GHz 1.05GHz
L1d/L1i cache 32KB/32KB 32KB/32KB
L2 cache size 1MB 1MB
L3 cache size 11MB NA
Memory size 150GB 96GB
L1 TLB entries for 2MB huge pages 32 128
SIMD 512 bits 512 bits

operator, but only some of them can pass the predicates in the filter
operator, the passed tuples then compute hash values and match a
hash table in the probe operator, lastly counting qualified tuples.

In IMV, the pipeline is transformed to the FSM in Figure 8(b).
As a vector of tuples suffer from the control flow divergence af-
ter the filter, an RVS is appended. After the hashing, however,
the matching loop not only accesses memory data but also encoun-
ters divergence in each iteration, so a prefetching state and an RVS
are added before and after the matching state. Note that after the
prefetching state, one interleaved execution will be issued, then the
current running instance of the FSM is suspended and another run-
ning instance of the FSM will be resumed. The two RVSs instead
transfer to other states within the current running instance.

5. EXPERIMENTS
In this section, we first compare IMV with other competitors on

four individual operators. Then we test all approaches on Xeon
Phi, a many-core co-processor. Finally, we apply IMV to execute a
query and compare its performance against those of three popular
execution models.

5.1 Experimental Setup
We conduct experiments on two hardware platforms: a server

equipped with two Intel Xeon Silver 4110 CPUs based on Skylake
micro-architecture (SKX), and a server with an Intel Knights Land-
ing processor 7210 (KNL). The hardware specifications of SKX
and KNL are listed in Table 1. Our code is compiled by gcc 6.4.0
with -O3 optimization enabled. The affinity of threads is set to
avoid scheduling overhead, and prefetching data is implemented
through the mm prefetch() instruction with MM HINT T0 hint.
The source code used for all experiments is available online [1].

Workloads. The experiments on individual operators are con-
ducted on synthetic workloads, which are generated according to
the method shown in [4]. All workloads involve two relations (R
and S). Each tuple of tables contains an 8-byte integer key and an
8-byte integer payload. They are distributed uniformly or not by
controlling Zipf factors. The Zipf factor of relations R and S is
denoted by [ZR, ZS], and Zipf ∈ [0, 1]. Especially, [0,0] denotes
uniform data distribution. Note that keys of S are in the range of R
to guarantee equivalent keys in the two relations.

232

Table 2: The speedup of IMV over others
Configurations Naive SIMD DAV FVA AMAC

HJP,[0,0],1 thread 1.62 1.91 1.01 1.15 0.93
HJP,[0.5,0.5],1 thread 2.79 2.76 1.48 1.22 1.33
HJP,[1,1],1 thread 3.34 3.17 2.39 1.27 1.97
BTS,[0,0],1 thread 4.23 2.62 1.15 1.27 2.10
BTS,[0.5,0.5],1 thread 3.76 2.30 1.14 1.25 2.21
BTS,[1,1],1 thread 2.39 1.66 1.14 1.22 2.34

HJP,[0,0],32 threads 1.62 1.37 1.01 1.14 1.00
HJP,[0.5,0.5],32 threads 2.09 1.71 1.31 1.11 1.15
HJP,[1,1],32 threads 1.66 1.79 1.89 1.49 1.54
BTS,[0,0],32 threads 2.76 1.86 1.15 1.26 1.85
BTS,[0.5,0.5],32 threads 2.31 1.52 1.13 1.23 1.83
BTS,[1,1],32 threads 1.52 1.22 1.14 1.26 1.97

 N a i v e S I M D D V A F V A A M A C I M V

[0 , 0] [0 . 5 , 0 . 5] [1 , 1]0

4 5

9 0

Th
rou

ghp
ut

(M
tps

)

Z i p f F a c t o r [Z R , Z S]
(a) Hash join probe

[0 , 0] [0 . 5 , 0 . 5] [1 , 1]0

5

1 0

Th
rou

ghp
ut

(M
tps

)

Z i p f F a c t o r [Z R , Z S]
(b) Binary tree search

Figure 9: The impact of data distribution

For all techniques and algorithms, we carefully tune their code
and deployment to use the best performing parameters in all exper-
iments. All experiments on individual operators use the modulo
hashing, except for the experiment in Section 5.5 that takes the
MurmurHash3 in [17]. By default, to avoid TLB misses, experi-
ments take 2 MB huge pages, and choose 1 M (1 M = 220) tuples
in relation R and 50 M tuples in relation S. We set optimal group
sizes for all interleaving executions, 5 for IMV, FVA and DVA, 20
for AMAC. The performance is measured by the throughput of ap-
proaches, i.e., million tuples per second.

5.2 Hash Join Probe and Binary Tree Search
The hash join probe (HJP) and the binary tree search (BTS) share

the similarity of finding matches in a data structure. HJP adopts the
chained hash tables optimized in the previous work [4]. Each hash
table bucket may contain more than one node due to hash collisions.
Each node is composed of a 1-byte latch for synchronization, a 16-
byte tuple and an 8-byte pointer to its next node. In particular, the
hash join probe writes the payloads of matched tuples to a buffer,
as that in the once-a-batch execution model. The binary tree takes
a typical implementation, which is built from relation S. Each node
contains a 16-byte tuple and two 8-byte pointers to its right and left
children. The key of a node is bigger than that in its left child but is
less than the key in its right child. Besides, there are no duplicated
keys in the tree. The tree is searched by tuples from relation R to
find equal keys. If one tuple matches a node in the tree, then their
payloads generate a new tuple to be stored in a buffer, resembling
an index join.

We test the performance of HJP and BTS in the six approaches
using one thread or all threads, and experiments are conducted un-
der various data distributions on SKX. The single-threaded results
are presented in Figure 9, and the speedup of IMV over others is
listed in Table 2. IMV outperforms others in most cases, up to
4.23X, 3.17X, 2.39X, 1.27X and 2.34X faster than Naive (i.e., the
pure scalar implementation), SIMD (i.e., the pure SIMD implemen-
tation), DVA, FVA and AMAC, respectively. We further analyze

 F r o n t - E n d B a d S p e c u l a t i o n M e m o r y C o r e R e t i r i n g

1 4 % 3 6 %

1 5 %

3 7 %

4 4 %
2 7 %

8 0 %
6 6 %

2 5 %
1 0 %

2 4 %
2 6 %

1 0 %

3 3 %
3 3 %
2 9 %

3 7 %

I M V
A M A C

F V A
D V A

S I M D
N a i v e

0 2 0 4 0 6 0 8 0 1 0 0
(a) SKX, HJP, [1,1]

1 2 %
1 3 %

2 0 %

4 2 %

2 4 %

1 4 %
1 3 %

1 8 %
1 6 %

5 6 %
4 8 %

2 1 %
9 %

3 3 %
3 0 %

2 2 %

4 6 %
2 2 %

4 4 %
4 5 %

2 0 %

I M V
A M A C

F V A
D V A

S I M D
N a i v e

0 2 0 4 0 6 0 8 0 1 0 0
(b) SKX, BTS, [1,1]

Figure 10: Execution time breakdown based on microarchitec-
tural analysis

the advantages of IMV through micro-architectural metrics. The
methodology is specified by TMAM [2]. The execution time break-
down reported by Intel Vtune is depicted in Figure 10. ‘Front-End’
represents a fraction of slots during which CPU was stalled due
to front-end latency issues, such as instruction-cache misses, ITLB
misses or fetch stalls after a branch misprediction. ‘Bad Specula-
tion’ represents a fraction of pipeline slots wasted due to incorrect
speculations. ‘Retiring’ means a fraction of pipeline slots utilized
by useful work, i.e., excluding the fraction from ‘Bad Speculation’.

Figure 10 shows why IMV is significantly faster than others.
IMV not only reduces memory access costs but also eliminates bad
speculations (i.e., branch misses). In Naive, both HJP and BTS are
dominated by memory accesses (66% and 48%, respectively). Al-
though optimizing memory accesses in AMAC can speed up per-
formance, this method is still limited by serious bad speculations
(36% and 42% in HJP and BTS, respectively). The results of Naive
and AMAC show, only eliminating branches in SIMD almost does
not work because of numerous cache misses (80% and 56% in HJP
and BTS, respectively), so we conclude that only reducing memory
accesses or eliminating branches is not enough to significantly ac-
celerate HJP and BTS, as well as similar applications. Fortunately,
those two goals can be achieved by combining vectorization and
prefetching in DVA, FVA and IMV. IMV is superior to DVA and
FVA because IMV provides a better way to eliminate divergence in
vectorization as analyzed in Section 4.

In addition, we evaluate the performance of the six approaches
in HJP and BTS using all threads. We adopt the morsel-driven [24]
parallelism to dispatch data to each thread, and since HJP is sensi-
tive to the NUMA architecture (see Figure 14(a)), we copy related
data in all sockets to avoid remote accesses. The speedup of IMV
over others is also listed in Table 2. IMV achieves up to 2.76X,
1.86X, 1.89X, 1.49X and 1.97X better performance than Naive,
SIMD, DVA, FVA and AMAC approaches, respectively. In all con-
figurations, the speedup using all threads is almost slower than that
using a thread, because more threads compete for shared resources,
including memory bandwidth, caches, VPUs and TLB entries. The
performance of those six techniques differs in various configura-
tions, which will be further analyzed in next subsections.

5.2.1 Parameters of Workloads and Techniques
Data Distributions. We evaluate the impact of data distributions

by changing the Zipfian factor as in [20]. The results are shown in
Figure 9. For HJP, AMAC achieves the best performance in [0,0],
because it rarely encounters branch misses on uniform datasets,
while IMV, FVA and DVA pay additional efforts to solve diver-
gence. However, AMAC becomes much worse on skew datasets,
especially in [1,1]. DVA is inferior to IMV and FVA in skew
datasets because it suffers from heavy divergence. BTS differs in
that it is not influenced by the data distribution, because the built
tree is bushy and without long chains. Due to less divergence, DVA
is a bit faster than FVA, but it is still slower than IMV. The three

233

 N a i v e S I M D D V A F V A A M A C I M V

1 6 K 6 4 K 2 5 6 K 5 1 2 K 1 M 1 6 M 6 4 M0

4 0

8 0

1 2 0

T u p l e s i n R e l a t i o n R

Th
rou

ghp
ut

(M
tps

)

(a) SKX, HJP, [1,1]

1 6 K 6 4 K 2 5 6 K 5 1 2 K 1 M 1 6 M 6 4 M0

6

1 2

1 8

T u p l e s i n R e l a t i o n R

Th
rou

ghp
ut

(M
tps

)

(b) SKX, BTS, [1,1]
Figure 11: The impact of data size

4 7 1 0 1 3 1 6 1 9
2 3 4 5 6 7

0

4 0

8 0

1 2 0

O t h e r s

Th
rou

ghp
ut

(M
tps

)

G r o u p S i z e

A M A C

(a) SKX, HJP, [1,1]

4 7 1 0 1 3 1 6 1 9
2 3 4 5 6 7

0

6

1 2

O t h e r s

Th
rou

ghp
ut

(M
tps

)

G r o u p S i z e

A M A C

(b) SKX, BTS, [1,1]
Figure 12: Group size

are superior to AMAC because AMAC suffers from heavy branch
misses. Thanks to this, AMAC is even slower than SIMD in [1,1].
Although SIMD can reduce heavy branch misses, it cannot alleviate
cache misses, so it is inferior to FVA, DVA and IMV. In this exper-
iment, we observe taking either SIMD or the software prefetching
is not enough to speed up performance, while combining both of
them can significantly boost performance in those applications.

Data Size. We study the impact of data size on various ap-
proaches. We vary the tuples of relation R from 16 K (1 K = 210)
to 64 M. The tuple number multiplying by the size of hash bucket
nodes or tree nodes (32 bytes in both data structures) gets the total
data size. The results of [1,1] data distribution are demonstrated in
Figure 11, and other cases get similar plots. In Figure 11(a), with
increasing tuples in relation R, the throughput of all approaches ex-
cept AMAC in HJP decreases. This is because AMAC is seriously
dominated by branch misses verified in Figure 10(a), while others
suffer from more cache misses with increasing data. SIMD and
Naive drop faster when the tuple number is larger than 256 K, be-
cause beyond that the data is out of the memory cache. Since DVA
suffers from heavy divergence, it cannot benefit from interleaving
and vectorization but instead sustains more overhead from them.
This is the reason why DVA is the slowest one when data resides
in cache. Furthermore, when tuples are larger than 1 M, all tech-
niques suffer from more TLB misses. With regards to BTS in Fig-
ure 11(b), the performance of all techniques is degraded as the data
size increases, especially for SIMD and Naive, due to more branch
misses, TLB misses and computation overhead.

Group Size. The effect of prefetching depends on the prefetch-
ing distance. It is controlled by the group size of all interleaving ex-
ecutions, i.e., the number of running instances of an FSM. It should
be large enough so that there is sufficient computation to overlap
memory access latency. In fact, it is also limited by the number of
MSHRs per core, beyond which more data accesses are blocked.
Generally the number of memory access requests in a group are
larger than that of MSHRs, because some requested data elements
of a group may be hit in the cache at run time. In addition to the
uncertain number of misses in a group, the computation overhead
between two memory accesses in a running FSM is unequal, so it
is hard to predict the group size in advance. Here we choose the
optimal group size through experiments.

1 . 1 5
1 . 5 7

1 . 1 1
1 . 6 3

1 . 0 7

1 . 7 5
1 . 1 6

2 . 0 2

1 . 0 5

1 . 6 8
1 . 1 6

2 . 0 5

1 M 6 4 M 1 M 6 4 M 1 M 6 4 M 1 M 6 4 M 1 M 6 4 M 1 M 6 4 M
N a i v e S I M D D V A F V A A M A C I M V

0

5 0

1 0 0

1 5 0

Th
rou

ghp
ut

(M
tps

) E n a b l e d D i s a b l e d

0

1

2

Sp
eed

up

(a) SKX, HJP, [1,1]

1 . 1 3 1 . 2 5 1 . 0 8 1 . 1 9 1 . 0 4
1 . 3 1

1 . 0 3 1 . 2 5
1 . 0 1 1 . 0 3 1 . 0 5

1 . 3 6

1 M 6 4 M 1 M 6 4 M 1 M 6 4 M 1 M 6 4 M 1 M 6 4 M 1 M 6 4 M
N a i v e S I M D D V A F V A A M A C I M V

0

1 0

2 0

Th
rou

ghp
ut

(M
tps

) E n a b l e d D i s a b l e d

0

1

2

Sp
eed

up

(b) SKX, BTS, [1,1]
Figure 13: The impact of huge pages

Figure 12 shows the impact of group sizes in various configura-
tions (All get similar plots, some of which are not shown here due
to limited space). We observe that in all subfigures the throughput
of interleaving approaches increases with the group size, but such
growth stops after a certain point. Such a sweet point varies on dif-
ferent platforms, data distribution and applications. After the sweet
point, the performance is nearly not changed. The corresponding
group size of the sweet point or the larger value can be chosen as
the optimal group size in the configuration. For the interleaving
vectorized algorithms IMV, FVA and DVA, we can set the optimal
group size as five (G = 5) in all configurations. This value im-
plies at most 40 memory access requests are issued in a group of
running instances of an FSM (A vector in the group operates 8 64-
byte elements at a time). They are large enough to occupy MSHRs
in most cases at run time. Larger group size increases the over-
head of loading and storing intermediate vectorized states, slightly
decreasing the performance. With regards to AMAC, the optimal
group size can be set as 20. SIMD and Naive are not effected by
varying group size.

5.2.2 Parameters of System Architecture
Huge Pages. Physical memory is segmented into a series of

contiguous regions called pages. Each page contains a number of
bytes, referred to as the page size, 4 KB by default. Each page has
a virtual address, which should be mapped to a physical address
when accessing data in the page. Such mapping time is reduced by
caching the recent translations of virtual addresses to physical ad-
dresses in an address-translation cache, called translation lookaside
buffer (TLB). The TLB is of limited size. When it does not con-
tain the physical address of a requested virtual address, a TLB miss
happens, then the translation proceeds by looking up the page table.
This is time-consuming compared with a TLB hit, which means a
virtual address has a corresponding physical address in TLB. The
costly TLB misses can be slightly avoided by larger page sizes,
because a TLB cache of the same size can keep track of larger
amounts of memory of huge pages. We set 2 MB huge pages in
SKX, which contains 32 TLB entries in L1 cache. This still cannot
meet the demand of large memory applications. We test the influ-
ence of TLB misses by enabling or disabling huge pages, as well
as changing the data size of relation R.

As illustrated in Figure 13, enabling huge pages accelerates the
performance in both HJP and BTS. The speedup is larger with in-
creasing data size. We conclude that TLB misses play an important

234

1 4 8 1 2 1 604 08 01 2 01 6 0

 N a i v e N a i v e + S M T S I M D S I M D + S M T D V A D V A + S M T
 F V A F V A + S M T A M A C A M A C + S M T I M V I M V + S M T

1 4 8 1 2 1 60

2 0 0

4 0 0

6 0 0

Th
rou

ghp
ut

(M
tps

)

P h y s i c a l C o r e s
(a) SKX, HJP, [1,1]

1 4 8 1 2 1 60

4 0

8 0

1 2 0

1 6 0

Th
rou

ghp
ut

(M
tps

)
P h y s i c a l C o r e s

(b) SKX, BTS, [1,1]
Figure 14: The scalability of all approaches

role in the two applications, especially for a larger dataset. Specifi-
cally, 1 M tuples in relation R occupy almost 32 MB memory in the
hash table and the binary tree. Such a data size needs 8*1024 4-KB
pages, which is far larger than the TLB entry number in L1 cache
on SKX. This problem becomes worse for 64 M tuples of relation
R. Even with huge pages, the TLB entries in L1 cache for 2 MB
pages just meet the demand of 1 M tuples, but cannot accommo-
date the page identities of 64 M tuples in relation R.

Among all algorithms, enabling huge pages achieves higher spee-
dup for IMV, especially under the larger dataset. It is up to 2.05X
in HJP, because TLB misses become the main bottleneck for IMV
after it reduces cache misses and branch misses with best efforts.
We further find that the technique achieves higher throughput, but
it suffers more effects from huge pages, because it is more likely
dominated by TLB misses after eliminating other factors. On the
other hand, when comparing IMV, FVA and DVA with AMAC,
their speedup over AMAC becomes smaller with increasing data
size. This is because the vectorized code likely refers to more pages
when gathering or scattering data, prone to causing TLB misses.

Scalability. Modern processors contains many physical cores.
We then evaluate how the interleaved execution benefits from more
cores or threads, respectively. We present the results in Figure 14.
From 1 core to 8 cores within a socket, the throughput of all ap-
proaches in HJP and BTS speeds up linearly. But trends are diverse
when scaling beyond 8 cores due to the influence of the NUMA
architecture. Such influence is larger on IMV in HJP, shown as
Figure 14(a), especially when enabling SMT. Because in this case
IMV is seriously limited by heavy remote accesses. This is the
reason why the speedup of IMV over others drops when using all
cores or threads. However, the performance differs in BTS shown
as Figure 14(b). Beyond 8 cores, the throughput of all executions
still increases linearly, because there are no large remote accesses
in BTS. In the two applications, for a fixed number of cores, en-
abling SMT does not double the throughput in all executions. This
is because the logical threads within a core compete for limited re-
sources in the core, including bandwidth, TLB entries and registers.

5.3 Hash Join Build and Hash Aggregation
In this subsection we measure the performance of IMV under

workloads with numerous writes. The hash build is one of the two
phases in the hash join. It inserts new nodes into hash buckets in
the following three steps. First, it computes the hash value of a
key and finds a corresponding hash bucket. Then, it applies for a
piece of space and writes the key and payload to the space, form-
ing a new node. Finally, it inserts the new node at the head of
the bucket. During these steps, randomly accessing each bucket
head induces numerous cache misses. The (grouped) aggregation
is more complex. It probes the corresponding bucket according to

 N a i v e S I M D D V A F V A A M A C I M V

[0] [0 . 5] [1]0
1 0
2 0
3 0
4 0
5 0

Th
rou

ghp
ut

(M
tps

)

Z i p f F a c t o r [Z S]
(a) 1 thread

[0] [0 . 5] [1]0

2 0 0

4 0 0

6 0 0

Th
rou

ghp
ut

(M
tps

)

Z i p f F a c t o r [Z S]
(b) 32 threads

Figure 15: The performance of the hash build

[0] [0 . 5] [1]0

5 0

1 0 0

1 5 0

Th
rou

ghp
ut

(M
tps

)

Z i p f F a c t o r [Z S]
(a) 1 thread

[0] [0 . 5] [1]0

6 0 0

1 2 0 0

Th
rou

ghp
ut

(M
tps

)

Z i p f F a c t o r [Z S]
(b) 32 threads

Figure 16: The performance of the hash aggregation

the hash value. If it finds a matched node in the bucket, then it up-
dates the aggregators in the node. Otherwise, it inserts a new node
at the tail of the bucket. During this period, probing hash buckets
also causes numerous cache misses. These two operators also in-
duce a lot of writes and memory allocation while working on the
same hash table in the probe. Besides, they run independently in
the multi-threaded execution.

Figure 15 depicts the performance of the hash build. IMV al-
most outperforms Naive by 1.77X and SIMD by 1.76X in the three
kinds of data distribution when using one thread, because IMV can
reduce the most of cache misses in the build. Such an effect can
also be achieved by DVA, FVA and AMAC, so their performance is
comparable to IMV. However, under 32 threads, the benefits of the
interleaved execution, i.e., IMV, FVA, DVA and AMAC, decrease.
IMV just performs 1.31X, 1.44X and 1.42X faster than Naive in
Zipf data distributions with 0, 0.5 and 1, respectively. This is be-
cause multiple threads of the build seriously compete for memory
bandwidth and TLB entries. Besides, applying for memory results
in numerous system calls. These issues are observed through In-
tel Vtune, but unfortunately cannot be alleviated by the software
prefetching in the interleaved execution. If they can be reduced in
multi-threaded execution, the build will benefit more from IMV, as
in the one thread case. Since the build inserts new nodes at the head
of buckets, it is also not sensitive to the data distribution in both 1
thread and 32 threads cases.

Figure 16 demonstrates the performance of the hash aggregation.
IMV achieves almost 1.7X and 2.3X speedup over Naive and SIMD
under the single-threaded execution in Figure 16(a). SIMD is the
slowest because it repeats all steps of the aggregation according to
the full vectorization, causing much redundant computation. Simi-
lar to the build, the advantages of IMV decrease in multi-threaded
execution, because the aggregation is also bounded by the limited
memory bandwidth and TLB entries in multiple threads. In addi-
tion, even under skewed workloads, duplicated keys are merged in
the bucket, reducing the length of each bucket for probing, so the
aggregation cannot benefit from IMV to a larger extent. FVA is
slower than the other three interleaving approaches, because it also
repeats all steps of aggregation each time, causing a large amount
of redundancy overhead as in SIMD. Particularly in the ‘[1]’ case,
AMAC outperforms IMV, because such high skewed data causes
heavy conflicts when inserting new nodes or updating aggregators.

235

 N a i v e S I M D D V A F V A A M A C I M V

[0 , 0] [0 . 5 , 0 . 5] [1 , 1]0

1 5

3 0

4 5

Th
rou

ghp
ut

(M
tps

)

Z i p f F a c t o r [Z R , Z S]
(a) Hash join probe

[0 , 0] [0 . 5 , 0 . 5] [1 , 1]0

3

6

Th
rou

ghp
ut

(M
tps

)

Z i p f F a c t o r [Z R , Z S]
(b) Binary tree search

Figure 17: The performance on KNL

It requires a conflict-free way to implement aggregation in order to
improve IMV, but this is out the scope of this paper.

5.4 Knights Landing (Xeon Phi)
The microarchitecture of Intel’s Xeon Phi is called Knights Land-

ing, and it is different from that of Skylake. Its chip is equipped
with 64 to 72 cores. Each core has two 512-bit vector processing
units (VPUs). In addition, each core supports four logical threads,
therefore Phi has a higher ability to hide memory access latency
when enabling SMT. This differs from the interleaved execution be-
cause it is provided by hardware, while the interleaved approaches
are implemented in software. We wonder whether the interleaved
approaches can still work well on such a platform.

Experiments are conducted on one core enabling four logical
threads to avoid the scalability issue. The group size in AMAC is
reduced to 10, and 2 for DVA, FVA and IMV. Results are presented
in Figure 17 (Similar results on build and aggregation , omitted due
to limited space). The scalar implemented Naive and AMAC are
significantly slower than others, because other four methods ben-
efit from SIMD. Also, since more threads on a core issue more
memory access requests, AMAC is a bit faster than Naive. How-
ever, AMAC is slower than Naive in [1,1] due to its interleaving and
prefetching overhead. Such overhead also sometimes slows down
the performance of DVA and FVA, so they are slower than SIMD
in some cases, but this overhead can be offset in IMV with a better
way to fully use vectors, thus IMV outperforms others, up to 2.1X
faster than Naive and 1.2X faster than SIMD. The results highlight
the importance of the interleaved execution on CPUs with fewer
logical threads per core.

5.5 Comparison with Other Execution Models
Finally, we apply IMV to the execution of a whole query and

compare against other three state-of-the-art execution models: data-
centric compilation execution (DCE) [17], vecotrized execution (VE)
[17] and relaxed operator fusion (ROF) [26]. We design a query
based on TPC-H benchmark, which is shown below. Such a join
generally occurs in TPC-H and dominates the query performance.
The query’s physical plan involves two pipelines, scan → filter →
build (called P-Build) and scan → filter → probe → count
(called P-Probe). This plan is implemented on the base of [17] us-
ing different execution models. Specifically in IMV, the FSM of
the probe pipeline is depicted in Figure 8, and the build pipeline
gets a similar FSM. Our IMV can also be adopted in VE and ROF
to accelerate the join operator, which are labeled as VE-IMV and
ROF-IMV, respectively. VE can also adopt SIMD to speed up the
join, denoted as VE-SIMD. The query is executed on TPC-H data
with SF 100, using all 32 threads. The morsel size in DCE, ROF,
ROF-IMV and IMV is 10K, the vector size in VE, VE-SIMD and
VE-IMV is 1K, and the buffer size among stages in ROF is 10K.
These settings work well in each model and are in line with previ-
ous work [17, 26].

D C E V E
V E - S I M D

V E - I M V R O F
R O F - I M V I M V0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

Ex
ecu

tio
n T

im
e (

s) P - B u i l d P - P r o b e

(a) Execution time

1.4
1

1.3
3

1.3
3

1.0
3 1.3

4
1.0

1
1.0

0

2.1
9 2.3

8
2.0

7
1.2

5 1.4
2

1.0
0

1.0
0

D C E V E
V E - S I M D

V E - I M V R O F
R O F - I M V I M V0

1

2

3

Sp
eed

up

 P - B u i l d P - P r o b e

(b) Speedup over IMV
Figure 18: The comparison of engines

SELECT count(∗) FROM orders, lineitem WHERE o orderkey=
l orderkey AND l quantity<50 AND o orderdate < ‘1996−1−1’;

Figure 18(a) shows the execution time of the query in different
execution models. IMV performs 1.92X, 2.01X and 1.39X faster
than DCE, VE and ROF, respectively. Using IMV to accelerate the
join operator in VE and ROF achieves 1.72X and 1.39X speedup,
respectively. DCE is slower than IMV because DCE can neither
reduce cache misses in the join nor avoid branch misses in the fil-
ter. This is the main reason why the build pipeline of DCE works
slower than others (see Figure 18(b)). The probe pipeline of DCE
is a bit faster than VE, because VE materializes immediate results
among stages, causing useless computation. Specifically, VE splits
the hash probe into three stages, i.e., computing hashing, generating
join candidates, and checking equality. Among stages, the results
are written to a vector, and the results of non-equal join candidates
waste some computation, which may offset the benefits from the
out-of-order execution in VE. Although such execution can be di-
rectly accelerated by SIMD, VE is still dominated by cache misses.
So using IMV-optimized join in VE can improve performance to
a large extent, but it is still slower than IMV due to the numerous
function calls in its pull execution.

ROF takes SIMD to optimize the filter and combines the group
prefetching (GP) to implement the join. GP outperforms AMAC in
such uniform dataset in spite of using the chained hash table. ROF
works faster than DCE and VE because it reduces a lot of cache
misses. However, its performance is worse than that of IMV. Its
build pipeline and probe pipeline are 1.34X and 1.42X slower than
those of IMV. This is because IMV reduces cache misses as well as
branch misses, so replacing GP with IMV to accelerate join in ROF
works better. Also, ROF-IMV performs almost the same as IMV.
The two both use SIMD to speed up the filter and take IMV to ele-
vate the join. The difference is that ROF-IMV breaks the filter and
the build or probe of the join into two stages, which are linked by
a buffer. It induces materialization overhead, especially when the
filter does not get rid of tuples. However, IMV combines the filter
and the build or the probe together. This way may perform worse,
because it may randomly take more time to get a full SIMD vector
after the filter, which cannot ideally overlap with memory access-
ing. The performance difference of the two methods is related to
the selectivity in the filter, but the performance gap is almost within
5%, so we think applying IMV to ROF is also a good choice to
speed up the whole query execution.

6. DISCUSSION
IMV in Complex Queries. Complex queries like in TPC-H are

composed of pipelines, which can benefit from IMV to reduce cache
misses, branch misses and computation overhead. As shown in
Section 5.5, pipelines can be implemented using IMV in two exe-
cution models: (1) implementing the whole pipeline using IMV; (2)
linking IMV-optimized operators in a pipeline as in ROF. The first
method is more complex than the second, because the first should

236

ask help from the Just-In-Time (JIT) compilation to fuse all opera-
tors in a pipeline. Combining SIMD and JIT is an interesting topic,
which is preliminarily investigated in [9, 11], but not forming a
general approach. Besides, fusing more operators in a pipeline may
disturb the interleaved execution shown in Section 5.5, so we think
the second is more practical for using IMV.

For each specific operator in pipelines, its complex processing
logic can be handled in IMV, because IMV is able to solve the di-
vergence from general if and loop statements. Moreover, the main
logic of individual operators is almost fixed, including the positions
where cache misses and the control flow divergence may occur, so
it is rather easy to decide where to insert the prefetching and in-
tegration. In fact, a specific operator becomes diverse because of
varying parts, like expressions and hash functions both supporting
multiple columns and different data types. To deal with these vary-
ing parts, we implement various SIMD vectorized primitives that
are called at runtime. This is analogous to the scalar vectorized exe-
cution [5], but the primitives are SIMD-vector-oriented, rather than
scalar-batch-oriented in [5]. However, SIMD cannot directly com-
pute complex expressions involving special datatypes (like varchar
and decimal) and operations (like substr()). Specially, if the unique
values of a complex type are not large, they can be mapped to lim-
ited integers to speed up some operations (e.g., equality checking),
as in [11, 30]. In other cases, the special operations should be im-
plemented into SIMD-like primitives using scalar code to seam-
lessly integrate with SIMD operations. With regards to perfor-
mance, the overhead of invoking SIMD(-like) primitives cannot be
sufficiently amortized due to limited tuples within a vector, but it
can be alleviated using JIT [9, 27]. Furthermore, such overhead
may almost overlap with memory accesses in the interleaved exe-
cution, so IMV can still achieve obvious speedup.

IMV Automation. In this paper, we manually implement the
interleaving and solve the control flow divergence using the resid-
ual vectorized states. It is ideal to automate the two procedures
in order to hide them from software developers. The interleaving
can be achieved by coroutines [19, 16, 31]. It provides an easy
way to suspend or resume the execution of a function, increasing
code readability and maintainability. However, in vectorization the
coroutines still have to consider the control flow divergence. If tak-
ing the residual vectorized states, the coroutines should equip three
following abilities. First, coroutines should identify where the di-
vergence would occur and the residual vectorized states are inserted
into. Second, coroutines should efficiently share the residual vec-
torized states among coroutines at run time to reduce the require-
ments of vectors. Third, coroutines should automatically schedule
the execution of multiple branches instead of being controlled by
programs as analyzed in Section 4.3. The three requirements are
critical to automatically solve the control flow divergence on CPUs.

7. RELATED WORK
SIMD in DB. SIMD has been widely studied in databases be-

cause it can reduce branch misses [13] and computation overhead,
as well as provide convenient instructions to access data. Impor-
tant operations, such as scans, index scans, joins, aggregations, in-
dex operations and sorting are implemented using SIMD [28, 29,
14, 10, 35, 8]. In particular, the probe of a two-table join using the
cuckoo hash [33] or the linear hash [15] can be efficiently processed
by SIMD. By contrast, our work focuses on probing a chained
hash table, which suffers from more cache misses, and eliminat-
ing the cache misses. In addition, a permutation lookup table [29]
is taken to introduce new elements in a vector, whereas we use the
expand load instruction to load new ones. Our algorithms are com-
pletely vectorized, unlike [28, 29, 7] which leave a scalar tail.

Divergence. Due to the lack of hardware supports like in GPUs
[12, 3], CPUs have to manually handle the divergence of SIMD
vectorization. The divergence within individual operators like build
and probe can be avoided in the full vectorization [28]. This method
can be extended to the execution of pipelines, which is named par-
tial consume [22, 23]. Another strategy in [22, 23] named con-
sume everything, buffers divergent tuples and defers their process-
ing, which is similar to the residual vectorized states in this pa-
per. However, “consume everything” introduces more nested if and
loop statements in the buffering operator, making the processing
logic more complex. In contrast, each residual vectorized state is
owned by a divergent state of an FSM, and shared among a group
of running instances. Besides, “partial consume” and “consume ev-
erything” also only consider the divergence between active vector
lanes and inactive vector lanes, ignoring the divergence from active
lanes. To this end, those two strategies cannot solve the divergence
from general if and loop statements.

Prefetching in SIMD. Cache misses seriously limit the per-
formance of memory-intensive applications. To solve this prob-
lem, prefetching is an effective way in scalar code using GP [6],
SPP [6] or AMAC [20]. The latter in particular can handle irreg-
ular data access. With regards to vectorized code, some research
efforts prefer adjusting the data layout to increase data locality and
benefit from the hardware prefetching, and a few other studies pre-
liminarily use the software prefetching. For example, a set of lay-
outs are designed to reduce memory latency while traversing trees
or graphs in [32, 18], but they cannot be used in other applica-
tions, like probing hash tables. Besides, SPP is also adopted to
prefetch data in regularly traversing equal-height trees [18]. How-
ever, this way can only achieve at most log2(W) speedup, instead
of W, where W is the number of lanes in a vector, so it wastes the
high data parallelism in a vector. In addition, the software prefetch-
ing is taken to aid the sequential data accesses instead of random
data accesses [7, 15], slightly reducing cache misses. Furthermore,
ROF [26] links prefetching-optimized code and SIMD-optimized
code in a pipeline, instead of exploiting prefetching to solve the
cache misses in SIMD code.

8. CONCLUSION
We present the interleaved multi-vectorizing to break through the

memory wall in SIMD vectorization. IMV is a new approach to
fully utilize MLP and DLP on pointer-chasing applications with
irregular and immediate memory accesses. IMV splits a program
into states where the program encounters immediate memory ac-
cess or control flow divergence, then IMV interleaves the execution
of states from different running instances of the program to hide
memory access latency. We also propose the residual vectorized
states to solve the control flow divergence within each state so that
there are no bubbles in vectorized execution. Experiments show
IMV is up to 4.23X and 3.17X faster than pure scalar implemen-
tation and pure SIMD vectorization, because it can reduce cache
misses, branch misses and computation overhead for an applica-
tion at the same time. IMV not only works well in pointer-chasing
applications, it can also be applied to the whole query processing.
In the future, as discussed in Section 6, we will apply IMV to com-
plex queries and attempt to implement IMV automation.

Acknowledgments
This research was supported by National Key Research & Devel-
opment Program of China (No. 2018YFB1003400), and National
Natural Science Foundation of China (No. 61772204 & 61732014).
The authors would like to thank the anonymous reviewers and shep-
herd for their constructive comments and guidance.

237

9. REFERENCES
[1] IMV Source Code.

https://github.com/fzhedu/db-imv, 2019.
[2] Intel Vtune TMAM. https://software.intel.com/

en-us/vtune-amplifier-cookbook-top-down-
microarchitecture-analysis-method, 2019.

[3] M. Alam, K. S. Perumalla, and P. Sanders. Novel parallel
algorithms for fast multi-GPU-based generation of massive
scale-free networks. Data Science and Engineering,
4(1):61–75, 2019.

[4] C. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu.
Main-memory hash joins on multi-core CPUs: Tuning to the
underlying hardware. In ICDE, pages 362–373, 2013.

[5] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-pipelining query execution. In CIDR, pages 225–237,
2005.

[6] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry.
Improving hash join performance through prefetching. ACM
Trans. Database Syst., 32(3):17, 2007.

[7] X. Cheng, B. He, X. Du, and C. T. Lau. A study of
main-memory hash joins on many-core processor: A case
with Intel Knights Landing architecture. In CIKM, pages
657–666, 2017.

[8] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog,
Y. Chen, A. Baransi, S. Kumar, and P. Dubey. Efficient
implementation of sorting on multi-core SIMD CPU
architecture. PVLDB, 1(2):1313–1324, 2008.

[9] M. Dreseler, J. Kossmann, J. Frohnhofen, M. Uflacker, and
H. Plattner. Fused table scans: Combining AVX-512 and JIT
to double the performance of multi-predicate scans. In ICDE,
pages 102–109, 2018.

[10] Z. Fang, Z. He, J. Chu, and C. Weng. SIMD accelerates the
probe phase of star joins in main memory databases. In
DASFAA, pages 476–480, 2019.

[11] T. Gubner and P. Boncz. Exploring query execution
strategies for JIT, vectorization and SIMD. In ADMS, 2017.

[12] T. D. Han and T. S. Abdelrahman. Reducing branch
divergence in GPU programs. In GPGPU, page 3, 2011.

[13] H. Inoue, M. Ohara, and K. Taura. Faster set intersection
with SIMD instructions by reducing branch mispredictions.
PVLDB, 8(3):293–304, 2014.

[14] H. Inoue and K. Taura. SIMD- and cache-friendly algorithm
for sorting an array of structures. PVLDB, 8(11):1274–1285,
2015.

[15] S. Jha, B. He, M. Lu, X. Cheng, and H. P. Huynh. Improving
main memory hash joins on Intel Xeon Phi processors: An
experimental approach. PVLDB, 8(6):642–653, 2015.

[16] C. Jonathan, U. F. Minhas, J. Hunter, J. J. Levandoski, and
G. V. Nishanov. Exploiting coroutines to attack the “killer
nanoseconds”. PVLDB, 11(11):1702–1714, 2018.

[17] T. Kersten, V. Leis, A. Kemper, T. Neumann, A. Pavlo, and
P. A. Boncz. Everything you always wanted to know about
compiled and vectorized queries but were afraid to ask.
PVLDB, 11(13):2209–2222, 2018.

[18] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen,
T. Kaldewey, V. W. Lee, S. A. Brandt, and P. Dubey. FAST:
fast architecture sensitive tree search on modern CPUs and
GPUs. In SIGMOD, pages 339–350, 2010.

[19] V. Kiriansky, H. Xu, M. Rinard, and S. P. Amarasinghe.
Cimple: instruction and memory level parallelism: a DSL for
uncovering ILP and MLP. In PACT, pages 1–16, 2018.

[20] Y. O. Koçberber, B. Falsafi, and B. Grot. Asynchronous
memory access chaining. PVLDB, 9(4):252–263, 2015.

[21] N. Kohout, S. Choi, D. Kim, and D. Yeung. Multi-chain
prefetching: Effective exploitation of inter-chain memory
parallelism for pointer-chasing codes. In PACT, pages
268–279, 2001.

[22] H. Lang, A. Kipf, L. Passing, P. A. Boncz, T. Neumann, and
A. Kemper. Make the most out of your SIMD investments:
counter control flow divergence in compiled query pipelines.
In DaMoN, pages 1–8, 2018.

[23] H. Lang, L. Passing, A. Kipf, P. Boncz, T. Neumann, and
A. Kemper. Make the most out of your SIMD investments:
counter control flow divergence in compiled query pipelines.
The VLDB Journal, 2019.

[24] V. Leis, P. A. Boncz, A. Kemper, and T. Neumann.
Morsel-driven parallelism: a NUMA-aware query evaluation
framework for the many-core age. In SIGMOD, pages
743–754, 2014.

[25] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing
database architecture for the new bottleneck: Memory
access. The VLDB Journal, 9(3):231–246, 2000.

[26] P. Menon, A. Pavlo, and T. C. Mowry. Relaxed operator
fusion for in-memory databases: Making compilation,
vectorization, and prefetching work together at last. PVLDB,
11(1):1–13, 2017.

[27] T. Neumann. Efficiently compiling efficient query plans for
modern hardware. PVLDB, 4(9):539–550, 2011.

[28] O. Polychroniou, A. Raghavan, and K. A. Ross. Rethinking
SIMD vectorization for in-memory databases. In SIGMOD,
pages 1493–1508, 2015.

[29] O. Polychroniou and K. A. Ross. Vectorized bloom filters for
advanced SIMD processors. In DaMoN, pages 1–6, 2014.

[30] O. Polychroniou and K. A. Ross. Towards practical
vectorized analytical query engines. In DaMoN, pages 1–7.
ACM, 2019.

[31] G. Psaropoulos, T. Legler, N. May, and A. Ailamaki.
Interleaving with coroutines: A practical approach for robust
index joins. PVLDB, 11(2):230–242, 2017.

[32] B. Ren, G. Agrawal, J. R. Larus, T. Mytkowicz, T. Poutanen,
and W. Schulte. SIMD parallelization of applications that
traverse irregular data structures. In CGO, pages 1–10, 2013.

[33] K. A. Ross. Efficient hash probes on modern processors. In
ICDE, pages 1297–1301, 2007.

[34] W. A. Wulf and S. A. McKee. Hitting the memory wall:
implications of the obvious. In Comp. Arch. News, pages
20–24, 1995.

[35] J. Zhou and K. A. Ross. Implementing database operations
using SIMD instructions. In SIGMOD, pages 145–156, 2002.

238

