
Complex Query Decorrelation

Praveen Seshadri Hamid Pirahesh T.Y. Cliff Leung
Computer Sciences Department

University of Wisconsin, Madison WI 53706, USA
IBM Almaden Research Center

San Jose, CA 95 120, USA
IBM Santa Teresa Laboratory

San Jose, CA 95141, USA
praveen@cs. wisc.edu pirahesh@almaden. ibm. com cleung@almaden.ibm. corn

Abstract
Complex queries used in decision support applications use multiple

correlated subqueries and table expressions, possibly across several
levels of nesting. It is usually inejicient to directly execute a correlated
query; consequently, algorithms have been proposed to decorrelate
the query, i.e. to eliminate the correlation by rewriting the quev.
This paper explains the issues involved in decorrelation, and surveys
existing algorithms. It presents an eficient and flexible algorithm
called magic decorrelation which is superior to existing algonthms
both in terms of the generality of application, and the eflciency of
the rewritten quely. The algorithm is described in the context of its
implementation in the Starburst Extensible Database System, and its
performance is compawd with other decomlation techniques. The
paper also explains why magic decorrelation is not merely applicable,
but crucial in a parallel database system.

1 Introduction
The concept of correlation in SQL is similar to the use

of non-local variables in block-structured programming lan-
guages. The processing of correlated queries is important be-
cause (a) many decision support applications use correlation,
(b) correlation is a convenient programming idiom for many
SQL programmers (closely mimicking a function invocation
paradigm), and (c) correlated queries are often created “auto-
matically” by application generators that translate queries from
application domain-specific languages into SQL. The TPC-D
decision support benchmark [TPC-D94] of seventeen queries
includes two correlated queries, recognizing the importance of
correlation.

In an early relational DBMS like System R [SACLP79], a
correlated sub-query was executed in a tuple-at-a-time fashion
(nested iteration). The same approach is still used in current
database systems. Since an equivalent set-oriented execution
strategy might perform orders of magnitude better, there has
been more than a decade of research that aims to “decorre-
late” queries, i.e. to eliminate the correlations by rewriting the
queries into a form that permits set-oriented execution. How-
ever, existing decorrelation algorithms work only on specific
kinds of correlated queries, and the rewritten queries are some-
times inefficient. Some algorithms can even produce incorrect
results. A practical decorrelation algorithm needs to work cor-
rectly on arbitrarily complex queries, and the resulting query
should be efficient to execute. To the best of our knowledge,
ours is the first algorithm to satisfy these criteria. Such an algo-
rithm has become all the more crucial due to the recent interest
in using parallel database systems for complex decision support
applications. In fact, processing correlated queries is consid-
ered one of the most challenging current problems in parallel
query processing[Gra95].

1.1 Contributions
We explain the issues involved in decorrelation, and present

a survey of other proposed decorrelation methods. We de-
velop a query rewrite algorithm framework that decorrelates

arbitrary SQL queries. The algorithm is similar to the magic
sets rewriting transformation, as applied to non-recursive rela-
tional queries [MFPR90]. Consequently, our algorithm is called
magic decorrelation. The algorithm framework is extensible,
and permits various implementations to provide various “de-
grees” of decorrelation as required by different database system
environments (especially parallel environments). We describe a
specific implementation of magic decorrelation in the Starburst
Extensible Database System [HCL+90]. We compare the per-
formance of magic decorrelation with other known techniques
for evaluating a correlated query. Finally, we discuss why our
decorrelation algorithm is not merely applicable, but is crucial
in a parallel database environment.

2 Explaining Decorrelation
In a correlated SQL query, values from an outer query block

are accessed inside a nested subquery block. Consider various
evaluation strategies for an example based on the familiar EMP
and DEPT relations. Each employee is assigned to a building
in which helshe works. Each department is situated in a build-
ing, but may have employees in other buildings as well. The
query finds those departments of low budget that have more
employees than there are employees working in the building in
which the department is located. Note that the correlated value
DEPTbuilding is used inside its subquery.
Select D.name From Dept D
Where D.budget < 10000 and D.num-emps >

(Select Count(*) From Emp E Where D.building = E.building)
Nested Iteration: The subquery is invoked once for every

DEPT tuple (whose budget is less than 10000) in the outer
query block. The table EMP may not have an index on the
building column; an entire table scan access will be required
for every low-budget department tuple. Further, if there are
duplicate values of DEPT.building, the subquery invocations
will perform redundant work.

A nested iteration execution is not set-oriented, because there
is a “coupling” between each value from the outer block and
the execution of the correlated subquery block. This strategy is
efficient only in cases where there are few duplicates in the cor-
relation attribute, and independent executions of the subquery
perform little common work. The aim o f decorrelation is to
“decouple ” the execution of the subqueiy block f rom that of the
outer block, by rewriting the guely.

Kim’s Method: Kim’s method [Kim821 produces the follow-
ing rewritten query:
Select D.name From Dept D, Temp(empcount, bldg) AS

Where D.budget < 10000 and D.num-emps > Temp.empcount
(Select Count(*), E.bui1ding From Emp E GroupBy E.building)

and D.building = Temp.bldg
The subquery is converted into a table expression with a

GROUPBY clause, and the correlation predicate is moved to the
outer block. There are three problems with this approach

450
1063-6382/96 $5.00 0 1996 IEEE

Authorized licensed use limited to: University of Georgia. Downloaded on June 23,2022 at 01:21:28 UTC from IEEE Xplore. Restrictions apply.

http://wisc.edu

0 The transformation works only if the correlated predicate
(on “building”) is a simple equality predicate.
The computation in the subquery is no longer restricted by the

correlated predicate, and this may lead to poor performance.
The COUNT computation must be done for all buildings with
employees, not just for those buildings assigned to low budget
departments.

0 The rewritten query may be semantically different from the
original query! If a department D with budget = 500 and
num-emps = 1 is located in a building B that has no em-
ployees assigned to it, then department D’s name is a desired
answer to the query. In the rewritten query, the Temp table
expression will not have a tuple in it corresponding to (0, B);
consequently, D’s name will not be generated as an answer
to the query. This is called the COUNT bug [Kie84]. If the
COUNT in the subquery were replaced by some other aggre-
gate hnction like MAX, MIN, AVG, SUM, etc, the correlated
subquery should retum a NULL value. If the subquery is
involved in a predicate like IS NULL, then a similar problem
arises.

Dayal’s Method: The solution to the COUNT bug requires the
introduction of an outer-join operator. Dayal’s method[Day87]
merges the two query blocks using the left outer-join (LOJ)
operator to produce a transformed query of the form:
Select D.name
From DEPT D LOJ EMP E On (D.building = E.building)
Where D.budget < 10000 GroupBy D.[key]
Having D.num-emps > Count(E.[key])

There are three problems with this transformation:
To preserve the duplicate semantics of the query result, the

transformed query is grouped by some key of the Dept relation.
If there are several department tuples with the same value for
the building column, there may be a repetition of aggregate
computation. In other words, whenever the correlated column
(in this case, Dept.building) is not a key, there may be repeated
computation.

0 Since the jodouter-join of all involved relations is per-
formed first, the size of the set to be grouped might be much
larger than in the case of Kim’s strategy, potentially leading
to a significant performance degradation.

0 The strategy works only for linearly structured queries with
SELECT and GROUPBY constructs.

GansWong’s Method: Ganski and Wong proposed a
method [GW87] that projects a unique collection of correlation
values into a temporary relation. The temporary relation is then
used to decorrelate the subquery using an outerjoin. However,
many practical details were not considered, and the method is
not applicable to non-linear correlated queries. This method is
a special case of the magic decorrelation algorithm presented in
this paper; consequently, we shall not elaborate further on it.

2.1 Magic Decorrelation
A general SQL decorrelation algorithm is difficult to de-

sign because of the practical details that need to be handled.
Complex queries could be hierarchical (for example, a sub-
queryhiew with a UNION operator), or could involve common
subexpressions. Correlations can occur not merely in simple
predicates, but also within complex expressions involving mul-
tiple correlated values. Correlations can also span multiple

levels of query blocks. There are also factors that could make
it difficult to decorrelate parts of a query. For example, if a
subquery is existential or universal (corresponding to the SQL
constructs ANY and ALL respectively), it is not possible to
directly convert the subquery to a table expression with join
operators (as is required by the existing decorrelation methods).
All the same, it may be desirable to decorrelate the query “as
much as possible”. Magic decorrelation deals with all these
situations; some of the details have been omitted in this paper
but are explained in [SPL94]).

Any correlated subquery block can be modeled as a function
CS(x) whose parameters x are the correlation values. The func-
tion returns a table which is then processed at the outer block
level. In our example, the correlated subquery is a hnction
that uses the value Dept.buiZding as a parameter, and retums
a table containing a single tuple. The outer query block can be
represented by the following abstract pseudo-code:
foreach (x E X) {

SubQuery Result = CS(x);
Process(SubQueryResu1t);)

where X represents the set of values with which the corre-
lated subquery is invoked. The primary aim of decorrela-
tion is to decouple the execution of CS from the execution
of the outer query block. Consider some set XI, such that
X C XI. Obviously, (z E X) implies (z E Xl) . Let us
defme a new table DS (i.e. “Decou led Subquery”) such that
DS = {(x,y)Iz E XlAy E CS(z)f. Inotherwords,DScom-
putes CS(x) for all values x in X1. Now consider the following
version of the pseudo-code of the outer block
foreach (x in X) {

SubQueryResult = (yll(z1,yl) E D S A x = XI};
Process(SubQueryResu1t);)

The computation of D S is decoupled from that of the outer
block. Note that it is important to maintain the correlating
relationship between the value of x in each pass through the loop,
and the values selected from DS during that pass; the condition
x = zl enforces this relationship. At this abstract level, three
questions remain: (1) how does one computexl?, (2) how does
one compute DS using XI?, and (3) how does one enforce the
correlating relationship?. The magic decorrelation algorithm is
based on this abstraction. The actual set X is computed and
used as X1; obviously, there will be no unnecessary subquery
computations. It is used as the outer relation in a left outer-join
to compute the decoupled subquery DS. The result of applying
magic decorrelation to the example query is shown below.

Create View Supp-Dept As (Select name, building, num-emps

Create View Magic AS (Select Distinct building From Supp-Dept);
Create View Decorr-SubQuery (building, count) AS

From Dept Where budget < 10000);

(Select M.building, Count(*)
From Magic M, Emp E Where M.building = E.building
GroupBy M.building);

Create View BugRemoval(building, count) AS
(Select M.building, coalesce(E.count, 0)
From Magic M LOJ Decorr-SubQuery D on (M.building = D.building)

Select S.name From Supp-Dept S , BugRemoval B
Where S.building = B.building and S.num-emps > B.count

45 1

Authorized licensed use limited to: University of Georgia. Downloaded on June 23,2022 at 01:21:28 UTC from IEEE Xplore. Restrictions apply.

SELECT COUNT(‘)
FROM Child

SOL QUERY

SELECT Q1 .name ‘\. I
SELECT

Q3.building building

FROM-Dept Ql ~

WHERE Ql.buc!get < 10000 AND
Q1 .num-emps >

(SELECT COUNT(‘)
FROM Emp 03
WHERE 0l.building = 03.building)

Figure 1: An Example QGM

The SuppDept table represents the computation in the outer
query block until the point that the subquery invocations be-
gin. The Magic table represents the (duplicate-free) set X of
correlation values with which the subquery will be invoked.
DecorrSubQuery is the table DS generated by decorrelating the
subquery using the Magic table. It contains one tuple per value
of M.building (i.e. one tuple per correlation value). In order
to avoid the COUNT bug due to missing values of M.building,
the BugRemoval box is added. Here, the Magic table M is the
outer table of a left outer-join with the decorrelated subquery
D. If there is a missing value of a count attribute, it is replaced
by 0 (this is the effect of the Coalesce function). Finally, in
the outer query block, the SuppDept table S is joined with the
decorrelated subquery (after fixing the count bug) to produce
the desired answers. The join predicate S.building = B.building
enforces the correlating relationship.

3 Query Rewrite in Starburst
The query data structure used by Starburst is called the Query

Graph Model (QGM) [PHH92]. Each query construct such as
a Select-Project-Join(SPJ), an Aggregate, a Union, or an Inter-
section, corresponds to a query block in the QGM. The QGM
is transformed using rewrite rules, each operating at the gran-
ularity of one query block. Each rule application should leave
the QGM in a consistent state, because the query rewrite phase
may be terminated at any point when the allocated resources
(typically, time) are exhausted. We use visual representations
of the QGM to explain magic decorrelation. Figure 1 shows the
QGM of the example SQL query of Section 2. Each query block
is represented as a box in the figure. The portion of the SQL
query corresponding to each query block is shown at the side
of the appropriate box. Our algorithm will treat Select-Project-
Join(SPJ) boxes differently from other boxes; all non-SPJ boxes
are shaded grey to help make this distinction. The input tables
accessed by the operators of each box are shown by the solid
lines with arrows. These lines are called iterators and each is a
handle on an input table. All or some of the fields of a table may
be accessed along an iterator on that table. The names marked
along the iterator represent the columns that are being projected
along it. A dotted line between two boxes indicates a correla-
tion between them. To keep the figures uncluttered, irrelevant
information is not shown. In the discussion of the algorithm,
we assume for the sake of simplicity that the correlated query is
hierarchical (i.e., the query is not recursive, and each subquery

or table expression is used by only one parent query). At the
level of the QGM, this implies that the query graph is a tree.

3.1 Correlation Terminology
Box A is aparent of box B (B is a child of A) if box A has an

iterator over B. Box A is (recursively) an ancestor of another
box B iff it is a parent of B, or one of A’s children is an ancestor
of B. B is a descendant of A iff A is an ancestor of B. Box B
is directly correlated if it contains a correlation that references
a column col1 from a table in the From clause of an ancestor
A. The column col1 is called the correlation column. The
ancestor A is the source of correlation, and the box containing
the correlation (box B) is the destination of correlation. Box B
is (recursively) said to be Correlated to one of its ancestors A if it
is directly correlated to A, or if one of its descendants is directly
correlated to A. The actual values of a correlation column at the
source of correlation are the correlation bindings.

4 Magic Decorrelation in Starburst
The magic decorrelation rewrite rule is applied to the QGM in

a top-down fashion, transforming one box at a time. Whenever
the rewrite rule is applied to a box, its ancestors in the QGM have
already been processed. In all figures, CurBox corresponds to
the box currently being processed. We assume that some partic-
ular order is chosen for the iterators in the CurBox(see Section
7 for a discussion of this issue). The decorrelation algorithm
looks at the iterators in this order, and for each iterator over a
child (subquery) box, it determines if the child box is corre-
lated, and whether decorrelation is possible. If so, it generates
the set of correlation bindings that can be used to decorrelate
the box. This stage is called the FEED stage, because it feeds
the bindings to the child box.

When the rewrite rule is applied to the subquery (i.e. when the
subquery is treated as the CurBox), it decorrelates the subquery
using the correlation values. This is called the ABSORB stage
because the subquery absorbs the correlation bindings resulting
in a decorrelated query.

We now separately discuss the detailed algorithm in terms of
our familiar example query.

4.1 Deciding to Decorrelate
To determine if a child box is correlated, the algorithm utilizes

the following information: (1) a list of its ancestors, (2) a list
of its descendants, (3) which of its ancestors it is correlated to,
and (4) which descendant box caused each correlation. In our
implementation, this information is precomputed by a traversal
of the graph, and stored for all boxes in the query graph.

If the box is correlated, the algorithm needs to decide if the
box can be decorrelated. This depends on the semantics of the
operators in the box, and on how the outputs of the box are
used. The necessary information about the usage of the box’s
outputs is computed as part of a single graph traversal during
preprocessing. For example, if the output column X of an
Aggregate box with a COUNT aggregate is used in a predicate
“X=O”, naive decorrelation will lead to the COUNT bug. In
this case, a left outer join with a Coalesce function will produce
the count of 0 to satisfy this predicate. If the predicate were
‘‘=l”, then this additional complexity is not required. Section
4.4 describes other such scenarios.

4.2 FEEDStage
In Figure 2, we illustrate the FEED stage of the magic decor-

relation rewrite rule, applied to the top-level box. Figure 2[a]

452

Authorized licensed use limited to: University of Georgia. Downloaded on June 23,2022 at 01:21:28 UTC from IEEE Xplore. Restrictions apply.

n.
b”
“U bu

SELECT 04 building. Q5 $1
FROM Magic-1 04. Temp2 Q5

Figure 2: Decorrelation FEED Stage

shows the complete initial state of the QGM. This is identical to
Figure 1. The other figures concentrate on the relevant portion
that is being rewritten. The first step in magic decorrelation
determines which bindings need to be passed to the child box.
In the example, the child box is correlated on the building at-
t~bute, and the algorithm determines that it can be decorrelated.
The next step is to collect the portion of the computation ahead
of the subquery into a single “supplementary” table SUPP; the
rest of the query remains unchanged. This step is illustrated
in Figure 2[b]. A unique set of correlation bindings is then
projected into a “magic” table for the child, as shown in Fig-
ure 2[c]. The final step of the FEED stage is to decouple the
CurBox from the child box. This is accomplished as shown
in Figure 2[d]. A new SPJ box called the Decorrelated Output
(DCO) box is introduced immediately above the child, to pro-
vide a decorrelated view of the child to the parent. The DCO
box has an iterator Q4 over the magic table of the child and
an iterator Q5 over the child, and computes the cross product
of the two. The destination of correlation in the descendant is
modified so that it gets its bindings from 4 4 instead of Q 1. In
this manner, the child box and the rest of the QGM below it
are decoupled from the CurBox. The CurBox, however, needs
a correlated view of the subquery to retain the relationship
between each correlation value and the corresponding answer
from the decorrelated subquery. A Correlated Input (CI) box is
introduced immediately above the DCO box, with a correlated
predicate that provides this view to the CurBox. This last stage
is essential for correctness, since otherwise the correspondence
enforced by the correlation in the original query is lost. It is
important to note that the query graph is consistent at this stage,
preserving the incremental nature of the algorithm. While we
have succeeded in decoupling the query blocks, we have also
introduced an additional correlation between the CurBox and
the CI box. In many cases, it is possible to merge the CI box
into the CurBox converting the correlation predicate into an
equi-join predicate. This is done by existing rewrite rules that
merge query blocks

4.3 ABSORB Stage
It is usually possible to eliminate the Decorrelated Output

(DCO) box entirely; this happens when the rewrite rule is ap-
plied to the child box (which is now treated as the CurBox).
There is a DCO box immediately above the CurBox with an
iterator over its magic table. During the ABSORB stage, the
CurBox needs to absorb the correlation bindings that are avail-
able in the magic table. This portion of the algorithm has two
variants depending on whether the CurBox is an SPJ box or not.
We now look at each of these cases separately, in the context of
our example.

4.3.1 non-SPJ Box
If the CurBox is not an SPJ box, for example an Aggregate
box, the actual correlation is usually contained in some descen-
dant of the CurBox(some exceptions are described in [SPL94]).
Therefore, the correlation bindings in the magic table should be
fed to the children of the CurBox, so that they can be decorre-
lated. Once the children have been decorrelated, the CurBox can
absorb the correlation bindings from the children. The decorre-
lation of a non-SPJ box is performed, therefore, after the FEED
stage for its children.

The Figure 3[a] shows the relevant portion of the QGM for
our example query when the rewrite rule is about to be applied
to the Aggregate box. Note that Figure 3[a] is the same as

453

Authorized licensed use limited to: University of Georgia. Downloaded on June 23,2022 at 01:21:28 UTC from IEEE Xplore. Restrictions apply.

t
MAGIC-1

"\ '. I
SELECT'
FROM Emp a
WHERE Ql.buMing =

Q3.buildmng

SE-ECT CO.iNT,'
FROM Cnua 06

SELECTOGbuilJlrg

FRCM ChiM 06
GROUPBY Q binldiw

C W N T r) as cwnl

Figure 3: Decorrelation ABSORB Stage(non-SPJ)

SELECT'
FROM EmpQ3
WHERE Q bulidlng =

a3 bulldim

Figure 4: Decorrelation ABSORB Stage(SPJ) - correlation is
totally eliminated.

454

Authorized licensed use limited to: University of Georgia. Downloaded on June 23,2022 at 01:21:28 UTC from IEEE Xplore. Restrictions apply.

http://CO.iNT

Figure 2[d], which is the result of applying the rewrite to the
immediate parent of the CurBox. The FEED stage provides it
with correlation bindings in a Magic table. Since the CurBox is
a non-SPJ box, the bindings are drawn directly from the magic
table of the CurBox. Apart from this variation, the rest of the
FEED stage proceeds as described earlier. The result of the
FEED stage is shown in Figure 3[b].

Once the FEED stage is complete, the CurBox can be decor-
related because it can now access the correlation bindings from
its child. Figure 3[c] shows the stage after the decorrelation of
the CurBox. Decorrelation is effected by adding the buiZding
attribute to the output, and grouping by that attribute. Now,
the correlated predicate in the CI box below can be removed.
The Aggregate box will not produce any tuple where before the
count = 0 was produced (the problem that lead to the COUNT
bug). To reproduce this tuple and ensure that the semantics of
the query is not altered, we simply convert the DCO box to an
outer join box. Figure 3[d] shows the simplified query after the
redundant CI box is removed (by other rewrite rules).

4.3.2 SPJBox
If the CurBox is an SPJ box, it can add the magic table to its
From clause (note that this might be a join or an outer-join).
The destination of the correlation is modified to reference the
columns from the magic table, instead of the original source of
correlation. The columns from the magic table are added to the
output of the CurBox (i.e. they are added to the list of attributes
in the Select clause), thereby completing the decorrelation.

The Figure 4[a] shows the relevant portion of the QGM for our
example query when the rewrite rule is about to be applied to the
lowest SPJ box. Note that Figure 4[a] is the same as Figure 3[d].
In the first step in Figure 4[b], the CurBox adds the magic ta-
ble to its From clause. The correlation predicate is changed so
that the source is now the magic table iterator in the CurBox.
As the next step, the correlation bindings from the magic table
iterator are added to the output of the CurBox. In this exam-
ple, the attribute “QlO.building” is added to the output. The
iterator over the magic table in the DCO box is now redundant
and can be removed, leaving the CurBox decorrelated as in Fig-
ure 4[c]. The Figure 4[d] shows how the simplified query looks
when the redundant DCO box is eliminated (by other existing
rewrite rules). If the query were more complex, and this SPJ box
itself had children that needed to receive correlation bindings,
the rewrite rule would also have to perform the FEED stage of
the algorithm on this box. Unlike the non-SPJ boxes, however,
the ABSORB stage can be performed before the FEED stage
for its children.

4.4 Algorithmic Details
We have presented a simplified description of magic decorre-

lation, and demonstrated its execution on an example. We have
ignored issues of how it interacts with magic sets rewriting,
how common sub-expressions are handled and how recursion
is handled. We have also glossed over some of the tricky de-
tails that arise in dealing with non-SPJ boxes. Further, while
we have simplified the presentation by speaking in terms of
SPJ and non-SPJ boxes, the actual Starburst implementation
allows for extensibility of SQL constructs by classifying each
kind of box as either capable of accepting a magic table (AM)
or incapable of it (NM). The behavior of each box with respect
to the magic decorrelation algorithm is captured by a box en-
capsulator, The details of these aspects of the algorithm are
described in [SPL94].

We have seen that the magic decorrelation algorithm can intro-
duce extra CI boxes into the query graph; this happens when cor-
related subqueries occur within existential(ANY,EXISTS,IN) or
universal (ALL) quantification. These boxes perform repeated
correlated selections on the result of the decorrelated subquery.
This may be unacceptably slow in many systems that do not
support indexes on temporary relations. Consequently, the box
encapsulator could choose not to decorrelate in such situations.
On the other hand, as we discuss in the Section 6, correlation
greatly degrades performance in a parallel database system, and
such a system may be willing to incur the extra overheads of
decorrelation.Similarly, if a system does not implement a left
outer-join operator, it may not be possible to totally decorrelate
an aggregate box. All the same, the rest of the query can be
decorrelated, and the remaining correlations will be localized to
the aggregate box and the temporary boxes created above and
below it. These decisions on whether and how to decorrelate
act as knobs that can be used to adapt the magic decorrelation
algorithm [SPL94].

5 Performance Results
Magic decorrelation has been prototyped in the Starburst

DBMS. In this section, we present a performance comparison
with other strategies for processing correlated queries.

5.1 Algorithms Investigated
We considered four basic algorithms: nested iterationw),

Kim’s method(Kim), Dayal’s method(Dayal), and magic decor-
relation. All Starburst query transformations that were unre-
lated to decorrelation were applied to all queries; i.e. we com-
pared the “optimal” versions of each rewritten query. For Kim’s
and Dayal’s methods, the query rewrite was manually performed
and then submitted to the system. With magic decorrelation,
when the correlation attributes form a key of the supplementary
table, the common sub-expression formed by the supplemen-
tary table can be eliminated. We measured the performance
with (OptMag) and without {Mag) this optimization. When the
common sub-expression remains, it would be desirable for the
system optimizer to automatically decide whether it is cheaper
to materialize it or recompute it. However, the version of Star-
burst on which the experiments were run always recomputes
common sub-expressions. Finally, as explained in Section 7,
the magic decorrelation algorithm uses the join order of the
nested iteration strategy to generate the correlation bindings.

5.2 Parameters

Name 11 customers I parts I suppliers I partsupp I lineitem
Tuples 11 15,000 I 20,000 I 1,000 I 80,000 I 600,000

Table 1 : TPC-D Database

In our experiments, we used the TPC-D complex query bench-
mark database [TPC-D94] of size 120 megabytes. The exper-
iments were run on a IBM RS6000/530H workstation, config-
ured with 40 megabytes of database buffer and 40 megabytes
of heap memory. The database tables for our experiments is
shown in Table 1, along with the number of tuples in each ta-
ble. We measured the relative query execution times on three
sample queries. Each reported measurement is the average of
several consecutive runs of the query. The first two queries

455

Authorized licensed use limited to: University of Georgia. Downloaded on June 23,2022 at 01:21:28 UTC from IEEE Xplore. Restrictions apply.

4 QUERY ICs) 2.0 QUERY I(b) 1 0 QUERY I (=)

I , B

E s
p <I 6

1.5

s .j ’
.2
? i 2

0 -
p 1.0 B
w 3 : “ I

& c 0

2

U

a -
1 , 2 0.5

0.2

0.0
NI OPTMAG M A G KIM D A Y A L NI OPTMAG M A G KIM D A Y A L

U 0
NI o r m A G MAG KIM DAYAL

Figure 5: Query l(a) Figure 6: Query l(b) Figure 7: Query l(c)

were directly from the TPC-D benchmark suite (actually, from
the version of the TPC-D benchmark of late-1993, when this
work was performed; any later modifications to these queries
are minor). The third query demonstrates the decorrelation of
a non-linear query with duplicates in the correlation column.
Indexes were available on all the necessary attributes, except
when explicitly dropped to study the stability of the algorithms.
None of the queries required the use of an outer-join during
decorrelation, so we use a normal join instead. The results are
summarized in Figures 5 through 9.

5.3 Analysis
In general, we expect decorrelation to be beneficial when there

are many duplicates in the correlation bindings, or when there
is considerable work performed in each subquery invocation,
or both. We now analyze the three queries, and examine the
reasons for the performance differences.
Query (1): This query lists those suppliers that offer the desired
type and size of parts in a particular nation at the minimum cost.
Select s.s-name, s.s-acctbal, ssaddress, s.s-phone, s.s-comment
From Parts p, Suppliers s, Partsupp ps
Where s-nation=’FRANCE’ and psize=l5 and p-type=’BRASS’

and p-partkey=ps-partkey and ssuppkey=ps-suppkey
and pssupplycost=

(Select min(ps1 .ps-supplycost) From Partsupp ps 1, Suppliers S I
Wherep.p-partkens1 .ps-partkey and

S I .ssuppkey=psl .ps-suppkey and S I .smation=’FRANCE’;
Figure 5 corresponds to this query executed with all necessary

indexes present. For nested iteration, the optimizer chooses a
plan that applies the subquery after executing the joins in the
outer block. There are only 6 invocations ofthe subquery, and no
duplicates in the correlation column. All the same, magic decor-
relation performs slightly better than nested iteration. Note that
the supplementary table common sub-expression (which is the
join of three relations) could not be eliminated in this case,
because the correlation attribute @-partkey) is not a key of
the supplementary table. While Kim’s method does poorly (it
performs unnecessary subquery computation), Dayal’s method
performs better than magic decorrelation. The difference is
because magic decorrelation causes the recomputation of the
supplementary table (in this case, a join of three tables). It
would be comparable to Dayal’s method if the system materi-
alized the common sub-expression instead, especially since in
this case, the table contains only six tuples!

To study the sensitivity of the algorithms to variations in the
query, we dropped the predicate “psize = 15” from the outer
query block, and changed the predicates on snation to “sxegion
in (AMERICA, EUROPE)”. Now, there are 3954 invocations
of the subquery, of which only 2138 are distinct. As Figure 6

shows, magic decorrelation continues to perform well. Kim’s
method starts to do relatively better, because the amount of
unnecessary computation is decreased. Dayal’s method now
performs poorly, because it has to perform a large join before
the aggregation, and also performs redundant aggregations.

Finally, we dropped the index on the pssuppkey column of
Partsupp, thereby increasing the work performed in each cor-
related invocation. Figure 7 shows the results. Now magic
decorrelation performs even better compared to nested itera-
tion. Dayal’s method is worse once again, because it has to
perform a large join before the aggregation. Kim’s method per-
forms comparably with magic decorrelation. This is because
the cost of recomputation of the supplementary in magic decor-
relation balances the extra cost incurred by Kim’s method in
performing unnecessary subquery computations. If the opti-
mizer were to consider materializing the supplementary table
instead of recomputing it, magic decorrelation would perform
much better than any of the other algorithms.
Query (2): This query asks for the average yearly loss in rev-
enue if for each part, all orders with a quantity of less than 20%
of the average ordered quantity were discarded.
Select sum(1-extendedprice*l-quantity)K
From Lineitem, Parts p
Wherep-partkey=Lpartkey and p-brand=’Brand#23’ and

p_container=’6 PACK’ and I-quantity <
(Select 0.2*avg(l.l-quantity)

From Lineitem 1 Where 1.1-partkey=p.p-partkey)

When this query is evaluated using nested iteration, the plan
optimizer places the subquery before the join between Parts
and Lineitem. Since the correlation attribute is a key, there
are no duplicate invocations of the subquery. In all, there are
209 subquery invocations. However, the subquery itself is very
cheap to compute, since there is an index available to perform
the selection predicate. This is therefore a case in which we
expect decorrelation to have little impact. Note that since the
correlation value is a key, the optimization of eliminating the
supplementary table can be applied. Magic decorrelation with
this optimization performs comparably with nested iteration as
shown in Figure 8. Without the optimization, magic decorrela-
tion performs slightly worse. Kim’s and Dayal’s methods are,
however, orders of magnitude worse on this query!
Query (3): This query lists the European suppliers and the
sum of balances of those customers who belong to two specific
market segments and are in the same country as the supplier.
Select 5.*, sumbal From Suppliers s, DT(sumba1) AS

(Select sum(ba1) From DDT(ba1) AS
((Select a.cacctbal From Customers a

Where a.cmktsegment=’BUILDING’ and

456

Authorized licensed use limited to: University of Georgia. Downloaded on June 23,2022 at 01:21:28 UTC from IEEE Xplore. Restrictions apply.

Select D.name From Dept D
Where D.budget < 10000 and D.num-emps >

(Select Count(*) From Emp E Where D.building = E.building)
Consider the scenario where both the tables, Emp and Dept, are

partitioned on the attributes involved in the correlation predicate
(i.e. the building attribute). All the nodes can execute the query
in parallel, with each node computing the portion of the query
corresponding to its partition. In this case, parallelism does not
reveal any special inefficiency in nested iteration. There are
a couple of variants of this scenario which are similar. If the
Emp table is small, it can be copied to all nodes. All nodes
can execute the query in parallel, as in Case 1, with each node
computing the portion corresponding to the partition of the Dept
table. A similar execution strategy is possible when the Dept
table is small.

If these scenarios do not apply, the evaluation strategy is as fol-
lows. For each qualifying Dept tuple at each node, the building
attribute is sent to all nodes. Each processor computes a local
count and returns it to the requesting node. Upon receiving
all the local counts, the requesting node can compute the final
count. When complex queries are being processed, this form of
nested iteration is the common case, and is very inefficient. Note
that our example has a relatively simple subquery computation.
When the subquery involves joins, each subquery invocation at
any node could cause join computation on all the nodes. This
competes for system resources with other such subquery invo-
cations from other nodes, as well as with the computation of
the outer query block, which is in progress at all the nodes. In
other words, if n is the number of nodes, nested iteration can
result in O(n2) computation fragments. Much of the subquery
computation is also often repeated across subquery invocations.

Figure 8: Query 2 Figure9: Query3

a.c_nation=s.saation)
Union (SELECT b.c..acctbal From Customers b
Where b.cmktsegment=’HOUSEHOLD’ and

b.cnation=s.snation)))
Where s.sJegion=’EUROPE’;
In this query, the correlation column has duplicate values. Nei-

ther Kim’s nor Dayal’s methods can be applied, since the query
is not linear(it has a UNION). Magic decorrelation is applica-
ble, and results in a tremendous performance improvement as
shown in Figure 9. The reason is that the correlation column has
only 5 unique values. Of the 209 invocations of the subquery
during nested iteration, most are therefore redundant. In this
example, the subquery computation itself is quite simple. If the
subquery had involved a larger amount of work, the effects of
the duplicate elimination would be even more significant.

5.4 Performance Summary
We conclude that magic decorrelation is a stable and efficient

decorrelation algorithm. In the case where the subquery has a
reasonably large computation (Query l), it performs efficiently,
independent of the actual number of correlation bindings. In the
case where decorrelation is expected to be unnecessary (Query
2) , it does not cause significant degradation in performance. In
the case where there are many duplicate values in the correlation
column (Query 3), decorrelation greatly improves the execution
efficiency. None of the other decorrelation algorithms has these
features of stability and efficiency. We should also note that
while these queries were run after creating all useful indexes,
many ad-hoc queries in the real world do not necessarily have
this luxury. Consequently, subquery computation can be very
expensive (involving unindexed joins), and the benefits of set-
orientation after decorrelation are even more noticeable (as in
Query 1 (c)).

6 Decorrelation in Parallel Databases
In centralized database systems, correlated queries evalu-

ated using nested iteration are inefficient due to tuple-at-a-
time computation. In shared-nothing parallel database systems,
the nested iteration approach results in an added performance
penalty, since it inhibits the potential for intra-query parallelism.
In this section, we explain the added problems with nested iter-
ation in parallel databases, and the efficiency that results from
applying magic decorrelation.

6.1 Inefficiency of Nested Iteration
Let us once again consider our example query of Section 2.

Assume that all nodes participate in the parallel execution of the
query, and that the Emp and Dept tables are partitioned across
all the nodes.

6.2 Magic Decorrelation and Parallelism
Any decorrelation algorithm should prove beneficial in a par-

allel execution environment. Magic decorrelation is the only
algorithm that applies to arbitrary correlated queries, and there-
fore, it should be of interest to builders of parallel databases.
We now demonstrate how the magic decorrelated query (see
Section 2.1) would be evaluated in parallel.

The supplementary table SuppDept is generated and par-
titioned across the nodes based on the correlation attribute
Dept. building. The correlation bindings are also projected to
form the Magic table, which is similarly partitioned across the
nodes. The projection is performed locally at each node. The
decorrelated subquery is then evaluated. This execution can
choose a suitable efficient join order and join evaluation strat-
egy. The results of the join are partitioned on the correlation
attribute. Note that the GroupBy clause of the subquery is
again on the correlation attribute; the aggregation can there-
fore be performed locally. Finally, the decorrelated subquery
is joined with SuppDept to produce the answer. Both these
tables are already partitioned on their join attribute (i.e. on the
correlation attribute). Since there is no coupling between the
query blocks, each of the joins can be executed in parallel on
all nodes without interference from each other.

7 Related Work
Current database systems attempt to merge subquery blocks

into the outer query block, thereby eliminating some
correlations[PHH92]. There are many cases where such merg-
ing is not possible (usually when the subquery involves aggre-
gation), and the correlation persists. A theoretical approach to

457

Authorized licensed use limited to: University of Georgia. Downloaded on June 23,2022 at 01:21:28 UTC from IEEE Xplore. Restrictions apply.

decorrelation is described in [BiilX7], which extends the rela-
tional algebra and calculus to express correlated aggregate sub-
queries. As we mentioned briefly in Section 2, a special case of
magic decorrelation was proposed by GanskiMiong [GW87].
This method considers a simple outer block consisting of a
single table, and a single correlated aggregate subquery. A
temporary table similar to a magic table is generated from the
single outer block relation. The important step of generating
a supplementary table when the outer block is more complex
is not considered. The temporary table is then incorporated
into the subquery via an outer-join(instead of the more efficient
left outer-join). Finally, the method cannot deal with arbitrary
correlated SQE queries.

Magic decorrelation is similar in flavor to the magic sets rewrit-
ing technique [BR9 11 which is used to propagate join bindings
into subqueries to restrict computation. The primary difference
between the two is that while magic rewriting propagates join
bindings, magic decorrelation propagates correlation bindings.
The importance of magic sets to non-recursive relational sys-
tems has been described in [MFPR90]. However that work did
not address the issue of correlated queries, assuming instead
that the queries would be decorrelated by the prior applica-
tion of some decorrelation algorithm. Existing decorrelation
algorithms deal correctly with only a limited class of queries,
and can alter the structure of the query making it difficult to
subsequently apply magic sets. In order to appreciate the de-
tails of our implementation in Starburst, we direct the reader to
[PHH92] which describes the rewrite rule mechanism of Star-
burst, and [MP94] which describes the implementation of the
magic sets rewriting rule.

It is only fair to note that magic decorrelation is a heuristic
optimization that is not based on statistical cost estimates. Fur-
ther like magic sets rewriting, it is dependent on the order of
tables chosen. Our implementation simply optimizes the query
once without decorrelation, and using the chosen join orders
repeats the optimization with decorrelation. The better of the
two optimized plans is chosen. We are currently working at
a closer integration between cost-based optimization and such
heuristic rewrite-based transformations [SHR94].

8 Conclusions
We discussed the issues involved in decorrelation, and the

problems with existing approaches. We then presented an ab-
straction of decorrelation as a basis for developing a magic
decorrelation algorithm which correctly handles arbitrarily
structured SQL queries, and can be flexibly adapted to work
in a variety of system environments. In light of the growing
trend towards complex query processing, a generic decorre-
lation algorithm that works on arbitrary queries is extremely
important in centralized as well as parallel databases. The
performance improvements that result from magic decorrela-
tion are significant, and this should encourage a commercial
RDBMS to incorporate this technique.

Acknowledgments
Praveen Seshadri’s research was supported by IBM Research

Grant 93-F153900-000. Inderpal Mumick implemented the
Extended Magic Sets transformation rule. Michelle Jou and
many others at IBM Almaden provided much help understand-
ing the QGM code. Ted Messinger helped run performance
numbers. Kurt Brown, Joe Hellerstein, Jeff Naughton, Jignesh

Patel, S.Sudarshan and Janet Wiener gave useful suggestions
that helped improve the presentation.

References
[BR91] C. Beeri and R. Ramakrishnan. On the Power of Magic.

Journal of Logic Programming, 10:255, 199 1.
[Bu187] G. von Bultingsloewen. Translating and Optimizing SQL

Queries having Aggegates. In VLDB, pages 235-243, 1987.
[Day871 U. Dayal. Of Nests and Trees: A Unified Approach to

Processing Queries that contain Nested Suhqueries, Aggregates and
Quantifiers. In VLDB, pages 197-208, 1987.

[Gra95] J. Gray. A Survey of Parallel Database Systems. Invited Talk,
SIGMOD, May 1995.

[GW87] R.A. Ganski and K.T. Wong. Optimization of Nested SQL
Queries Revisited. In SIGMOD, pages 23-33, 1987.

[HCL+90] L. Haas, et al. Starburst Mid-Flight: As the dust clears.
IEEE TKDE, March 1990.

[Kie84] W. Kiessling. SQL-like and Quel-like Correlation Queries
with Aggregates Revisited. Technical Report 84/75, UCB/ERL,
September 1984.

[Kim821 W. Kim. On Optimizing an SQL-like Nested Query. ACM
TODS, 7, September 1982.

[MFPR90] I.S. Mumick, S. Finkelstein, H. Pirahesh, and R. Ramakr-
ishnan. Magic is Relevant. In SIGMOD, 1990.

[MP94] I S . Mumick and H. Pirahesh. Implementation of Magic-Sets
in Starburst. In SIGMOD, 1994.

[PHH92] H. Pirahesh, J.M. Hellerstein, and W. Hasan. Extensi-
h1eiRule Based Query Rewrite Optimization in Starburst. In SIC-
MOD, 1992.

[SACLP79] P.G. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and
T. Price. Access Path Selection in a Relational Database Manage-
ment System. In SIGMOD, pages 23-34, 1979.

[SHR94] P. Seshadri, J.M. Hellerstein, and R. Ramakrishnan. Filter
Joins: Cost-Based Optimization for Magic Sets. Technical Report,
Computer Sciences Department, U. W.-Madison, 1995.

[SPL94] P. Seshadri, H. Pirahesh, and T.Y.C. Leung. Decorrelating
Complex Queries. Research Report RJ 9846, IBM Almaden Re-
search Center, 1994.

[SQL93] ISOANSI. ISO-ANSI Working Draft: Database Language
SQL2 and SQL3; X3H2; ISO/IEC JTClISCZIIWG3. 1993.

[TPC-D94] TPC benchmark group. TPC-D Draft, December 1994.
Information Paradigm. Suite 7, 1 15 North Wahsatch Avenue, Col-
orado Springs, CO 80903.

458

Authorized licensed use limited to: University of Georgia. Downloaded on June 23,2022 at 01:21:28 UTC from IEEE Xplore. Restrictions apply.

