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Abstract Stream processing has been an active research
field formore than 20 years, but it is nowwitnessing its prime
time due to recent successful efforts by the research com-
munity and numerous worldwide open-source communities.
This survey provides a comprehensive overview of funda-
mental aspects of stream processing systems and their evo-
lution in the functional areas of out-of-order data manage-
ment, state management, fault tolerance, high availability,
load management, elasticity, and reconfiguration. We review
noteworthy past research findings, outline the similarities
and differences between early (’00-’10) and modern (’11-
’18) streaming systems, and discuss recent trends and open
problems.

1 Introduction

Applications of stream processing technology have gone
through a resurgence, penetrating multiple and very di-
verse industries. Nowadays, virtually all Cloud vendors offer
first-class support for deploying managed stream process-
ing pipelines, while streaming systems are used in a vari-
ety of use-cases that go beyond the classic streaming ana-
lytics (windows, aggregates, joins, etc.). For instance, web
companies are using stream processing for dynamic car-
trip pricing, banks apply it for credit card fraud detection,
while traditional industries apply streaming technology for
real-time harvesting analytics. At the moment of writing we
are witnessing a trend towards using stream processors to
build more general event-driven architectures [87], large-
scale continuous ETL and analytics, and microservices [83].

During the last 20 years, streaming technology has
evolved significantly, under the influence of database and
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distributed systems. The notion of streaming queries was
first introduced in 1992 by the Tapestry system [127], and
was followed by lots of research on stream processing in the
early 00s. Fundamental concepts and ideas originated in the
database community and were implemented in prototypical
systems such as TelegraphCQ [45], Stanford’s STREAM,
NiagaraCQ [47], Auroral/Borealis [9], and Gigascope [50].
Although these prototypes roughly agreed on the data model,
they differed considerably on querying semantics [18, 30].
This research period also introduced various systems chal-
lenges, such as sliding window aggregation [19, 95], fault-
tolerance and high-availability [26,120], as well as load bal-
ancing and shedding [124]. This first wave of research was
highly influential to commercial stream processing systems
that were developed in the following years (roughly dur-
ing 2004 – 2010), such as IBM System S, Esper, Oracle
CQL/CEP and TIBCO. These systems focused – for the most
part – on streaming window queries and Complex Event Pro-
cessing (CEP). This era of systems was mainly characterized
by scale-up architectures, processing ordered event streams.

The second generation of streaming systems was a re-
sult of research that started roughly after the introduc-
tion of MapReduce [54] and the popularization of Cloud
Computing. The focus shifted towards distributed, data-
parallel processing engines and shared-nothing architectures
on commodity hardware. Lacking well-defined semantics
and a proper query language, systems like Millwheel [12],
Storm [2], Spark Streaming [141], and Apache Flink [34]
first exposed primitives for expressing streaming computa-
tions as hard-coded dataflow graphs and transparently han-
dled data-parallel execution on distributed clusters. With
very high influence, the Google Dataflow model [13] re-
introduced older ideas such as out-of-order processing [96]
and punctuations [134], proposing a unified parallel process-
ing model for streaming and batch computations. Stream
processors of this era are converging towards fault-tolerant,
scale-out processing of massive out-of-order streams.

ar
X

iv
:2

00
8.

00
84

2v
1 

 [
cs

.D
C

] 
 3

 A
ug

 2
02

0



2 Marios Fragkoulis∗ et al.

3rd gen:  ?2nd gen: Scalable Data Streaming 

‘92

TelegraphCQ
STREAM

Tapestry

NiagaraCQ

‘04

Map Reduce

’13-‘17

- Continuous 
Queries 

-  Inverted DBs

1st gen: From DBs to DSMSs 

- Synopses 
- Sliding 
windows 

- CEP

’00-‘03

Aurora/Borealis

     Esper

          IBM System S

          Oracle CQL

’10-‘12

- Scalability 
- Best-Effort 
Processing

Twitter Storm

S4

- Out-of-Order 
- State Management 
- Proc. Guarantees 
- Reconfiguration 

- Stream SQL 

- Model Serving 
- Dynamic Plans 

- HW Accel. - Cloud Apps 
- Microservices 

- Actors 
- Transactions

Spark 
Streaming

Flink/Beam

Millwheel/
Dataflow

Samza

Apex

Kafka Streams

Ray
Arcon

’18- ’19-

Neptune Ambrosia
Stateful Functions

S Store
Naiad

Fig. 1: An overview of the evolution of stream processing and respective domains of focus.

Figure 1 presents a schematic categorization of influen-
tial streaming systems into three generations and highlights
each era’s domains of focus. Although the foundations of
stream processing have remained largely unchanged over the
years, stream processing systems have transformed into so-
phisticated and scalable engines, producing correct results in
the presence of failures. Early systems and languages were
designed as extensions of relational execution engines, with
the addition of windows. Modern streaming systems have
evolved in the way they reason about completeness and or-
dering (e.g., out-of-order computation) and have witnessed
architectural paradigm shifts that constituted the foundations
of processing guarantees, reconfiguration, and state manage-
ment. At the moment of writing, we observe yet another
paradigm shift towards general event-driven architectures,
actor-like programming models and Microservices [11, 31],
and a growing use of modern hardware [88, 128, 142, 144].

This survey is the first to focus on the evolution of
streaming systems rather than the state of the field at a par-
ticular point in time. To the best of our knowledge, this is
also the first attempt at understanding the underlying rea-
sons why certain early techniques and designs prevailed in
modern systems while others were abandoned. Further, by
examining how ideas survived, evolved, and were often re-
invented, we reconcile the terminology used by the different
generations of streaming systems.

1.1 Contributions

We make the following contributions:

– We summarize existing approaches to streaming sys-
tems design and categorize early and modern stream pro-
cessors in terms of underlying assumptions and mecha-
nisms.

– We compare early and modern stream processing sys-
tems with regard to out-of-order data management,
state management, fault-tolerance, high availability, load
management, elasticity, and reconfiguration.

– We highlight important but overlooked works that have
influenced today’s streaming systems design.

– We establish a common nomenclature for fundamen-
tal streaming concepts, often described by inconsistent
terms in different systems and communities.

1.2 Related surveys and research collections

We view the following surveys as complementary to ours and
recommend them to readers interested in diving deeper into a
particular aspect of stream processing or or those who seek
a comparison between streaming technology and advances
from adjacent research communities.

Cugola and Margara [51] provide a view of stream pro-
cessing with regard to related technologies, such as active
databases and complex event processing systems, and dis-
cuss their relationship with data streaming systems. Further,
they provide a categorization of streaming languages and
streaming operator semantics. The language aspect is fur-
ther covered in another recent survey [72], which focuses on
the languages developed to address the challenges in very
large data streams. It characterizes streaming languages in
terms of data model, execution model, domain, and intended
user audience. Röger and Mayer [117] present an overview
of recent work on parallelization and elasticity approaches
of streaming systems. They define a general system model
which they use to introduce operator parallelization strate-
gies and parallelism adaptation methods. Their analysis also
aims at comparing elasticity approaches originating in dif-
ferent research communities. Hirzel et al. [73] present an ex-
tensive list of logical and physical optimizations for stream-
ing query plans. They present a categorization of streaming
optimizations in terms of their assumptions, semantics, ap-
plicability scenarios, and trade-offs. They also present ex-
perimental evidence to reason about profitability and guide
system implementers in selecting appropriate optimizations.
To, Soto, and Markl [129] survey the concept of state and
its applications in big data management systems, covering
also aspects of streaming state. Finally, Dayarathna and Per-
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era [53] present a survey of the advances of the last decade
with a focus on system architectures, use-cases, and hot re-
search topics. They summarize recent systems in terms of
their features, such as what types of operations they support,
their fault-tolerance capabilities, their use of programming
languages, and their best reported performance.

Theoretical foundations of streaming data management
and streaming algorithms are out of the scope of this survey.
A comprehensive collection of influential works on these
topics can be found in Garofalakis et al. [61]. The collec-
tion focuses on major contributions of the first generation
of streaming systems. It reviews basic algorithms and syn-
opses, fundamental results in stream data mining, streaming
languages and operator semantics, and a set of representative
applications from different domains.

1.3 Survey organization

We begin by presenting the essential elements of the domain
in Section 2. Then we elaborate on each of the important
functionalities offered by stream processing systems: out-of-
order data management (Section 3), state management (Sec-
tion 4), fault tolerance and high availability (Section 5), and
loadmanagement, elasticity, and reconfiguration (Section 6).
Each one of these sections contains a Vintage vs. Modern
discussion that compares early to contemporary approaches
and a summary of open problems. We summarize our major
findings, discuss prospects, and conclude in Section 7.

2 Preliminaries

In this section, we provide necessary background and explain
fundamental stream processing concepts the rest of this sur-
vey relies on.We discuss the key requirements of a streaming
system, introduce the basic streaming data models, and give
a high-level overview of the architecture of early andmodern
streaming systems.

2.1 Requirements of streaming systems

A data stream is a data set that is produced incrementally over
time, rather than being available in full before its processing
begins [61]. Data streams are high-volume, real-time data
that might be unbounded. Therefore, stream processing sys-
tems can neither store the entire stream in an accessible way
nor can they control the data arrival rate or order. In contrast
to traditional data management infrastructure, streaming sys-
tems have to process elements on-the-fly using limited mem-
ory. Stream elements arrive continuously and either bear a
timestamp or are assigned one on arrival.

Respectively, a streaming query ingests events and pro-
duces results in a continuous manner, using a single pass or
a limited number of passes over the data. Streaming query
processing is challenging for multiple reasons. First, contin-
uously producing updated results might require storing his-
torical information about the stream seen so far in a compact
representation that can be queried and updated efficiently.
Such summary representations are known as sketches or syn-
opses. Second, in order to handle high input rates, certain
queries might not afford to continuously update indexes and
materialized views. Third, stream processors cannot rely on
the assumption that state can be reconstructed from associ-
ated inputs. To achieve acceptable performance, streaming
operators need to leverage incremental computation.

The aforementioned characteristics of data streams and
continuous queries provide a set of unique requirements for
streaming systems, other than the evident performance ones
of low latency and high throughput. Given the lack of con-
trol over the input order, a streaming system needs to pro-
duce correct results when receiving out-of-order and de-
layed data (cf. Section 3). It needs to implement mechanisms
that estimate a stream’s progress and reason about result
completeness. Further, the long-running nature of stream-
ing queries demands that streaming systems manage accu-
mulated state (cf. Section 4) and guard it against failures (cf.
Section 5). Finally, having no control over the data input rate
requires stream processors to be adaptive so that they can
handle workload variations without sacrificing performance
(cf. Section 6).

2.2 Streaming data models

There exist many theoretical streaming data models, mainly
serving the purpose of studying the space requirements and
computational complexity of streaming algorithms and un-
derstanding which streaming computations are practical.
For instance, a stream can be modeled as a dynamic one-
dimensional vector [61]. The model defines how this dy-
namic vector is updated when a new element of the stream
becomes available. While theoretical streaming data models
are useful for algorithm design, early stream processing sys-
tems instead adopted extensions of the relational datamodel.
Recent streaming dataflow systems, especially those influ-
enced by the MapReduce philosophy, place the responsibil-
ity of data stream modeling on the application developer.

2.2.1 Relational streaming model

In the relational streaming model, a stream is interpreted as
describing a changing relation over a common schema. Base
streams are produced by external sources and update rela-
tion tables, while derived streams are produced by continu-
ous queries and update materialized views. An operator out-
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Fig. 2: Architectures of early and modern streaming systems.

puts event streams that describe the changing view computed
over the input stream according to the relational semantics of
the operator.

STREAM [17] defines streams as bags of tuple-
timestamp pairs and relations as time-varying bags of tu-
ples. The implementation unifies both types as sequences of
timestamped tuples, where each tuple also carries a flag that
denotes whether it is an insertion or a deletion. Input streams
consist of insertions only, while relations may also contain
deletions. TelegraphCQ [45] uses a similar data model. Au-
rora [9] models streams as append-only sequences of tuples,
where a set of attributes denote the key and the rest of the at-
tributes denote values. Borealis [8] generalizes this model to
support insertion, deletion, and replacement messages. Mes-
sages may also contain additional fields related to QoS met-
rics. Gigascope [50] extends the sequence database model.
It assumes that stream elements bear one or more times-
tamps or sequence numbers, which generally increase (or de-
crease) with the ordinal position of a tuple in a stream. Order-
ing attributes can be (strictly) monotonically increasing or
decreasing, monotone non-repeating, or increasing within a
group of records. In CEDR [27], stream elements bear a valid
timestamp, Vs, after which they are considered valid and can
contribute to the result. Alternatively, events can have va-
lidity intervals. The contents of the relation at time t are all
events with Vs ≤ t.

2.2.2 Dataflow streaming model

The dataflow streaming model, as implemented by systems
of the second generation [13, 34, 141], does not impose any
strict schema or semantics to the input stream elements,
other than the presence of a timestamp. While some sys-
tems, like Naiad [108], require that all stream elements bear
a logical timestamp, other systems, such as Flink [34] and
Dataflow [13], expect the declaration of a time domain. Ap-
plications can operate in one of three modes: (i) event (or
application) time is the time when events are generated at
the sources, (ii) processing time is the time when events are

processed in the streaming system, and (iii) ingestion time is
the time when events arrive at the system. Modern dataflow
streaming systems can ingest any type of input stream, irre-
spectively of whether its elements represent additions, dele-
tions, replacements or deltas. The application developer is
responsible for imposing the semantics and writing the op-
erator logic to update state accordingly and produce correct
results. Designating keys and values is also usually not re-
quired at ingestion time, however, keysmust be definedwhen
using certain data-parallel operators, such as windows.

2.3 Architectures of streaming systems

The general architecture of streaming systems has evolved
significantly over the last two decades. Before we delve into
the specific approaches to out-of-order management, state,
fault tolerance, and load management, we outline some fun-
damental differences between early and modern streaming
systems. Figure 2a shows a typical data stream manage-
ment system (DSMS) architecture next to a modern dataflow
streaming system in Figure 2b.

The architecture of a DSMS follows closely that of a
database management systems (DBMS), with the addition of
certain components designated to address the requirements
of streaming data (cf. Section 2.1). In particular, the input
manager is responsible for ingesting streams and possibly
buffering and ordering input elements. The scheduler deter-
mines the order or operator execution, as well as the num-
ber of tuples to process and push to the outputs. Two im-
portant additional components are the quality monitor and
load shedder which monitor stream input rates and query
performance and selectively drop input records to meet tar-
get latency requirements. Queries are compiled into a shared
query plan which is optimized and submitted to the query ex-
ecution engine. In the common case, a DSMS supports both
ad-hoc and continuous queries. Early architectures are de-
signedwith the goal to provide fast, but possibly approximate
results to queries.
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The next generation distributed dataflow systems are
usually deployed on shared-nothing clusters of machines.
Dataflow systems employ task and data parallelism, have ex-
plicit state management support, and implement advanced
fault-tolerance capabilities to provide result guarantees. Dis-
tributed workers execute parallel instances of one of more
operators (tasks) on disjoint stream partitions. In contrast
to DSMSs, queries are independent of each other, maintain
their own state, and they are assigned dedicated resources.
Every query is configured individually and submitted for ex-
ecution as a separate job. Input sources are typically assumed
to be replayble and state is persisted to embedded or exter-
nal stores. Modern architectures prioritize high throughput,
robustness, and result correctness over low latency.

Despite the evident differences between early and mod-
ern streaming systems’ architectures, many fundamental as-
pects have remained unchanged in the past two decades. The
following sections examine in detail how streaming systems
have evolved in terms of out-of-order processing, state capa-
bilities, fault-tolerance, and load management.

3 Out-of-order data management

A streaming system receives data continuously from one or
more input sources. Typically the order of data in a stream
is part of the stream’s semantics [100]. Depending on the
computations to perform, a streaming system may have to
process stream tuples in a certain order to provide semanti-
cally correct results [121]. However, in the general case, a
stream’s data tuples arrive out of order [93, 134] for reasons
explained in Section 3.1.

Out-of-order data tuples [121, 132] arrive in a streaming
system after tuples with later event time timestamps.

In the rest of the paper we use the terms disorder [100]
and out-of-order [12, 96] to refer to the disturbance of order
in a stream’s data tuples. Reasoning about order and manag-
ing disorder are fundamental considerations for the operation
of streaming systems.

In the following, we highlight the causes of disorder in
Section 3.1, clarify the relationship between disorder in a
stream’s tuples and processing progress in Section 3.2, and
outline the two key system architectures for managing out-
of-order data in Section 3.3. Then, we describe the conse-
quences of disorder in Section 3.4 and present the mecha-
nisms for managing disorder in Section 3.5. Finally, in Sec-
tion 3.6, we discuss the differences of out-of-order data man-
agement in early and modern systems and we present open
problems in Section 3.7.

3.1 Causes of disorder

Disorder in data streams may be owed to stochastic factors
that are external to a streaming system or to the operations
taking place inside the system.

The most common external factor that introduces disor-
der to streams is the network [89,121]. Depending on the net-
work’s reliability, bandwidth, and load, the routing of some
stream tuples can take longer to complete compared to the
routing of others, leading to a different arrival order in a
streaming system. Even if the order of tuples in an individual
stream is preserved, ingestion frommultiple sources, such as
sensors, typically results in a disordered collection of tuples,
unless the sources are carefully coordinated, which is rare.

External factors aside, specific operations on streams
break tuple order. First, join processing takes two streams
and produces a shuffled combination of the two, since a
parallel join operator repartitions the data according to the
join attribute [135] and outputs join results by order of
match [68, 82]. Second, windowing based on an attribute
different to the ordering attribute reorders the stream [50].
Third, data prioritization [115,136] by using an attribute dif-
ferent to the ordering one also changes the stream’s order.
Finally, the union operation on two unsynchronized streams
yields a stream with all tuples of the two input streams inter-
leaving each other in random order [9].

3.2 Disorder and processing progress

In order to manage disorder, streaming systems need to de-
tect processing progress. We discuss how disorder manage-
ment and progress tracking are intertwined in Sections 3.3
and 3.4.

Progress regards how much the processing of a stream’s
tuples has advanced over time. Processing progress can be
defined and quantified with the aid of an attribute A of a
stream’s tuples that orders the stream. The processing of the
stream progresses when the smallest value of A among the
unprocessed tuples increases over time [96]. A then is a pro-
gressing attribute and the oldest value of A per se, is a mea-
sure of progress because it denotes how far in processing
tuples the system has reached since the beginning. Beyond
this definition, streaming systems often make their own in-
terpretation of progress, which may involve more than one
attributes.

3.3 System architectures for managing disorder

Two main architectural archetypes have influenced the de-
sign of streaming systems with respect to managing disor-
der: (i) in-order processing systems [9, 18, 50, 121], and (ii)
out-of-order processing systems [12, 34, 96, 108].
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In-order processing systems manage disorder by fixing
a stream’s order. As a result, they essentially track progress
by monitoring how far the processing of a data stream has
advanced. In-order systems buffer and reorder tuples up to a
lateness bound. Then, they forward the reordered tuples for
processing and clear the corresponding buffers.

In out-of-order processing systems, operators or a global
authority produce progress information using any of the met-
rics detailed in Section 3.5, and propagate it to the dataflow
graph. The information typically reflects the oldest unpro-
cessed tuple in the system and establishes a lateness bound
for admitting out-of-order tuples. In contrast to in-order sys-
tems, tuples are processed without delay in their arrival or-
der, as long as they do not exceed the lateness bound.

3.4 Effects of disorder

In unbounded data processing, disorder can impede
progress [96] or lead to wrong results if ignored [121].

Disorder affects processing progress when the operators
that comprise the topology of the computation require or-
dered input. Various implementations of join and aggregate
rely on ordered input to produce correct results [9, 121].
When operators in in-order systems receive out-of-order tu-
ples, they have to reorder them prior to including them in the
window they belong. Reordering, however, imposes process-
ing overhead, memory space overhead, and latency. Out-of-
order systems, on the other hand, track progress and process
data in whatever order they arrive, up to the lateness bound.
To include late tuples in results, they additionally need to
store the processing state up to the lateness bound. As a side-
note, order-insensitive operators [9, 96, 121], such as apply,
project, select, dupelim, and union, are agnostic to disorder
in a stream and produce correct results even when presented
with disordered input.

Ignoring out-of-order data might lead to incorrect re-
sults if the output is computed on partial input only. Thus,
a streaming system needs to be capable of processing out-
of-order data and incorporate their effect to the computa-
tion. However, without knowledge of how late data can be,
waiting indefinitely can block output and accumulate large
computation state. This concern manifests on all architec-
tures and we discuss how it can be countered with disorder
management mechanisms, next.

3.5 Mechanisms for managing disorder

In this section, we elaborate on influential mechanisms for
managing disorder in unbounded data, namely slack [9],
heartbeats [121], low-watermarks [96], pointstamps [108],
and triggers [13]. Heartbeats, low-watermarks, and
pointstamps track processing progress and quantify a

lateness bound using a metric, such as time. In contrast,
slack merely quantifies the lateness bound. If tuples arrive
after the lateness bound expires, triggers can be used to
update computation results in revision processing [8]. We
also discuss punctuations [134], a generic mechanism for
communicating information across the dataflow graph, that
has been heavily used as a vehicle in managing disorder.

Tracking processing progress. Slack is a simple mecha-
nism that involves waiting for out-of-order data for a fixed
amount of a certain metric. Slack originally denoted the
number of tuples intervening between the actual occurrence
of an out-of-order tuple and the position it would have in the
input stream if it arrived on time. However, it can also be
quantified in terms of elapsed time. Essentially, slack marks
a fixed grace period for late tuples.

A heartbeat is a slack alternative that consists of an
external signal carrying progress information about a data
stream. It contains a timestamp indicating that all succeed-
ing stream tuples will have a timestamp larger than the heart-
beat’s timestamp. Heartbeats can either be generated by an
input source or deduced by the system by observing envi-
ronment parameters, such as network latency bound, appli-
cation clock skew between input sources, and out-of-order
data generation [121].

The low-watermark for an attribute A of a stream is the
lowest value of Awithin a certain subset of the stream. Thus,
future tuples will probabilistically bear a higher value than
the current low-watermark for the same attribute. Often, A is
a tuple’s event time timestamp. The mechanism is used by a
streaming system to track processing progress via the low-
watermark for A, to admit out-of-order data whose attribute
A’s value is not smaller than the low-watermark. Further, it
can be used to remove state that is maintained for A, such
as the corresponding hash table entries of a streaming join
computation.

Heartbeats and slack are both external to a data stream.
Heartbeats are signals communicated from an input source
to a streaming system’s ingestion point. Differently to heart-
beats, which is an internal mechanism of a streaming system
hidden from users, slack is part of the query specification
provided by users [9].

Heartbeats and low-watermarks are similar in terms
of progress-tracking logic. However, two important differ-
ences set them apart. While heartbeats expose the progress
of stream tuple generation at the input sources, the low-
watermark extends this to the processing progress of compu-
tations within the streaming system by reflecting their old-
est pending work. Second, the low-watermark generalizes
the concept of the oldest value, which signifies the current
progress point, to any progressing attribute of a stream tuple
besides timestamps.

In contrast to heartbeats and slack, punctuations are
metadata annotations embedded in data streams. A punctua-
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Fig. 3: Mechanisms for managing disorder.

tion is itself a stream tuple, which consists of a set of patterns
each identifying an attribute of a stream data tuple. A punc-
tuation is a generic mechanism that communicates informa-
tion across the dataflow graph. Regarding progress tracking,
it provides a channel for communicating progress informa-
tion such as a tuple attribute’s low-watermark produced by
an operator [96], event time skew [121], or slack [9]. Thus,
punctuations can convey which data cease to appear in an
input stream; for instance the data tuples with smaller times-
tamp than a specific value. Punctuations are useful in other
functional areas of a streaming system as well, such as state
management, monitoring, and flow control.

Figure 3 showcases the differences between slack, heart-
beats, and low-watermarks. The figure depicts a simple ag-
gregation operator that counts tuples in 4-second event time
tumbling windows. The operator awaits for some indication
that event time has advanced past the end timestamp of a
window so that it computes and outputs an aggregate per

window. The indication varies according to the progress-
tracking mechanism. The input to this operator are seven tu-
ples containing only a timestamp from t=1 to t=7. The times-
tamp signifies the event time in seconds that the tuple was
produced in the input source. Each tuple contains a differ-
ent timestamp and all tuples are dispatched from a source in
ascending order of timestamp. Due to network latency, the
tuples may arrive to the streaming system out of order.

Figure 3a presents the slack mechanism. In order to ac-
commodate out-of-order tuples the operator admits out-of-
order tuples up to slack=1. Thus, the operator having admit-
ted tuples with t=1 and t=2 not depicted in the figure will
receive tuple with t=4. The timestamp of the tuple coincides
with the max timestamp of the first window for interval [0,
4). Normally, this tuple would cause the operator to close the
window and compute and output the aggregate, but because
of the slack value the operator will wait to receive one more
tuple. The next tuple t=3 belongs to the first window and is
included there. At this point, slack also expires and this event
finally triggers the window computation, which outputs C=3
for t=[1, 2, 3]. On the contrary, the operator will not accept
t=5 at the tail of input because it arrives two tuples after its
natural order and is not covered by the slack value.

Figure 3b depicts the heartbeat mechanism. An input
manager buffers and orders the incoming tuples by times-
tamp. The number of tuples buffered, two in this example
(t=5, t=6), is of no importance. The source periodically
sends a heartbeat to the input manager, i.e. a signal with a
timestamp. Then the input manager dispatches to the opera-
tor all tuples with timestamp less or equal to the timestamp
of the heartbeat in ascending order. For instance, when the
heartbeat with timestamp t=2 arrives in the input manager
(not shown in the figure), the input manager dispatches the
tuples with timestamp t=1 and t=2 to the operator. The input
manager then receives tuples with t=4, t=6, and t=5 in this
order and puts them in the right order. When the heartbeat
with timestamp t=4 arrives, the input manager dispatches
the tuple with timestamp t=4 to the operator. This tuple trig-
gers the computation of the first window for interval [0, 4).
The operator outputs C=2 counting two tuples with t=[1, 2]
not depicted in the figure. The input manager ignores the in-
coming tuple with timestamp t=3 as it is older than the latest
heartbeat with timestamp t=4.

Figure 3c presents the low-watermarkmechanism, which
signifies the oldest pending work in the system. Here punc-
tuations carrying the low-watermark timestamp decide when
windows will be closed and computed. After receiving two
tuples with t=1 and t=2, the corresponding low-watermark
for t=2 (which is propagated downstream), and tuple t=3,
the operator receives tuple t=5. Since this tuple carries an
event time timestamp greater or equal to 4, which is the end
timestamp of the first window, it could be the one to cause
the window to fire or close. However, this approach would



8 Marios Fragkoulis∗ et al.

Active 
Pointstamp

Unprocessed 
Event(s)

Occurrence 
Count Precursor Count

(1, OP1) e1, e2 2 0
(2, OP2) e3 1 1 (1, OP1)
(2, OP3) e4 1 1 (1, OP1)

OP1

OP2

OP3

OP4

e1 e3

e2 e4

frontier 
(1, OP1)

(a) Pointstamps and frontier

Active 
Pointstamp

Unprocessed 
Event(s)

Occurence 
Count Precursor Count

(2, OP2) e3, e5 1 0
(2, OP3) e4, e6 1 0

OP1

OP2

OP3

OP4

e3,e5

e4,e6

frontier 
(2, OP2) 
(2, OP3)

(b) Frontier moves forward

Fig. 4: High-level workflow of pointstamps and frontier

not account for out-of-order data. Instead, the window closes
when the operator receives the low-watermark with t=4. At
this point, the operator computes C=3 for t=[1, 2, 3] and as-
signs tuples with t=[5, 6] to the second windowwith interval
[4, 8). The operator will not admit tuple t=4 because it is not
greater (more recent) than the current low-watermark value
t=4.

Like punctuations, pointstamps are embedded in data
streams, but a pointstamp is attached to each stream data tu-
ple as opposed to a punctuation, which forms a separate tu-
ple. Pointstamps are pairs of timestamp and location that po-
sition data tuples on a vertex or edge of the dataflow graph at
a specific point in time. An unprocessed tuple p at a specific
location could-result-in another unprocessed tuple p’ with
timestamp t’ at another location when p can arrive at p’ be-
fore or at timestamp t’. Unprocessed tuples p with timestamp
t are in the frontier of processing progress when no other un-
processed tuples could-result-in p. Thus, tuples bearing t or
an earlier timestamp are processed and the frontier moves
on. The system enforces that future tuples will bear a greater
timestamp than the tuples that generated them. This model-
ing of processing progress traces the course of data tuples
on the dataflow graph with timestamps and tracks the de-
pendencies between unprocessed events in order to compute
the current frontier. The concept of a frontier is similar to a
low-water mark.

The example shown in Figure 4 showcases how
pointstamps and frontiers work. The example in Figure 4a
includes three active pointstamps. Poinstamps are active
when they correspond to one or more unprocessed events.
Pointstamp (1, OP1) is in the frontier of active pointstamps,
because its precursor count is 0. The precursor count, spec-
ifies the number of active pointstamps that could-result-in
that pointstamp. In the frontier, notifications for unprocessed
events can be delivered. Thus, unprocessed events e1 and

e2 can be delivered to OP2 and OP3 respectively. The oc-
currence count is 2 because both events e1 and e2 bear the
same pointstamp. Looking at this snapshot of the data flow
graph, it is easy to see that pointstamp (1, OP1) could-result-
in pointstamps (2, OP2) and (2, OP3). Therefore, the precur-
sor count of the latter two pointstamps is 1. A bit later as Fig-
ure 4b depicts, after events e1 and e2 are delivered to OP2
and OP3 respectively, their processing results in the genera-
tion of new events e5 and e6, which bear the same pointstamp
as unprocessed events e3 and e4 respectively. Since there are
no more unprocessed events with timestamp 1, and the pre-
cursor count of pointstamps (2, OP2) and (2, OP3) is 0, then
the frontier moves on to these active pointstamps. Conse-
quently, all four event notifications can be delivered. Ob-
solete pointstamps (1, OP1), (2, OP2), and (2, OP3), are
removed from their location, since they correspond to no
unprocessed events. Although this example is made simple
for educational purposes, the progress tracking mechanism,
has the power to track the progress of arbitrary iterative and
nested computations.

Pointstamps/frontiers track processing progress regard-
less of the notion of event time. However, it is possible for
users to capture out-of-order data with pointstamps/frontiers
by establishing a two-dimensional frontier of event time and
processing time that is flexibly open on the side of event time.

Tracking progress of out-of-order data in cyclic queries.
Cyclic queries require special treatment for tracking
progress. A cyclic query always contains a binary operator,
such as a join or a union. The output produced by the binary
operator meets a loop further in the dataflow graph that con-
nects back to one of the binary operator’s input channels. In
a progress model that uses punctuations for instance, the bi-
nary operator forwards a punctuation only when it appears in
both of its input channels otherwise it blocks waiting for both
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to arrive. Since one of the binary operator’s input channels
depends on its own output channel, a deadlock is inevitable.

Chandramouli et al. [43] propose an operator for detect-
ing progress in cyclic streaming queries on the fly. The oper-
ator introduces a speculative punctuation in the loop that is
derived from the passing events’ timestamp.While the punc-
tuation flows in the loop the operator observes the stream’s
tuples to validate its guess.When this happens and the specu-
lative punctuation re-enters the operator, it becomes a regular
punctuation that carries progress information downstream.
Then a new speculative punctuation is generated and is fed
in the loop. By combining a dedicated operator, speculative
output, and punctuations this work achieves to track progress
and tolerate disorder in cyclic streaming queries. The ap-
proach works for strongly convergent queries and can be uti-
lized in systems that provide speculative output.

In Naiad [108,109], the general progress-tracking model
features logical multidimensional timestamps attached to
events. Each timestamp consists of the input batch to which
an event belongs and an iteration counter for each loop the
event traverses. Like in Chandramouli et al. [43], Naiad sup-
ports cyclic queries by utilizing a special operator. However,
the operator is used to increment the iteration counter of
events entering a loop. To ensure progress, the system al-
lows event handlers to dispatch only messages with larger
timestamp than the timestamp of events being currently pro-
cessed. This restriction imposes a partial order over all pend-
ing events. The order is used to compute the earliest logical
time of events’ processing completion in order to deliver no-
tifications for producing output. Naiad’s progress-tracking
mechanism is external to the dataflow. This design defies
the associated implementation complexity in favor of a) effi-
cient delivery of notifications that is proportional to dataflow
nodes instead of edges and b) incremental computation that
avoids redundant work. Although not directly incorporated,
the notion of event time can be encapsulated in multidimen-
sional timestamps to account for out-of-order data.

Revision processing is the update of computations in face
of late, updated, or retracted data, which require the modifi-
cation of previous outputs in order to provide correct results.
Revision processing made its debut in Borealis [8]. From
there on, it has been combined with in-order processing ar-
chitectures [42, 110], as well as out-of-order processing ar-
chitectures [13,14,27,89]. In some approaches revision pro-
cessing works by storing incoming data and revising compu-
tations in face of late, updated, or retracted data [13,14,27].
Other approaches replay affected data, revise computations,
and propagate the revision messages to update all affected
results until the present [8, 110, 118]. Finally, a third line of
approaches maintain multiple partitions that capture events
with different levels of lateness and consolidate partial re-
sults [42, 89].

Store and revise. Microsoft’s CEDR [27] and StreamIn-
sight [14], and Google’s Dataflow [13] buffer or store stream
data and process late events, updates, and deletions incre-
mentally by revising the captured values and updating the
computations.

The dataflowmodel [13] divides the concerns for out-of-
order data into three dimensions: the event time when late
data are processed, the processing time when correspond-
ing results are materialized, and how later updates relate to
earlier results. The mechanism that decides the emission of
updated results and how the refinement will happen is called
a trigger. Triggers are signals that cause a computation to be
repeated or updated when a set of specified rules fire.

One important rule regards the arrival of late input data.
Triggers ensure output correctness by incorporating the ef-
fects of late input into the computation results. Triggers can
be defined based on watermarks, processing time, data ar-
rival metrics, and combinations of those; they can also be
user-defined. Triggers support three refinement policies, ac-
cumulating where new results overwrite older ones, discard-
ing where new results complement older ones, and accu-
mulating and retracting where new results overwrite older
ones and older results are retracted. Retractions, or compen-
sations, are also supported in StreamInsight [14].

Replay and revise. Dynamic revision [8] and speculative
processing [110] replay an affected past data subset when a
revision tuple is received. An optimization of this scheme re-
lies on two revision processing mechanisms, upstream pro-
cessing and downstream processing [118]. Both are based
on a special-purpose operator, called connection point, that
intervenes between two regular operators and stores tuples
output by the upstream operator. According to the upstream
revision processing, an operator downstream from a connec-
tion point can ask for a set of tuples to be replayed so that it
can calculate revisions based on old and new results. Alterna-
tively, the operator can ask from the downstream connection
point to retrieve a set of output tuples related to a received
revision tuple. Under circumstances, the operator can calcu-
late correct revisions by incorporating the net effect of the
difference between the original tuple and its revised one to
the old result.

Dynamic revision emits delta revision messages, which
contain the difference of the output between the original and
the revised value. It keeps the input message history to an op-
erator in the connection point of its input queue. Since keep-
ing all messages is infeasible, there is a bound in the history
of messages kept. Messages that go further back from this
bound can not be replayed and, thus, revised. Dynamic revi-
sion differentiates between stateless and stateful operators. A
stateless operator will evaluate both the original (t) and the
revised message (t′) emitting the delta of their output. For
instance, if the operator is a filter, t is true and t′ is not, then



10 Marios Fragkoulis∗ et al.

the operator will emit a deletion message for t. A stateful op-
erator, on the other hand, has to process many messages in
order to emit an output. Thus, an aggregation operator has
to re-process the whole window for both a revised message
and the original message contained in that window in order
to emit revision messages. Dynamic revision is implemented
in Borealis.

Speculative processing, on the other hand, applies snap-
shot recovery if no output has been produced for a disordered
input stream. Otherwise, it retracts all produced output in a
recursive manner. In speculative processing because revision
processing is opportunistic, no history bound is set.

Partition and consolidate. Both order-independent pro-
cessing [89] and impatience sort [42] are based on partial
processing of independent partitions in parallel and consol-
idation of partial results. In order-independent processing,
when a tuple is received after its corresponding progress in-
dicator a new partition is opened and a new query plan in-
stance processes this partition using standard out-of-order
processing techniques. On the contrary, in impatience sort,
the latest episode of the vision of CEDR [27], an online
sorting operator incrementally orders the input arriving at
each partition so that it is emitted in order. The approach
uses punctuations to bound the disorder as opposed to order-
independent processing which can handle events arriving ar-
bitrarily late.

In order-independent processing, partitioning is left for
the system to decide while in impatience sort it is specified
by the users. In order-independent processing, tuples that are
too old to be considered in their original partition are in-
cluded in the partition which has the tuple with the clos-
est data. When no new data enter an ad-hoc partition for a
long time, the partition is closed and destroyed by means of
a heartbeat. Ad-hoc partitions are window-based; when an
out-of-order tuple is received that does not belong to one of
the ad-hoc partitions, a new ad-hoc partition is introduced.
An out-of order tuple with a more recent timestamp than
the window of an ad-hoc partition causes that partition to
flush results and close. Order-independent processing is im-
plemented in Truviso.

On the contrary, in impatience sort, users specify reorder
latencies, such as 1ms, 100ms, and 1s, that define the buffer-
ing time for ingesting and sorting out-of-order input tuples.
According to the specified reorder latencies, the system cre-
ates different partitions of in-order input streams. After sort-
ing, a union operator merges and synchronizes the output of a
partitionP with the output of a partitionL that features lower
reorder latency than P . Thus, the output will incorporate par-
tial results provided by L with later updates that P contains.
This way applications that require fast but partial results can
subscribe to a partition with small reorder latency and vice
versa. By letting applications choose the desired extent of

reorder latency this design provides for different trade-offs
between completeness and freshness of results. Impatience
sort is implemented in Microsoft Trill.

3.6 Vintage vs. Modern

The importance of event order in data stream processing be-
came obvious since its early days [22] leading to the first
wave of simple intuitive solutions. Early approaches involved
buffering and reordering arriving tuples using some measure
for adjusting the frequency and lateness of data dispatched to
a streaming system in order [9, 45, 121]. A few years later,
the introduction of out-of-order processing [96] improved
throughput, latency, and scalability for window operations
by keeping track of processing progress without ordering
tuples. In the meantime, revision processing [8] was pro-
posed as a strategy for dealing with out-of-order data reac-
tively. In the years to come, in-order, out-of-order, and revi-
sion processingwere extensively explored, often in combina-
tion with one another [13,14,27,89,110]. Modern streaming
systems implement a refinement of these original concepts.
Interestingly, concepts devised several years ago, like low-
watermarks, punctuations, and triggers, which advance the
original revision processing, were popularized recently by
streaming systems such as Millwheel [12] and the Google
Dataflow model [13], Flink [34], and Spark [20]. Table 1
presents how both vintage and modern streaming systems
implement out-of-order data management.

3.7 Open Problems

Managing data disorder entails architecture support and flex-
ible mechanisms. There are open problems at both levels.

First, which architecture is better is an open debate. Al-
though many of the latest streaming systems adopt an out-
of-order architecture, opponents finger the architecture’s im-
plementation and maintainance complexity. In addition, re-
vision processing, which is used to reconcile out-of-order tu-
ples is daunting at scale because of the challenging state size.
On the other hand, in-order processing is resource-hungry
and loses events if they arrive after the disorder bound.

Second, applications receiving data streams from dif-
ferent sources may need to support multiple notions of
event time, one per incoming stream, for instance. However,
streaming systems to date cannot support multiple time do-
mains.

Finally, data streams from different sources may have
disparate latency characteristics that render their watermarks
unaligned. Tracking the processing progress of those appli-
cations is challenging for today’s streaming systems.
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Table 1: Event order management in streaming systems

System Architecture Progress-tracking
In-order Out-of-order Revision Mechanism Communication Disorder bound metric Revision approach

Aurora* [9, 48] ✓ Slack User config Number of tuples —
STREAMS [121] ✓ Heartbeat Signal to input manager Timestamp (event time skew, net- —

work latency, out-of-order bound)
Borealis [8] ✓ ✓ History bound System config Number of tuples or time units Replay past data, enter revised

values, issue delta output
Gigascope [78] ✓ Low-watermark Punctuation Timestamp —
Timestream [114] ✓ Low-watermark Punctuation Timestamp —
Millwheel [12] ✓ Low-watermark Signal to central authority Timestamp —
Naiad [108] ✓ ✓ Pointstamp Part of data tuple Multidimensional timestamp Incremental processing of up-

dated data via structured loops
Trill [41] ✓ Low-watermark Punctuation Timestamp —
Streamscope [97] ✓ Low-watermark Punctuation Timestamp; sequence number —
Samza [112] ✓ ✓ — — — Find, roll back, recompute af-

fected input windows
Flink [34] ✓ ✓ Low-watermark Punctuation Timestamp Store & Recompute/Revise
Dataflow [13] ✓ ✓ Low-watermark Signal to central authority Timestamp Discard and recompute; accu-

mulate and revise; custom
Spark [20] ✓ ✓ Slack User config Number of seconds Discard and recompute; accu-

mulate and revise

4 State Management

State is effectively what captures all internal side-effects of a
continuous stream computation, which includes for example
active windows, buckets of records, partial or incremental
aggregates used in an application as well as possibly some
user-defined variables created and updated during the exe-
cution of a stream pipeline. A careful look into how state is
exposed and managed in stream processing systems exposes
an interesting trace of trends in computer systems and cloud
computing as well as a revelation of prospects on upcoming
capabilities in event-based computing. This section provides
an overview of known approaches, modern directions and
open problems in the context of state management.

4.1 Topics of Stream State Management

Stream State Management is an active system subject that
incorporates different methodologies regarding how state
should be declared in a stream application, as well as how
it should be scaled and partitioned. Furthermore, it incor-
porates different methods to make state persistent for in-
finitely long running applications and defines system guar-
antees and properties to maintain whenever a change in the
system occurs. A system change implies reconfiguration and
is the result of a partial process or network failure, or actions
that need to be taken to adjust compute and storage capac-
ity. Most of these issues have been introduced in part within
the context of pioneering DSMSs such as Aurora and Bore-
alis [38]. The latter system, has set the foundations in formu-
lating many of these problems such as the need for embed-
ded state, persistent store access as well as failure recovery
protocols. In Table 2 we categorize known data stream pro-
cessing systems according to their respective state manage-
ment approaches, including programmability, scalability and

consistency characteristics. The rest of this section offers an
overview of each of the topics in stream state management
along with past and currently employed approaches, all of
which we categorize as follows:

– Programmability: State in a programming model can
be either implicitly or explicitly declared and used. Dif-
ferent system trends have influenced both how state can
been exposed in a data stream programming model as
well as how it should be scoped and managed. Section
4.2 discusses different approaches and their trade offs.

– Scalability and Persistency: Stream processing has
been influenced by general trends in scalable computing.
State and compute have gradually evolved from a scale-
up task-parallel execution model to the more common
scale-out data-parallel model with related implications
in state representations and operations that can be em-
ployed. Persistent data structures have been widely used
in database management systems ever since they were
conceived. In data stream processing the idea of employ-
ing internal and external persistence strategies was uni-
formly embraced in more recent generations of systems.
Section 4.3 covers different architectures and presents
examples of how modern systems can support large vol-
umes of state, beyond what can fit in memory, within un-
bounded executions.

– Consistency: One of the most foundational transition-
ing steps in stream technology has been the development
and adoption of transactional-level guarantees. Section
4.4 gives an overview of the state of the art and covers
the semantics of transactions in data streaming alongside
implementation methodologies.
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Table 2: State Management Features in Data Streaming Systems

System Declaration Management State Management Architecture Transactional-Level
User System User System Ephemeral Embedded External Embedded

Compute
Action Epoch -

Aurora/Borealis [8,
38]

✓ ✓ ✓ ✓

STREAM [16] ✓ ✓ ✓ ✓

TelegraphCQ [45] ✓ ✓ ✓ ✓

S4 [111] ✓ ✓ ✓ ✓

Storm (1.0) [2] ✓ ✓ ✓ ✓

Spark(1.0) [141] ✓ ✓ ✓ ✓

Trident [3] ✓ ✓ ✓ ✓

SEEP [107] ✓ ✓ ✓ ✓

Naiad [108] ✓ ✓ ✓ ✓

TimeStream [114] ✓ ✓

Millwheel [12] ✓ ✓ ✓ ✓

Flink [33, 34] ✓ ✓ ✓ ✓

Kafka-Streams [6] ✓ ✓ ✓ ✓ ✓

Samza [112] ✓ ✓ ✓ ✓

Streamscope [97] ✓ ✓ ✓ ✓

S-Store [104] ✓ ✓ ✓ ✓

state

stream 
processor

state

stream 
processor

state

stream 
processor

I. System-Declared and Managed State II. User-Declared and Managed State III. User-Declared System-Managed State

state management
state declaration
application declaration

Fig. 5: State Programmability and Management Approaches

4.2 Programmability of State

There are three actors involved in stateful stream process-
ing: the user, the stream processor, and the actual state. In
this context, we can observe differences across systems on
how the user and system interact with state in a long running
stream application. There are two key responsibilities. First,
one has to declare and use the state in a stream application
but there is also the need for someone to be responsible for
managing the state. For both of these, the responsible entity
can be either the user or the stream processor. The rest of
this section focuses on the three main configurations, which
are also depicted in Figure 5 and described below according
to adoption order, in the course of the evolution of stream
processing.

System-Declared and Managed State. In the early days of
data stream management when main memory was scarce,
state had a facilitating role, supporting the implementation
of user-defined operators, such as CQL’s join filter and sort
algorithms, as employed in STREAM [16]. A common term
used to describe that type of state was “synopsis”. Typi-

cally, users of such systems were oblivious of the underlying
state and its implicit nature resembled the use of intermedi-
ate results in DBMSs. Systems such as STREAM, as well as
Aurora Borealis [38], attached special synopses to a stream
application’s dataflow graph supporting different operators,
such as a window max, a join index or input source buffers
for offsets. A noteworthy feature in STREAM was the ca-
pability to re-use synopses compositionally to define other
synopses in an application internally in the system.

Overall, synopses have been one of the first forms of state
in early stream processing systems primarily for stream pro-
cessing over shared-memory. Several of the issues regard-
ing state, including fault tolerance and load balancing, were
already considered back then, for example in Borealis. Al-
though, the lack of user-defined state limited the expres-
sive power of that generation of systems to a subset of re-
lational operations. Furthermore, the use of over-specialized
data structures was somewhat oblivious to the needs of re-
configuration which requires state to be flexible and easy to
partition.
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Fig. 6: Scalable Architectures for Stateful Data Streaming

User-Declared andManaged State.At the brink of the sec-
ond generation of scalable stream processing systems, in the
post-MapReduce era, there was a primary focus in compute
scalability with systems like Storm [2] allowing the compo-
sition of distributed pipelines of tasks. For application flexi-
bility and simplicity, many of these systems did not provide
any state management whatsoever, leaving everything re-
garding state to the hands of the programmer. That included
both declaration andmanagement of state. User-declared and
managed state was either defined and used within the work-
ing memory and scope provided by the hosting framework or
defined and persisted externally, using an existing key value
storage or database system (e.g. Redis [7, 94]). In summary,
application-managed state offers flexibility and gives expert
users implementation freedom. However, no state manage-
ment capabilities are offered from the system’s side. As a re-
sult, the user has to reason about scalability, processing guar-
antees, and all necessary third-party storage system depen-
dencies. These are all complex choices to make and require
a combination of deep expertise and additional engineering
work to integrate stream and storage technologies.

User-Declared System-Managed State. Currently, most
stream processing systems allow a level of freedom for user-
defined state through a form of a stateful processing API.
This enriches stream applications to define their custom
state, while also granting the underlying system access to
state information in order to employ data management mech-
anisms for persistence, scalability and fault tolerance. State
information includes types used, serializers/deserializers and
read and write operations known at runtime. The main lim-
itation of user-defined, system-managed state is the lack of
direct control on data structures that materialize that state
(e.g., for custom optimizations).

4.3 Scalability and Persistence

Scalable state has been the main incentive of the second gen-
eration of stream processing systems which automated de-
ployment and partitioning of data stream computations. The
need for scalable state was driven by the need to facilitate un-
bounded data stream executions where the space complexity
for stream state is linear to the over-increasing input con-
sumed by a stream processor at any point in time. This sec-
tion discusses types of scalable state, as well as scalable sys-
tem architectures that can sustain support for partitioning,
persisting, and committing changes to large volumes of state.

4.3.1 Types of scalable state

Scalable state takes two forms in a stream application, typi-
cally referred to as task-level and key-level state. Depending
on the nature of a specific operator, any or both of these state
types can be employed.

Task-Level State. Task-level partitioning maps state to
physical compute tasks, allowing one instance per task. This
is preferred when there is a need to compute global aggre-
gates, such as top-K stream queries, or when the state does
not grow over the course of time in an unbounded execution.
Task-level state can also be useful for keeping offset counts in
a log consumed by a physical stream source task. It is, how-
ever, not the norm in most stream applications, since in most
use cases, state needs to scale in a data-parallel manner. Fur-
thermore, task-level state is hard to re-partition, given that it
always maps to a physical set of tasks.

Key-Level State.Key-level state is the de facto way to define
scalable state in modern streaming systems. Keyed state al-
lows logical-level partitioning to compute tasks, where each
task handles a specific range of keys. This is enabled in the
API level through an additional operation that is invoked
prior to stateful processing which lifts the scope from task-
to key-based processing such as “keyBy” in Apache Flink or
“groupBy” in Beam and Kafka-Streams.
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Fig. 7: Embedded State Example (Flink and Rocksdb-LSM)

4.3.2 Scalable Architectures for Data Streaming

While data stream ingestion can be unbound, the same does
not apply to the number of states that can be kept and main-
tained by tasks. Relying on limited and ephemeral main
memory is not practical, especially when dealing with state
growing proportionally to the number of distinct keys in an
unbounded stream. In Figure 6, we enumerate four system
architectures that have been used to support scalable, “out-
of-core” state: I. ephemeral (memory-only) state, II. state lo-
cally embedded to disk, III. externally persisted state, and IV.
embedded stream compute, as feature on top of scalable stor-
age architectures.

Ephemeral State. The ephemeral state is not always an ac-
tive state management choice. It typically refers to the ab-
sence of any form of persistence or the employment of fail-
ure recovery and management techniques which have com-
plete reliance on transient state. Systems that belong to the
first case are typically first generation of stream process-
ing systems such as Aurora and STREAM, and scalable
stream processors without state management capabilities,
such as Storm and S4 [111]. Several state management ap-
proaches also build completely on transient in-memory state.
Those include stream replication/recovery techniques [120]
and complete systems, such as SEEP [37].

Embedded State. The embedded state approach is a pop-
ular choice among modern data streaming systems. That is
mainly due to the fact that local access yields fast reads and
reasonably fast writes. On the other hand, since state is cou-
pled to compute tasks, it is more challenging to reconfig-
ure stream processors using this approach, since coordina-
tion and data shuffling is needed beforehand.
Example: Figure 7 depicts an example of embedded state
with Apache Flink and RocksDB [5] as a state backend. Flink
is managing compute tasks and effectively forwarding every
read, write or local checkpoint operation to a local RocksDB
instance. RocksDB maintains an in-memory table with re-
cent changes in state, so when a write or read arrives it is
applied there first. Memtables in RocksDB are periodically
flushed to disk in key order according to time or size thresh-
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Fig. 8: Externally Persisted State in Google Millwheel

old policies or forcefully during a checkpoint. According to
the Log-Structure-Merge (LSM) architecture [113], the on-
disk file structures form hierarchical dependencies. Read op-
erations that do not find an entry in the Memtable initiate a
scan through the committed files of the LSM tree (SSTables).
To avoid lengthy sequential file scans known optimisations
include file compaction for space reduction and bloom filter-
ing to skip files with now key matches.

External State. Externally-managed state approaches split
state management responsibilities between the stream pro-
cessor and an external data storage system. This allows for
more modular system designs (decoupling) and effective re-
use of the properties of other existing systems (e.g., transac-
tions, consistency guarantees, auto-scaling) to support more
complex guarantees in the context of data streaming.
Example: When it comes to external state management,
Google’s Millwheel that serves as the executor of the Google
Dataflow service, is a representative example. Millwheel
builds on the capabilities of BigTable [46] and Spanner [49]
(e.g., blind atomic writes). Tasks inMillwheel are effectively
stateless. They do keep recent local changes in memory but
overall they commit every single output and state update to
BigTable as a single transaction. This means that Millwheel
is using an external store for both persisting every single
working state per key but also all necessary logs and check-
points needed for recovery and non-idempontent updates.

Embedded Compute. Database systems are significantly
more mature technology compared to data stream proces-
sors. Embedded computing approaches exploit performance
characteristics and transactional capabilities of scalable
databases to implement and support stateful data stream-
ing on top. This category defers to external state approaches
since compute and storage in this case are coupled. Further-
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more, it defers to embedded state approaches, since the un-
derlying runtime technology is the actual storage system.
Embedded compute is a design direction which depends
purely on the capabilities of the storage system that data
streaming is implemented on. On one hand, these approaches
share the benefits and optimizations of the underlying stor-
age system while also lacking the event-processing perfor-
mance capabilities of dedicated stream processing systems.
Example: Among embedded computing approaches, S-
Store [104] is one of the most representative ideas. S-Store
breaks down an unbounded stream computation into a series
of transactions that are statically scheduled in H-Store [81], a
DBMS provided as an extension of the database. A key char-
acteristic of S-Store is the use of H-Store’s ACID transaction
properties to also support transactional stream processing as
discussed further in subsection 4.4. Kafka Streams [4] is an-
other distinct example of a system that combines embedded
compute with embedded state. Stream tasks attach to phys-
ical Kafka brokers (physical partitioned logging nodes) and
an embedded database instance is allocated per task to sup-
port dynamic state.

4.4 Transactional Guarantees and Consistency

Consistent stream processing has for long been an open re-
search issue due to the challenging nature of distributed un-
bounded processing but also due to the lack of a formal spec-
ification of the problem itself. Consistency relates to guar-
antees a system can make at the face of failure as well as
any need for change during its operation. In data streaming,
changing or updating a running data stream application is
a concept also known as reconfiguration. For example, this
includes the case when one needs to apply a software up-
date to a stream application or scale out to more compute
nodes without loss of accuracy or computation. The underly-
ing relation between fault tolerance and reconfiguration has
been highlighted by several works in the past such as the re-
search behind the SEEP system [37] that considers an in-
tegrated approach to scale and recover tasks from failures.
Currently, most stream processors are transactional process-
ing systems governed by consistency rules and processing
guarantees. This section highlights the types of guarantees
offered by different stream processing systems and imple-
mentation strategies that materialize them.
Past Challenges and The Lambda Architecture: When
large scale computing became mainstream, a design pattern
emerged called “lambda architecture” which suggested the
separation of systems across different layers according to
their specialization and reliability capabilities. Hadoop and
transactional databases were reliable in terms of processing
guarantees, thus, they could take all critical computation.
Whereas, stream processing systems could achieve low la-
tency and scale but they did not offer a clear set of consis-

tency guarantees. For example, in the state-oblivious Storm
system the fault-tolerance approach would solely consider
which input events have been fully processed or not and
which should be replayed on a timeout. Nevertheless, there
was no clear picture of what level of consistency can be ex-
pected from stream processors. At the same time, databases
had formal guarantees. For example, a set of transactions
would be processed using ACID guarantees, which includes
atomicity across transactions, consistency for the valid states
a database can have, isolation in terms of concurrent execu-
tion, and durability on what can be recovered after failure.
To reason about consistency in the context of data stream-
ing, there had been a need to lay out a set of assumptions
(e.g., logged input) and processing granularity for defining a
concept related to transactions.

Transactional Data Streaming. A stream processor today
is a distributed system consisting of different concurrently
executing tasks. Source tasks subscribe to input streams that
are typically recorded in a partitioned log such as Kafka and
therefore input streams can be replayed. Sink tasks commit
output streams to the outside world and every task in this sys-
tem can contain its own state. For example, source tasks need
to keep the current position of their input streams in their
state. A system execution can be often modeled through the
concept of “concurrent actions”. An action includes: invok-
ing stream task logic on an input event, mutating its state, and
producing output events. Every action happening in such a
system causes other actions. Effectively, just a single record
sent by a source contributes to state updates throughout the
whole pipeline and output events created by the sinks. If a
specific action is lost or happens twice, then the complete
system enters into an erroneous state. Fault tolerance is an
integral functional area of streaming systems that signifi-
cantly impacts their consistency. We analyze the fault toler-
ance strategies of existing streaming systems in Section 5.1.
In addition, due to causal dependencies on state, the order
of action execution is also critical. Existing reliable stream
processors either define a transaction out of each action or a
coarse grained set of actions that we call epochs. We explain
these approaches in more detail, next.

4.4.1 Action-driven Transactional Streaming

A strict form of transactional processing in data streaming
is employing a transaction per local action. Google’s Mill-
wheel, the cloud runtime for the dataflow data streaming
service, employs such a strategy. Millwheel uses BigTable
to commit each full compute action which includes: input
events, state transitions and generated output, as depicted in
Figure 8. The act of committing these actions is also called
a “strong production” in Millwheel.

Action-driven transactional stream processing is an ap-
proach which, seemingly, induces high latency overhead.
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Fig. 9: Transactional Epoch Commits in Data Streaming

However, traditional database optimizations can be used to
speed up commit and state read times. Write ahead logging,
blind writes, bloom filters, and batch commits at the storage
layer can be used to reduce the commit latency. More im-
portantly, since the order of actions is predefined at commit
time, action-driven transactional processing offers determin-
istic executions, a property not guaranteed by epoch-based
approaches. In addition, the approach has important effects
on consistency as perceived by applications that consume
the system’s output. This follows from the fact that “exactly-
once processing” in this context relates to each action being
atomically committed, as we will discuss in Section 5.1.1.

4.4.2 Epoch-driven Transactional Streaming

A popular family of transactional data streaming approaches
is based on the observation that every stream execution is
different but valid if no failures occur. Global changes at
the application level can therefore be committed at any time.
Thus, instead of adopting action-level transactional process-
ing, epoch-level approaches divide computation into a series
of mini-batches, also known as “epochs”.

In Figure 9 we depict the overall approach, marking in-
put, system states and outputs with a distinct epoch identi-
fier. Epochs can be defined through clear breakpoints at the
logged input of the stream application.Whereas, a system ex-
ecution can be instrumented to process each epoch and com-
mit the state of the entire task graph after each epoch is pro-
cessed. If a failure or other reconfiguration process happens
during the execution of an epoch then the system can roll
back to a previously committed epoch and recover its execu-
tion consistently. The term “exactly-once processing” in this
context relates to each epoch being atomically committed. In
Section 5.1 where we present the different levels of process-
ing semantics in streaming we call this flavor exactly-once
processing on state. The rest of this section focuses on the
different known approaches used to commit stream epochs.

Strict Two-Phase EpochCommits.A common coordinated
protocol to commit epochs is a strict two-phase commit
where: Phase-1 corresponds to the full processing of an

epoch and the Phase-2 ensures capturing the state of the sys-
tem at the end of the computation.

This approach was popularized by Apache Spark [141]
through the use of periodic “micro-batching” and it is an ef-
fective strategy when batch processing systems are used for
unbounded processing. The main downside of this approach
is the risk of low task utilization due to synchronous exe-
cution, since tasks have to wait for all other tasks to finish
their current epoch. Drizzle [137] mitigates this problem by
chaining multiple epochs in a single atomic commit. A simi-
lar approachwas also employed by S-Store [104], where each
database transaction corresponds to an epoch of the input
stream that is already stored in the same database.

Asynchronous Two-Phase Epoch Commits. For pure
dataflow systems, strict two-phase committing is problem-
atic since tasks are uncoordinated and long-executed. Fur-
thermore, it is feasible to achieve the same functionality
asynchronously through consistent snapshotting algorithms,
known from classic distributed systems literature [32]. Con-
sistent Snapshotting algorithms exhibit beneficial properties
such as concurrent execution in par with an event-processing
application. Furthermore, they acquire a snapshot of a con-
sistent cut in a distributed execution. In other words, they
manage to capture the global states of the system during a
“valid” execution. Throughout different implementations we
can identify 1. unaligned and 2. aligned snapshotting proto-
cols.
1. Unaligned / Chandy Lamport snapshots provide one of
the most efficient methods to obtain a consistent snapshot.
This approach is currently supported by several stream pro-
cessors, such as IBM Streams and Flink (optional support
in v1.11.1). The core idea is to make use of a punctuation
or “marker”, into the regular stream of events and use that
marker to separate all actions that come before and after the
snapshot while the system is running. A caveat of unaligned
snapshots is the need to record input events that arrive to in-
dividual tasks until the protocol is complete. In addition to
space overhead for logged inputs, unaligned snapshots re-
quire more processing during recovery, since logged inputs
need to be replayed (similarly to redo logs in database recov-
ery with fuzzy checkpoints).
2. Aligned Snapshots Aligned snapshots aim to improve
performance during recovery and minimize reconfiguration
complexity exhibited by unaligned snapshots. The main
differentiation is to prioritize input streams that are ex-
pected before the snapshot and thus, end up solely with
states that reflect a complete computation of an epoch and
no events in transit as part of a snapshot. For example,
Flink’s epoch snapshotting mechanism [33, 35] resembles
the Chandy Lamport algorithm in terms of using markers to
identify epoch frontiers. However, it additionally employs an
alignment phase that synchronizes markers within tasks be-
fore disseminating further. This is achieved through partially
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blocking input channels where markers were previously re-
ceived until all input channels have transferred all messages
corresponding to a particular epoch.

In summary, unaligned snapshots are meant to offer the
best runtime performance but sacrifice recovery times due
to the redo-phase needed upon recovery. Whereas, aligned
snapshots can lead to slower commit times due to the align-
ment phase while providing a set of beneficial properties.
First, aligned snapshots reflect a complete execution of an
epoch which is useful in use cases where snapshot isolated
queries need to be supported on top of data streaming. Fur-
thermore, aligned snapshots yield the lowest reconfiguration
footprint as well as setting the basis for live reconfiguration
within the alignment phase as exhibited by Chi [99].

4.5 Vintage vs. Modern

State is a concept that has been very central to stream pro-
cessing. The notion of state itself has been addressed with
many names such as “summary”, “synopsis”, “sketch” or
“stream table” and it reflects the evolution of data stream
management along the years. Early DSMS systems [9, 16,
22, 45] (circa 2000-2010) hinted state and its management
from the user. They declared and managed internally in in-
memory all data structures needed to support a selected set of
operations. This type of state, often referred to as “summary”
was used to internally materialize continuous processing op-
erators such as those of the time-varying relational model of
CQL [18], as seen in STREAM [16].

A decade later, scalable data computing systems based
on the MapReduce [54] architecture allowed for arbitrary
user-defined logic to be scaled and executed reliably us-
ing distributed middleware and partitioned file systems. Fol-
lowing the same trend, many existing data management
models were revisited and re-architectured with scalabil-
ity in mind (e.g., NoSQL, NewSQL databases). Similarly,
a growing number of scalable data stream processing sys-
tems [12,13,34,107] married principles of scalable comput-
ing with stream semantics and models that were identified in
the past (e.g. out-of-order processing [96, 121]). This pivot-
ing helped streammanagement technology to lift all assump-
tions associated with limited state capacity and thus reach its
nearly full potential of executing correctly continuous event-
driven applications with arbitrary state.

As of today, modern stream processors can compile and
execute graphs of long-running operators with complete,
user-defined state yet system-managed that is fault-tolerant
and reconfigurable given a clear set of transactional guaran-
tees [12, 33, 37].

4.6 Open Problems

Data streaming covers many data management needs today
that go beyond real-time analytics, the original purpose of
the technology. New needs include support for more com-
plex data pipelines with implicit transactional guarantees.
Furthermore, modern applications involve Machine Learn-
ing, Graph Analysis and Cloud Apps, all of which have a
common denominator: complex state and new access pat-
terns. These needs have cultivated novel research directions
in the emerging field of stream state management.

The decoupling of state programming from state mate-
rialization resembles how database technology has evolved,
prior to data streaming. Systems are converging in terms of
semantics and operations on state while, at the same time
many new methods employed on embedded databases (e.g.,
LSM-trees, state indexing, externalized state) are evolving
stream processors in terms of performance capabilities. A
recent study [79] showcases the potential of workload-aware
state management, adapting state persistence and access to
the individual operators of a dataflow graph. To this end,
an increasing number of “pluggable” systems [44, 146] for
local state management with varying capabilities are being
adopted by stream processors. This opens new capabilities
for optimization and sophisticated, yet user-agnostic state
management that can automate the process of selecting the
right physical plan and reconfigure that plan while unbound
applications are executed.

Complex access patterns such as inter- , intra- and exter-
nal access to shared state [103] and necessitate new type of
guarantees. This requirement gives birth to yet another inter-
esting research system direction such as ensuring state access
isolation [33] (e.g. read-committed access), efficient shared
state materialization [113], [46] and reliable reconfiguration.

5 Fault Tolerance & High Availability

Fault tolerance is a system’s capacity to continue its opera-
tion in spite of failures delivering the expected service as if
no failures had happened. It is specially important for stream-
ing systems for two reasons. First, streaming systems con-
duct stateful computations over potentially unbounded data
streams. Without fault tolerance streaming systems would
have to redo computations from the beginning given that
the state or progress thus far would be lost during a failure.
Besides losing processing progress accumulated over an ar-
bitrary time period, recomputation is many times infeasible
because the already processed segment of a data stream has
permanently vanished.

Second, contemporary streaming systems feature a dis-
tributed systems architecture for scalability. In a system de-
ployed on multiple physical machines failures occur com-
monly. Based on this motivation, a lot of exciting work has
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Table 3: Fault-tolerance in streaming systems

System Processing semantics Replication Recovery data Storage medium
Least Exactly-once Active Passive No State Output No Resilient store In-Memory No

State Output Local Remote
Aurora* [48] ✓ ✓ ✓ ✓

TelegraphCQ [119] ✓ ✓ ✓ ✓ ✓

Borealis [8, 26] ✓ ✓ ✓ ✓ ✓

S4 [111] ✓ ✓ ✓ ✓

Seep [37, 57] ✓ ✓ ✓ ✓ ✓

Naiad [108] ✓ ✓ ✓ ✓ ✓

Timestream [114] ✓ ✓ ✓ ✓ ✓

Millwheel [12] ✓ ✓ ✓ ✓ ✓

Storm [131] ✓ ✓ ✓ ✓

Trident [3] ✓ ✓ ✓ ✓

S-Store [39, 126] ✓ ✓ ✓ ✓

Trill [41] ✓ ✓ ✓ ✓

Heron [90] ✓ ✓ ✓ ✓

Streamscope [97] ✓a,p,r ✓a ✓p ✓r ✓p ✓a,r ✓p ✓a,r

Streams [77] ✓ ✓ ✓ ✓

Samza [112] ✓ ✓ ✓ ✓

Flink [33, 34] ✓ ✓ ✓ ✓

Spark [20] ✓ ✓ ✓ ✓

been performed on fault tolerance in streaming systems. We
present it in Section 5.1.

In computer systems, availability is defined as the time
period that a system accomplishes its service relative to ser-
vice interruption periods. It is typically quantified as a per-
centage, 100% being perfect availability [65]. The term high
availability has been adopted to denote that a system achieves
a very high percentage of availability like 99.999% or higher.

In stream processing where systems are not probed by
users as in the case of typical information systems like web
applications, what service accomplishment means is open
to interpretation. Surprisingly, no definition for high avail-
ability is provided in the stream processing literature. Exist-
ing research (Section 5.2) quantifies high availability using
combinations of three metrics, namely recovery time, per-
formance overhead in terms of throughput and latency, and
resource utilization. We highlight the absence of a definition
and suitable metric for high availability in the open problems
in Section 5.4 where we propose a definition based on pro-
cessing progress and a proxy for measuring high availability
based on end-to-end latency. Before finishing with the open
problems, we separate the vintage from the modern in fault
tolerance and high availability in Section 5.3.

5.1 Fault-tolerance

Many important challenges in stream processing manifest
when we take into account failures. Managing failures in a
distributed streaming system entails maintaining snapshots
of state, migrating state, and scaling out operators while af-
fecting as least as possible the healthy parts of the system.
Table 3 presents the fault-tolerance strategies of eighteen

streaming systems arranged in order of publication appear-
ance from past to present. We analyse the strategies across
the following four dimensions.

1. Processing semantics conveys how a system’s data
processing is affected by failures. Typically, all systems in
the literature are able to produce correct results in failure-
free executions. But to mask a failure completely is hard es-
pecially in the stream processing domain where, typically,
output is delivered as soon as it is produced.

In recent years the stream processing domain has settled
on the terms at least-once and exactly-once to characterize
the processing semantics [20, 34, 77, 97, 112]. At most-once
is also part of the nomenclature but it is mostly obsolete as
systems opt to support one of the two stronger levels. At
least-once processing semantics means that the system will
produce the same results as a failure-free execution with the
addition of duplicate records as a side effect of recovery.

Exactly-once lends itself to two different interpretations.
A system may support exactly-once processing semantics
within its boundaries ensuring that any inconsistencies or
duplicate execution carried out on recovery is not part of
its state. We call that exactly-once processing semantics on
state.While a system can restore its state to a consistent snap-
shot, the same is not feasible in general to accomplish with
the output published by the system. Once the output is out, it
is available for consumption by external applications. Thus, a
system with exactly-once processing semantics on state will
still produce duplicate output. This problem has been termed
the output commit problem [56] in the distributed systems
literature. Systems that manage to produce the same output
under failure as a failure-free execution have exactly-once
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processing semantics on output. In Section 5.1.1 we elabo-
rate how streaming systems treat the output commit problem.

2. Replication regards the use of additional computa-
tional resources for recovering an execution. We adopt the
terminology of Hwang et al. [76] that classify replication as
either active where two instances of the same execution run
in parallel or passive where each running stateful operator
that is part of an execution dispatches its checkpointed state
to a standby operator.

3. Recovery data addresses what data are regularly stored
for recovery purposes. Data may include the state of each op-
erator and the output it produces. In addition, many fault tol-
erance strategies need to replay tuples of input streams dur-
ing recovery in order to reprocess them. For this purpose in-
put streams are persistently stored typically in message bro-
kers like Apache Kafka. However, we exclude this fact from
the table to save space.

4. Storage medium states where recovery data is stored.
It can be in a resilient store that is local to each stateful op-
erator, in a remote resilient store, or in the memory space
of a stateful operator. In-memory means that operators use
their memory space as a primary storage medium for recov-
ery data. Systems that cache data for recovery in memory
like output tuples do not fall in this category.

The table is meant to be read both horizontally to de-
scribe a specific system’s approach to fault tolerance and ver-
tically to uncover how the different building blocks shape the
landscape of fault tolerance in stream processing. Two re-
marks are necessary. First, the table contains three more an-
notations besides the self-explanatory checkmarks. Stream-
scope [97] presents and evaluates three distinct fault toler-
ance strategies, an active replication-based strategy (a), a
passive one (p), and a strategy that relies on recomputing
state by replaying data from input streams (r). Second, the
state column in the recovery data dimension captures not
only checkpointed state but also state metadata that allow
recomputing the state, such as a changelog [112] or state de-
pendencies [114].

The table reveals four interesting patterns. First, of all
columns, two accumulate the majority of checkmarks, pas-
sive replication and storing state for recovery. This is per-
haps the most visible pattern on the table that signifies that
passive replication by storing state is, unsurprisingly, a very
popular option for streaming systems. One typical recovery
approach is to restore the latest checkpoint of a failed opera-
tor in a new node and replay input that appeared after the
checkpoint. Variations of this approach include saving in-
flight tuples along with the state and maintaining in-flight
tuples in upstream nodes. Second, storing in-flight tuples for
recovery is not preferred anymore, although it was a pop-
ular option for streaming systems in the past. Third, while
past systems strived to support exactly-once output process-
ing semantics, later systems opt for exactly-once semantics

on state and outsource the deduplication of output to exter-
nal systems.Wewill elaborate on this aspect in Section 5.1.1.
Finally, among the various storage media for recovery data a
remote resilient store is the clear winner.

5.1.1 The output commit problem

The output commit problem [56] specifies that a system
should only publish output to the outside world when it is
certain that it can recover the state from where the output
was published so that every output is only published once
because output cannot be retracted once it is sent. If output
is sent twice, then the system manifests inconsistent behav-
ior with respect to the outside world. An important instance
of this problem manifests when a system is restoring some
previous consistent state due to a failure. In contrast to the
system’s state, its output cannot be retracted in general. Thus,
under failures, systems must be careful not to produce dupli-
cate output.

The output commit problem is relevant in streaming sys-
tems, which typically conform to a distributed architecture
and process unbounded data streams. In this setting, the side
effects of failures are difficult to mask. Streaming systems
that solve the output commit problem provide output exactly-
once. Other terms that refer to the same problem are pro-
cessing output exactly-once and its paraphrases, as well as
precise recovery [76] and strong productions [12].

Although the problem is relevant and hard, solutions in
the stream processing domain are scattered in the literature
pertaining to each system in isolation. We group the various
solutions in three categories, transaction-based, progress-
based, and lineage-based, and describe each noting the as-
sumptions it involves. Each of the three types of techniques,
use a different trait of the input or computation, to iden-
tify whether a certain tuple has appeared again. Transaction-
based techniques use tuple identity, progress-based tech-
niques use order, while lineage-based techniques use input-
output dependencies. Finally, we provide two more cate-
gories of solutions, special sink operators and external sinks
that do solve the problem practically, but strictly speaking
they do not meet the problem’s specification because they
are either specific or external to a streaming system.

Transaction-based.Millwheel [12] and Trident [3] rely
on committing unique ids with records to eliminate duplicate
retries. Millwheel assigns a unique id to each record entering
the system and commits every record it produces to a highly
available storage system before sending it downstream.
Downstream operators acknowledge received records. If a
delivered record is retried it is ignored by checking the
unique id that it carries. Millwheel assumes no input or-
dering or determinism. Trident, on the other hand, batches
records into a transaction, which is assigned a unique trans-
action id and applies a state update to the state backend. As-
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suming that transactions are ordered, Trident can accurately
ignore retried batches by checking the transaction id.

Progress-based. Seep [57] uses timestamp comparison
to deliver output exactly-once relying on the order of times-
tamps. Each operator generates increasing scalar timestamps
and attaches them to records. Seep checkpoints the state and
output of each operator together with the vector timestamps
of the latest records from each upstream operator that af-
fected the operator’s state. On recovery, the latest checkpoint
is loaded to a new operator, which replays the checkpointed
output records and processes replayed records sent by its up-
stream operators. Downstream operators discard duplicate
records based on the timestamps. The system assumes de-
terministic computations that do not rely on system time or
random input.

A previous version of Seep [37] applies the same pro-
cess with the difference that a recovered operator rewinds its
logical clock to the timestamp of the checkpoint it possesses
before emitting records. The system assumes deterministic
computations without side-effects and a monotonically in-
creasing logical clock providing timestamps. It further as-
sumes that records in a stream are ordered by their times-
tamps.

Lineage-based.Timestream [114] and Streamscope [77]
use dependency tracking to provide exactly-once output.
During normal operation, both systems track operator in-
put and output dependencies by uniquely identifying records
with sequence numbers. Streamscope persists records with
their identifiers asynchronously. Both systems store opera-
tor dependencies periodically in an asynchronous manner. In
Streamscope, however, each operator checkpoints individu-
ally not only its dependencies but also its state. On recov-
ery, Timestream retrieves the dependencies of failed opera-
tors by contacting upstream nodes recursively until all inputs
required to rebuild the state are made available. Streamscope
follows a similar process, but starts from a failed operator’s
checkpoint snapshot. For each input sequence number in that
snapshot not found in persistent storage Streamscope con-
tacts upstream operators, which may have to recompute the
record starting from their most relevant snapshot that can
produce the output record given its sequence number. Fi-
nally, both systems use garbage collection to discard obsolete
dependencies but in a subtly different manner. Timestream
computes the input records required by upstream operators
in reverse topological order from the final output to the orig-
inal input and discards those unneeded. Streamscope does
the same but instead of computing dependencies, it uses low
watermarks per operator and per stream to discard snapshots
and records that are behind. In Timestream storing depen-
dencies asynchronously can lead to duplicate recomputation,
but downstream operators bearing the correct set of depen-
dencies can discard them. Streamscope applies the same pro-
cess only if duplicate records cannot be found in persistent

Table 4: Assumptions that systems make for solving the out-
put commit problem

System Assumptions
Millwheel
Timestream Deterministic computation and input
Streamscope Deterministic computation and input
Trident Deterministic computation and input, ordering of

transactions
Seep Deterministic computation, monotonically-

increasing logical clock, records ordered by
timestamp

storage. Both Timestream and Streamscope assume deter-
ministic computation and input in terms of order and values.

The time-based and lineage-based solutions are vulnera-
ble to failures of the last operator(s) on the dataflow graph,
which produce the final output, since both solutions rely on
downstream operators for filtering duplicate records.

Special sink operators. Streams [77] implements spe-
cial sinks for retracting output from files and databases. The
application of this approach solves the output commit prob-
lem for specific use cases, but it is not applicable in general
since it defies the core assumption of the problem that output
cannot be retracted.

External sinks. Some systems like Streams [77],
Flink [34], and Spark [20] provide exactly-once semantics
on state and outsource the output commit problem to external
sinks that support idempotent writes, such as Apache Kafka.

One way to categorise the solutions provided by special
sink operators and external sinks, is as optimistic output tech-
niques, that push output immediately and retract it or update
it if needed, and pessimistic output techniques that use a form
of write ahead log, to write the output they will publish, if
everything goes well until the output is permanently com-
mitted [33]. Optimistic output techniques, which resemble
multi-version concurrency control from the database world,
include modifiable and versioned output destinations, while
pessimistic output techniques include transactional sinks and
similar tools.

5.2 High availability

Empirical studies of high availability in stream process-
ing [76] propose an active replication approach [26, 119],
a passive replication approach [66, 75, 92], a hybrid active-
passive replication approach [71, 122, 145], or model mul-
tiple approaches and evaluate them with simulated experi-
ments [40, 76].

Active replication. Flux [119] implements active repli-
cation by duplicating the computation and coordinating the
progress of the two replicas. Flux restores operator state and
in-flight data of a failed partition while the other partition
continues to process input. A new primary dataflow that runs
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following a failure quiesces when a new secondary dataflow
is ready in a standby machine in order to copy the state of its
operators to the new secondary. Contrastingly, Borealis [26]
has nodes address upstream node failures by switching to a
live replica of the failed upstream node. If a replica is not
available, the node can produce tentative output for incom-
plete input to avoid the recovery delay. The approach sac-
rifices consistency to optimize availability, but guarantees
eventual consistency.

Passive replication. Hwang et al. [75] propose that a
server in a cluster has another server as backup where it
ships independent parts of its checkpointed state. When a
node fails, its backup servers that hold parts of its check-
pointed state initiate recovery in parallel by starting to exe-
cute the operators of the failed node whose state they have
and collecting the input tuples they have missed from the
checkpointed state they possess. SGuard [92] saves com-
putational resources in another way by checkpointing state
asynchronously to a distributed file system. Upon a failure
a node is selected to run a failed operator. The operator’s
state is loaded from the file system and its in-memory state
is reconstructed before it can join the job. Beyond asyn-
chronous checkpointing, a new checkpoint mechanism [66]
preserves output tuples until an acknowledgment is received
from all downstream operators. Next, an operator trims its
output tuples and takes a checkpoint. The authors show that
passive replication still requires longer recovery time than
active replication, but with 90% less overhead due to reduced
checkpoint size.

Hybrid replication. Zwang et al. [145] propose a hy-
brid approach to replication, which operates in passive mode
under normal operation, but switches to active mode using
a suspended pre-deployed secondary copy when a transient
failure occurs. According to the provided experiment results,
their approach saves 66% recovery time compared to passive
replication and produces 80% lessmessage overhead than ac-
tive replication. Alternatively, Heinze et al. [71] propose to
dynamically choose the replication scheme for each opera-
tor, either active replication or upstream backup, in order to
reduce the recovery overhead of the system by limiting the
peak latency under failure below a threshold. Similarly, Su et
al. [122] counter correlated failures by passively replicating
processing tasks except for a dynamically selected set that is
actively replicated.

Modeling and simulations. In their seminal work
Hwang et al. [76] model and evaluate the recovery time
and runtime overhead of four recovery approaches, active
standby, passive standby, upstream backup, and amnesia,
across different types of query operators. The simulated ex-
periments suggest that active standby achieves near-zero re-
covery time at the expense of high overhead in terms of re-
source utilization, while passive standby produces worse re-
sults in terms of both metrics compared to active standby.

However, passive standby poses the only option for arbitrary
query networks. Upstream backup has the lowest runtime
overhead at the expense of longer recovery time. With a sim-
ilar goal, Shrink [40], a distributed systems emulator, eval-
uates the models of five different resiliency strategies with
respect to uptime SLA and resource reservation. The strate-
gies differ across three axes, single-node vs multi-node, ac-
tive vs passive replication, and checkpoint vs replay. Accord-
ing to the experiments with real queries on real advertising
data using Trill [41], active replication with periodic check-
points is proved advantageous in many streaming workloads,
although no single strategy is appropriate for all of them.

5.3 Vintage vs. Modern

In the early years streaming systems put emphasis on high
availability setups with preference towards active replica-
tion. Contrastingly modern systems tend to leverage passive
replication especially by allocating extra resources on de-
mand that is appropriate for Cloud setups. In addition, past
systems provided approximate results, while modern sys-
tems maintain exactly-once processing semantics over their
state under failures. Although past systems lacked in terms
of consistency, mainly due to state management aspects, they
strived to solve the output commit problem. Instead, a typi-
cal avenue for modern systems that gains traction is to out-
source the deduplication of output to external systems. Fi-
nally, while streaming systems used to store their output in
order to be able to replay tuples to downstream operators re-
covering from a failure, now systems rely increasingly on
replayable input source for replaying input subsets.

5.4 Open Problems

Many problems wait to be solved in the scope of fault tol-
erance and high availability in streaming systems. Three of
them include novel solutions to the output commit problem,
defining and measuring availability in stream processing,
and configuring availability for different application require-
ments.

First, the importance of the output commit problem has
the prospect to increase as streaming systems are used in
novel ways like for running event-driven applications. Al-
though we presented five different types of solutions, these
suffer from computational cost, strong assumptions, limited
applicability, and freshness of output results. New types of
solutions are required that score better in these dimensions.

Second, the literature of high availability in stream pro-
cessing has significantly enhanced the availability of stream-
ing systems throughout the years. But, to the best of our
knowledge, there has been scant research onwhat availability
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What is availability in data stream processing
Proposed definition and measurement of availability in streaming

1

I1.High availability Availability in streaming

Slack over time (area in plot) = Availability SLA

Example: A: 100% availability, B: 60%

Fig. 10: Measuring availability with the slack between pro-
cessing time and event time over time

means in the area of stream processing. The generic defini-
tion of availability for computer systems by Gray et al. [65]
relates availability merely to failures. According to the defi-
nition a system is available when it responds to requests with
correct results, which is termed as service accomplishment.
In streaming however, processing is continuous and poten-
tially unbounded. Responding with correct results becomes
more challenging.

The factors that may impair availability in streaming in-
clude software and hardware failures, overload, backpres-
sure, and types of processing stall, like checkpoints, state
migration, garbage collection, and calls to external systems.
The common denominator of those factors, is that the system
falls behind input. This may not be a problem for other types
of systems, like databases which can respond to queries with
the historical data they keep, but streaming systems have to
continuously catch up processing with the input in order to
provide correct results, that is, in order to be available.

Thus, a more specific definition of availability for stream
processing can be stated in the following way. A streaming
system is available when it can provide output based on the
processing of its current input. This definition extends to
how we measure availability. An appropriate way would be
via progress tracking mechanisms, such as the slack between
processing time and event time over time, which quantifies
the system’s processing progress with respect to the input
as per Figure 10. The area in the plot signifies the slack be-
tween event time and processing time over time. The surface
enclosing A amounts to 100% availability, while the surface
containing B equals 60% availability.

Last, availability is a prime non-functional characteristic
of a streaming system and non-trivial to reason about as we
showed. Providing user-friendly ways to specify availability
as a contract that the systemwill always respect during its op-
eration will significantly improve the position of streaming
systems in production environments. Configuring availabil-
ity in this way will probably impact resource utilization, per-
formance overhead during normal operation, recovery time,
and consistency.

6 Load management, elasticity, & reconfiguration

Due to the push-based nature of streaming inputs from exter-
nal data sources, stream processors have no control over the
rate of incoming events. Satisfying Quality of Service (QoS)
under workload variations has been a long-standing research
challenge in stream processing systems.

To avoid performance degradation when input rates ex-
ceed system capacity, the stream processor needs to take ac-
tions that will ensure sustaining the load. One such action
is load shedding: temporarily dropping excess tuples from
inputs or intermediate operators in the streaming execution
graph. Load shedding trades off result accuracy for sustain-
able performance and is suitable for applications with strict
latency constraints that can tolerate approximate results.

When result correctness is more critical than low latency,
dropping tuples is not an option. If the load increase is tran-
sient, the system can instead choose to reliably buffer excess
data and process it later, once input rates stabilize. Several
systems employ back-pressure, a fundamental load manage-
ment technique applicable to communication networks that
involving producers and consumers. Nevertheless, to avoid
running out of available memory during load spikes, load-
aware scheduling and rate control can be applied.

Amore recent approach that aims at satisfyingQoSwhile
guaranteeing result correctness under variable input load is
elasticity. Elastic stream processors are capable of adjusting
their configuration and scaling their resource allocation in re-
sponse to load. Dynamic scaling methods are applicable to
both centralized and distributed settings. Elasticity not only
addresses the case of increased load, but can additionally en-
sure no resources are left idle when the input load decreases.

Next, we review load shedding (Section 6.1), load-aware
scheduling and flow control (Section 6.2), and elasticity tech-
niques (Section 6.3). As in previous sections, we conclude
with a discussion of vintage vs. modern and open problems.

6.1 Load shedding

Load shedding [24, 123, 124, 133] is the process of discard-
ing data when input rates increase beyond system capacity.
The system continuously monitors query performance and if
an overload situation is detected, it selectively drops tuples
according to a QoS specification.

Load shedding can be formulated as an optimization
problem. Let N be the query network, I the set of input
streams with known arrival rates, and C the system process-
ing capacity. Further, consider the headroom factor, H , as
a conservative estimate of the percentage of resources re-
quired by the system at steady state. If Load(N(I)) denotes
the load as a fraction of the total capacity C that network
N(I) presents, andUacc is the aggregate utility, then the load
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shedder needs to identify a new network N ′, such that

Load(N ′(I)) < H ∗ C (1)

under the constraint that the utility loss

Uacc(N(I)) − Uacc(N ′(I)) (2)

is minimized.
Load shedding is commonly implemented by a stan-

dalone component integrated with the stream processor. The
load shedder continuously monitors input rates or other sys-
tem metrics and can access information about the running
query plan. Its main functionality consists of detecting over-
load (when to shed load) and deciding what actions to take
in order to maintain acceptable latency and minimize result
quality degradation. These actions presume answering the
questions of where (in the query plan), how many, and which
tuples to drop.

6.1.1 Detecting overload

Detecting overload is a crucial task, as an incorrectly trig-
gered shedding action can cause unnecessary result degrada-
tion. To facilitate the decision of when, load shedding com-
ponents rely on statistics gathered during execution. A statis-
tics manager modulemonitors processing and input rates and
periodically estimates operator selectivities. It feeds those
metrics to a load manager module, which makes load shed-
ding decisions. The load manager assigns a cost, ci, in cycles
per tuple, and a selectivity, si, to each operator i. The statis-
tics manager collects metrics and estimates those parameters
either continuously or by running the system for a designated
period of time, prior to regular query execution.

The more knowledge a load shedder has about the query
plan and its execution, the more accurate decisions it can
make. For this reason, many stream processors restrict load
shedding to a predefined set of operators, such as those that
do not modify tuples, i.e. filter, union, and join [52,82,124].
Other operator-restricted load shedding techniques target
window operators [24,125], or even more specifically, query
plans with SUM or COUNT sliding window aggregates [24].

An alternative, operator-independent approach, is to
frame load shedding as a feedback control problem [133].
The load shedder relies on a dynamic model that describes
the relationship between average tuple delay (latency) and
input rate. To build such a controller, the control signal is
the desirable input rate, the output signal is the tuple latency
measured by a monitor, arrival rates and processing rates are
considered disturbances, and the target output is the desired
tuple latency. In this setting, the objective of the feedback
control loop is to maintain the average tuple latency under
a target value by shedding load when necessary. This model
is applicable if the per-tuple processing cost is constant and
tuples are consumed by the stream processor in arrival order.

6.1.2 Reacting to overload

Once the load shedder has detected overload, it needs to per-
form the actual load shedding. This includes the decision of
where in the query plan to drop tuples from, as well as which
tuples and how many.

Where to shed load. The question of where is equivalent
to placing special drop operators in the best positions in the
query plan. In general, drop operators can be placed at any lo-
cation in the query plan, however, they are often placed at or
near the sources. Dropping tuples early avoids wasting work
but it might affect results of multiple queries if the stream
processor operates on a shared query network. Alternatively,
a load shedding road map (LSRM) can be used [124]. This
is a pre-computed table that contains materialized load shed-
ding plans, ordered by the amount of load shedding they will
cause. Each row in the LSRM contains a plan with expected
cycle savings, locations for drop operations, drop amounts,
and, provided that tuples can be associated with a utility met-
ric, QoS effects.

Which tuples to shed. The question of which tuples to drop
is relevant when load shedding takes into account the seman-
tic importance of tuples with respect to results quality.

A random dropping strategy can be employed in the case
of sliding window aggregate queries. Approximate results
can be provided by inserting random sampling operators in
the query plan [24], parametrized with a sampling rate. This
rate defines the probability to discard a tuple and is computed
based on statistics and operator selectivity. The optimization
objective is to achieve the highest possible accuracy given
the constraint that system throughput matches the data input
rate. In the case of known aggregation functions, results can
be scaled using approximate query processing techniques,
where accuracy is measured in terms of the relative error in
the computed query answers. If queries are assembled into a
single dataflow plan, the optimization objective entails min-
imizing the maximum error across all queries.

Window-aware load shedding [125] applies shedding to
entire windows instead of individual tuples. When discard-
ing tuples at the sources or another point in a query with mul-
tiple window aggregations, it is unclear how shedding will
affect the correctness of downstreamwindow operators. This
approach preserves window integrity and guarantees that the
results under shedding will not be approximations but a sub-
set of the exact answers.

Concept-driven load shedding [84] is a semantic drop-
ping strategy that selects tuples to discard based on the no-
tion of window-based concept drift. The drift is calculated
within window boundaries by taking into account common
elements and a similarity metric across window contents.
Concept-driven load shedding currently supports window
group aggregations and equi-joins.
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How many tuples to shed. The amount of tuples to discard
strongly depends on the decisions of where and which tuples
to shed. If input rates and processing capacity are known or
easy to measure, estimates can be computed in a straight-
forward manner. However, conditions can be more complex
in practice. Estimations based on static operator selectivi-
ties and heuristics are unsuitable for frequent load fluctua-
tions [133]. Naive approaches can lead to system instability
or unnecessary load shedding. The feedback control-based
method is also challenging to apply, as it requires manual
parameter tuning. Pole placement and the damping factor
significantly impact the system’s performance, in terms of
convergence rate and accuracy. Further, accurately measur-
ing the output signal, which is the per-tuple delay time, is not
easy to achieve. Measurements happen with a delay of an un-
known amount, which is, in fact, the output itself. One way to
address this peculiar challenge is to estimate delay indirectly,
by counting queue lengths (outstanding tuples) instead.

In window-aware load shedding [125], queries need to
define an application-specific maximum tolerance to gaps.
This parameter indicates how many consecutive missing re-
sults the query can tolerate. Given a shared query plan, the
load shedder must respect the maximum gap tolerance of
all queries, under the provided load constraint. In the worst
case, admission control is employed and expensive queries
are chosen for complete shutdown.

Adapting the data rate. An alternative to explicitly drop-
ping tuples is to adapt the streaming data rate to match avail-
able bandwidth [143]. This is achieved by a maybe operator,
similar to load shedding operators, that defines the degrada-
tion behavior of computations. Upon encountering network
congestion, the adaptation algorithm increases the degrada-
tion level to reduce the rate, so that no persistent queue builds
up. To recover, it progressively decreases the degradation
level after probing for more available bandwidth.

6.2 Scheduling and flow control

When load bursts are transient and a temporary increase in
latency is preferred to missing results, back-pressure and
flow control can provide load management without sacrific-
ing accuracy. Flow control methods include buffering excess
load, load-aware scheduling that prioritizes operators with
the objective to minimize the backlog, regulating the trans-
mission rate, and throttling the producer. Flow control and
back-pressure techniques do not consider application-level
quality requirements, such as the semantic importance of in-
put tuples. Their main requirement is availability of buffer
space at the sources or intermediate operators and that any
accumulated load is within the system capacity limits, so that
it will be eventually possible to process the data backlog.

6.2.1 Load-aware scheduling

Load-aware scheduling tackles the overload problem by se-
lecting the order of operator execution and by adapting the
resource allocation. For instance, backlog can be reduced
by dynamically selecting the order of executing filters and
joins [21, 25]. Alternatively, adaptive scheduling [23, 36]
modifies the allocation of resources given a static query plan.

In its simplest form, adaptive scheduling assumes a fixed
memory budget and a single thread that executes all opera-
tors and makes scheduling decisions. Existing methods are
applicable to acyclic plans with a restrictive set of operators,
such as selections, projections, filters, joins with stored rela-
tions, and per-record sliding window joins. The state size per
operator is considered bounded and the runtime engine uti-
lizes a common system memory pool that all operators share
for storing their input tuples.

The objective of load-aware scheduling strategies is to
select an operator execution order that minimizes the total
size of input queues in the system. The scheduler relies on
knowledge about operator selectivities and processing costs.
These statistics are either assumed to be known in advance,
or need to be collected periodically during runtime. Op-
erators are assigned priorities that reflect their potential to
minimize intermediate results, and, consequently, the size of
queues. To compute these priorities, the scheduler builds a
progress map of the query plan which represents a mapping
of the operator paths to a 2-dimensional plane of tuple size
(intermediate results size) over time (execution cost). Oper-
ators with a high potential of reducing the intermediate re-
sults’ size quickly are mapped to deeper slopes on this plane.
These operators are assigned higher priorities.

Figure 11 shows an example progress map as intro-
duced by the Chain scheduling approach [23]. This map in-
dicates the size of intermediate data as tuples move along
the dataflow graph. The scheduler then computes the chart’s
lower envelope which is the sequence of the steepest slope
segments. Those segments reveal the operators that have the
higher potential to reduce intermediate data in the shortest
amount of time. The scheduler groups operators in chains
(highlighted with different colors in the figure) correspond-
ing to segments in the lower envelope of the progress chart.
It then assigns priorities to operator chains based on the frac-
tion of tuples they are likely to eliminate per unit of time.

6.2.2 Flow control

In a network of consumers and producers such as a streaming
execution graph with multiple operators, back-pressure has
the effect that all operators slow down to match the process-
ing speed of the slowest consumer. If the bottleneck opera-
tor is far down the dataflow graph, back-pressure propagates
to upstream operators, eventually reaching the data stream
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Fig. 11: An example progressmap built by Chain scheduling.

sources. To ensure no data loss, a persistent input message
queue, such as Apache Kafka, and adequate storage space
are required.

Buffer-based flow control. Buffer-based back-pressure im-
plicitly controls the flow of data via buffer availability. Con-
sidering a fixed amount of buffer space, a bottleneck operator
will cause buffers to gradually fill up along its dataflow path.
Figure 12a demonstrates buffer-based flow control when the
producer and the consumer run on the same machine. We as-
sume that each produced and consumed stream has managed
buffer pools with bounded capacity. A buffer pool is sim-
ply a set of buffers which are recycled after they have been
consumed and can be re-used. When a producer generates
a result, it serializes it into an output buffer. If the producer
and consumer run on the same machine and the consumer is
slow, the producer might attempt to retrieve an output buffer
when none will be available. The producer’s processing rate
will, thus, slow down according to the rate the consumer is
recycling buffers back into the shared buffer pool.

Figure 12 demonstrates the case when the producer and
the consumer are deployed on different machines. In this
case, results are transferred via the network, often via a TCP
connection. If no buffer is available on the consumer side,
the TCP connection will be interrupted. The producer can
use a threshold to control how much data is in-flight and it is
slowed down if it cannot put new data on the wire.

Buffer-based flow control is a simple mechanism where
the buffer occupancy controls the data rate automatically.
However, when parallel tasks are connected via virtual chan-
nels multiplexed over TCP connections, the presence of data
skew might overload a single channel and affect the entire
dataflow. The technique we discuss next addresses this issue.

Credit-based flow control. (CFC) [91] is a link-by-link, per
virtual channel congestion control technique used in ATM
network switches. To exchange data through an ATM net-
work, each pair of endpoints first needs to establish a virtual
circuit (VC) or connection. CFC maximizes network utiliza-
tion and prevents faults caused by high congestion. In the

presence of bursty traffic, CFC causes backpressure to build
up fast and propagate along congested VCs to their sources
which can be throttled. Essentially, CFC allows blocking ex-
cess traffic outside the network to protect it. In a nutshell,
CFC uses a credit system to signal the availability of buffer
space from receivers to senders. Senders maintain a credit
balance for all their receivers and receivers regularly send
notifications upstream containing their number of available
credits. One credit corresponds to some amount of buffer
space so that a sender can know how much data they can
afford to forward downstream.

This classic networking technique turns out to be very
useful for load management in modern, highly-parallel
stream processors and is implemented in Apache Flink [1].
Figure 13 shows how the scheme works for a hypothetical
dataflow. Parallel tasks are connected via virtual channels
multiplexed over TCP connections. Each task informs its
senders of its buffer availability via credit messages. This
way, senders always know whether receivers have the re-
quired capacity to handle data messages. When the credit of
a receiver drops to zero (or a specified threshold), backpres-
sure appears on its virtual channel.

An important advantage of this per-channel flow control
mechanism is that bakcpressure is inflicted on pairs of com-
municating tasks only and does not interfere with other tasks
sharing the same TCP connection. This is crucial in the pres-
ence of data skew where a single overloaded task could oth-
erwise block the flow of data to all other downstream op-
erator instances. On the downside, the additional credit an-
nouncement messages might increase end-to-end latency.

6.3 Elasticity

The approaches of load shedding and back-pressure are de-
signed to handle workload variations in a statically provi-
sioned stream processor or application. In fact, their mod-
els rely on the assumption that a fixed set of resources has
been allocated to the stream processor and that comput-
ing and memory capacity are predetermined and will not
change. However, as stream processor architectures started
shifting to shared-nothing, distributed clusters and cloud de-
ployments, load management could be addressed by less
rigid approaches.

Stream processors deployed on cloud environments or
clusters have access to a dynamic pool of resources. Dy-
namic scaling or elasticity is the ability of a stream proces-
sor to vary the resources available to a running computation
in order to handle workload variations efficiently. Building
an elastic streaming system requires a policy and a mech-
anism. The policy component implements a control algo-
rithm that collects performance metrics and decides when
and how much to scale. The mechanism effects the con-
figuration change. It handles resource allocation, work re-
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Fig. 13: Credit-based flow control in a dataflow graph. Re-
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assignment, and state migration, while guaranteeing result
correctness. Table 5 summarizes the dynamic scaling capa-
bilities and characteristics of elastic streaming systems.

6.3.1 Elasticity policies

A scaling policy involves two individual decisions. First, it
needs to detect the symptoms of an unhealthy computation
and decide whether scaling is necessary. Symptom detection
is a well-understood problem and can be addressed using
conventional monitoring tools. Second, the policy needs to
identify the causes of exhibited symptoms (e.g. a bottleneck
operator) and propose a scaling action. This is a challeng-
ing task which requires performance analysis and prediction.
It is common practice to place the burden of scaling deci-
sions on application users who have to face conflicting incen-
tives. They can either plan for the highest expectedworkload,
possibly incurring high cost, or they can choose to be con-
servative and risk degraded performance. Automatic scal-
ing refers to scaling decisions transparently handled by the
streaming system in response to load. Commercial stream-
ing systems that support automatic scaling include Google
Cloud Dataflow [86], Heron [90], and IBM System S [63],
while DS2 [80], Seep [37] and StreamCloud [67] are recent
research prototypes.

We categorize policies into heuristic and predictive.
Heuristic policies rely on sets of empirically predefined rules
and are often triggered by thresholds and observed condi-
tions. On the other hand, predictive policies make scaling
decisions guided by analytical performance models.

Heuristic policies. Heuristic policy controllers gather
coarse-grained metrics, such as CPU utilization, observed
throughput, queue sizes, and memory utilization, to detect
suboptimal scaling. CPU and memory utilization can be
inadequate metrics for streaming applications deployed in
cloud environments due to multi-tenancy and performance
interference [116]. StreamCloud [67] and Seep [37] try to
mitigate the problem by separating user time and system
time, but preemption canmake these metrics misleading. For
example, high CPU usage caused by a task running on the
same physical machine as a dataflow operator can trigger in-
correct scale-ups (false positives) or prevent correct scale-
downs (false negatives). Google Cloud Dataflow [86] relies
on CPU utilization for scale-down decisions only but still
suffers false negatives. Dhalion [58] and IBM Streams [63]
also use congestion and back-pressure signals to identify bot-
tlenecks. These metrics are helpful for identifying bottle-
necks but they cannot detect resource over-provisioning.

Heuristic scaling policies are expressed by a set of rules,
using predefined thresholds and conditions, e.g. if CPU uti-
lization> 50% and back-pressure ⟹ scale up. Careful and
continuous threshold tuning is a cumbersome yet necessary
process. Slightly misconfigured thresholds might cause in-
correct scaling decisions even when relying on fine-grained
metrics. For lack of an analytical performance model, scal-
ing actions are speculative, as the system explores the effects
of reconfiguration. Most policies configure a single operator
at a time, requiring many iterations to find a good config-
uration. More aggressive strategies test alternative configu-
rations and blacklist them if they end up degrading perfor-
mance.

Predictive policies. Predictive policy controllers build an
analytical performance model of the streaming system and
formulate the scaling problem as a set of mathematical func-
tions. Predictive approaches include queuing theory [59,59,
98, 130], control theory [15, 85, 102], and instrumentation-
driven linear performance models [80]. Thanks to their
closed-form analytical formulation, predictive policies are
capable of making multi-operator decisions in one step.

Selecting an appropriate queuing network model to rep-
resent streaming computations is challenging. Simple mod-
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Table 5: Elasticity policies and mechanisms in streaming systems

System Policy Objective Reconfiguration State Migration
Heuristic Predictive Latency Throughput Stop-and-Restart Partial Pause Live At-Once Progressive

Borealis [8] ✓ ✓ ✓ n/a n/a
StreamCloud [67] ✓ ✓ ✓ ✓

Seep [37] ✓ ✓ ✓ ✓ ✓

IBM Streams [63] ✓ ✓ ✓ ✓

FUGU [69,70] ✓ ✓ ✓ ✓

Nephele [98] ✓ ✓

DRS [59] ✓ ✓

MPC [102] ✓ ✓ ✓ ✓

CometCloud [130] ✓ ✓ ✓ n/a
Chronostream [138] n/a n/a ✓ ✓

ACES [15] ✓ ✓ ✓ n/a n/a
Stella [139] ✓ ✓

Google Dataflow [86] ✓ ✓ ✓

Dhalion [58] ✓ ✓ ✓ ✓

DS2 [80] ✓ ✓ ✓ ✓

Spark Streaming [20,
140]

✓ ✓ ✓ ✓

Megaphone [74] ✓ ✓

Turbine [105] ✓ ✓ ✓ ✓

Rhino [55] n/a n/a ✓ ✓

els with closed-form solutions make strong assumptions
about their inputs, the arrival distribution, the queue prop-
erties, and their outputs. Such models are incapable of accu-
rately capturing the behavior of large streaming dataflows, as
they expect every element arriving at an operator to be pro-
cessed and leave the queue. This assumption is at odds with
the semantics of custom window operators, joins, and spe-
cial event processing, such as watermark propagation. Com-
plex queuing network models, on the other hand, either have
no closed-form analytical solutions or only numerical so-
lutions are known. Most queuing theory controllers adopt
models where the probability distributions of data item inter-
arrival and service times are generally unknown. To model a
computation with multiple operators, each parallel task of a
dataflow node can be represented as a single-server GI/G/1
queuing system. The model predicts the actual queue wait-
ing time per task when its parallelism changes using the cur-
rently measured queue waiting time for the current degree
of parallelism. The single-server model can be extended to
a generalized Jackson network where each operator is repre-
sented by a stochastically independent GI/G/k service node.

Control-theory based approaches either consider the en-
tire dataflow graph as a black-box system or regard each op-
erator as a separate feedback-loop system. Feedback mech-
anisms require measuring an input and output signal, which
correspond to the stream input rate and the tuple delay (la-
tency), respectively. However, modeling the delay as the
output signal in turn indicates that the feedback system is
approximating a variable whose measurement can be arbi-
trarily delayed. Another challenge with control-theoretic ap-
proaches is accurate parameter estimation. Poles placement,
sampling period, and damping are instrumental to the con-

troller’s performance and must be determined offline. For in-
stance, an unnecessarily high damping can cause instability
while too low value slows down convergence. Viewing the
computation as a black box is also problematic as the con-
troller cannot identify individual bottlenecks.

Both queuing and control theoretic approaches require
fine-grained metrics collection, often at the granularity of a
single tuple. Example metrics include task latency, mean and
variance of a task’s service time (how long a task is busywith
a data item), mean and variance of a task’s inter-arrival time,
channel latency (mean time between a data item being emit-
ted from its producer and being processed by its consumer),
and output batch latency (mean time data items wait due to
batching before actually being shipped). Further, they might
include measuring the total time spent on processing each
tuple and intermediate results derived from it, as well as the
total time a tuple and its derived tuples wait in queues. Ran-
dom sampling or window-based metrics collection is often
used to avoid the overhead of dense monitoring.

Instrumentation-based elasticity [80] combines a general
performance model of streaming dataflows with lightweight
instrumentation to estimate the true processing and output
rates of individual dataflow operators. As opposed to ob-
served elapsed time, useful time is defined as the time spent
by an operator instance in deserialization, processing, and se-
rialization activities. Essentially, useful time amounts to the
time an operator instance runs for if executed in an ideal set-
ting where it never has to wait to obtain input or push output.
Using this notion, the true processing (resp. output) rate cor-
responds to how many records an operator instance can pro-
cess (resp. output) per unit of useful time. True rates denote
the maximum processing and output rate the instance could
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sustain for the current workload. Using lightweight instru-
mentation to periodically measure the true processing and
output rates of individual operators, the controller builds a
continuously updated linear performance model of stream-
ing computations and makes scaling accurate decisions with
negligible overhead.

6.3.2 Elasticity mechanisms

Elasticity mechanisms are concerned with realizing the ac-
tions indicated by the policy. They need to ensure correctness
and low-latency redistribution of accumulated state when
effecting a reconfiguration. To ensure correctness, many
streaming systems rely on the fault-tolerance mechanism
to provide reconfiguration capabilities. When adding new
workers to a running computation, the mechanism needs not
only re-assign work to them but also migrate any necessary
state these new workers will now be in charge of. Elasticity
mechanisms need to complete a reconfiguration as quickly
as possible and at the same time minimize performance dis-
ruption.We review the main methods for state redistribution,
reconfiguration, and state transfer next. We focus on systems
with locally managed state, as reconfiguration mechanisms
are significantly simplified when state is external.

State redistribution. A straight-forward approach to state
redistribution is to have all new tasks load the entire state
from a checkpoint and filter out keys they are not responsi-
ble for. Despite the advantage of fast sequential reads, such
a strategy would overload the file system and cause tasks to
read mostly unnecessary state. Another simple strategy is to
track the state location for each key in the checkpoint, so that
tasks can locate and read matching keys only. This strategy
would avoid reading irrelevant data, but it would incur a large
amount of random I/O. Further, it would require a material-
ized index for all keys, which could potentially grow very
large. State redistribution must preserve key semantics, so
that existing state for a particular key and all future events
with this key are routed to the same worker. For that purpose,
most systems use hashing methods.

Uniform hashing evenly distributes keys across paral-
lel tasks. It is fast to compute and requires no routing state
but might incur high migration cost. When a new node is
added, state is shuffled across existing and new workers. It
also causes random I/O and high network communication.
Thus, it is not particularly suitable for adaptive applications.

Consistent hashing and variations are more often pre-
ferred. Workers and keys are mapped to multiple points on a
ring using multiple random hash functions. Consistent hash-
ing ensures that state is not moved across workers that are
present before and after the migration. When a new worker
joins, it becomes responsible for data items from multiple of
the existing nodes.When aworker leaves, its key space is dis-
tributed over existing workers. On average M∕N partitions

are moved when theN tℎ worker is inserted or removed from
a system withM partitions. Apache Flink [34] uses a varia-
tion of consistent hashing in which state is organized into key
groups and those are mapped to parallel tasks as ranges. On
reconfiguration, reads are sequential within each key group,
and often across multiple key groups. The metadata of key
group to task assignments are small and it is sufficient to store
key-group range boundaries. The number of key groups lim-
its the maximum number of parallel tasks to which keyed
state can be scaled.

Hashing techniques are simple to implement and do not
require storing any routing state, however, they do not per-
form well under skewed key distributions. Hybrid partition-
ing [62] combines consistent hashing and an explicit map-
ping to generate a compact hash function that provides load
balance in the presence of skew. The main idea is to track
the frequencies of the partitioning key values and treat nor-
mal keys and popular keys differently. The mechanism uses
the lossy counting algorithm [101] in a sliding window set-
ting to estimate heavy hitters, as keeping exact counts would
be impractical for large key domains.

Reconfiguration strategy. Regardless of the re-partitioning
strategy used, if the elasticity policy makes a decision to
change an application’s resources, the mechanism will have
to transfer some amount of state across workers on the same
or different physical machines.

The stop-and-restart strategy halts the computation,
takes a state snapshot of all operators, and then restarts the
application with the new configuration. Even though this
mechanism is simple to implement and it trivially guarantees
correctness, it unnecessary stalls the entire pipeline even if
only one or few operators need to be rescaled. As shown in
Table 5, this strategy is very common in modern systems.

Partial pause and restart, introduced by FLUX [120],
is a less disruptive strategy that only blocks the affected
dataflow subgraph temporarily. The affected subgraph con-
tains the operator to be scaled, as well as upstream chan-
nels and upstream operators. Figure 14 shows an example of
the protocol. To migrate state from operator a to operator b,
the mechanism will execute the following steps: (1) First, it
pauses a’s upstream operators and stops pushing tuples to
a. Paused operators start buffering input tuples in their local
buffers. operator a continues processing tuples in its buffers
until they are empty. (2) Once a’s buffers are empty, it ex-
tracts its state and sends it to operator b. (3) Operator b loads
the state and (4) sends a restart signal to upstream opera-
tors. Once upstream operators receive the signal they can
start processing tuples again.

The pro-active replication strategy maintains state
backup copies in multiple nodes so that reconfiguration can
be performed in a nearly live manner when needed. The
state is organized into smaller partitions, each of which can
be transferred independently. Each node has a set of pri-
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Fig. 14: An example of the partial-pause-and-restart proto-
col. To move state from operator a to b, the mechanism exe-
cutes the following steps: (1) Pause a’s upstream operators,
(2) extract state from a, (3) load state into b, and (4) send a
restart signal from b to upstream operators.

mary state slices and a set of secondary state slices. Fig-
ure 15 shows an example of the protocol as implemented
by ChronoStream [138]. The migration is coordinated by a
leader. To move slice #1 from Nsrc to Ndest, (1) the leader
instructsNdest to load slice #1 and upgrade it from a backup
slice to a primary slice. (2) The destination node loads slice
#1 and sends an acknowledgement to the leader together with
the slice’s progress. In the meantime, the source node keeps
processing events destined for slice #1. (3) The leader no-
tifies upstream operators to replay events according to the
progress metric provided by Ndest. (4) Upstream nodes re-
ceive the message and start rerouting events to Ndest. For
some time interval, both Nsrc and Ndest process events for
slice #1. As a result, downstream operators need to imple-
ment a de-duplication mechanism. (5) Once the leader no-
tifies Nsrc that the transfer is complete, Nsrc consumes any
remaining data and moves slice #1 to the backup group.

State transfer. Another important decision to make when
migrating state from one worker to another is whether the
state is moved all-at-once or in a progressive manner. If a
large amount of state needs to be transferred, moving it in one
operation might cause high latency during re-configuration.
Alternatively, progressive migration [74] moves state in
smaller pieces and flattens latency spikes by interleaving
state transfer with processing. On the downside, progressive
state migration might lead to longer migration duration.

6.4 Vintage vs. Modern

Comparing early tomodern approaches, wemake the follow-
ing observations. While load shedding was popular among
early stream processors, modern systems do not favor the ap-
proach of degrading results quality anymore. Another impor-
tant difference is that load management approaches in vin-
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Fig. 15: An example of the proactive replication protocol. To
move slice #1 from Nsrc to Ndest, the mechanism executes
the following steps: (1) the leader instructsNdest to load slice
#1, (2) Ndest loads slice #1 and sends ack to the leader, (3)
the leader notifies upstream operators to replay events, (4)
upstream start rerouting events to Ndest, (5) the leader noti-
fies Nsrc that the transfer is complete and Nsrc moves slice
#1 to the backup group.

tage systems used to affect the execution of multiple queries
as they formed a shared dataflow plan (cf. Section 2). Queries
in modern systems are typically executed as independent
jobs, thus, back-pressure on a certain query will not affect the
execution of other queries running on the same cluster. Scal-
ing down is a quite recent requirement that was not a mat-
ter of concern before cloud deployments. The dependence
on persistent queues for providing correctness guarantees
is another recent characteristic, mainly required by systems
employing back-pressure. Finally, while early load shedding
and load-aware scheduling techniques assume a limited set
of operators whose properties and characteristics are stable
throughout execution, modern systems implement general
load management methods that are applicable even if cost
and selectivity vary or are unknown.

6.5 Open Problems

Adaptive scheduling methods have so far been studied in the
context of simple query planswith operators whose selectivi-
ties and costs are fixed and known. It is unclear whether these
methods generalize to arbitrary plans, operators with UDFs,
general windows, and custom joins. Load-aware scheduling
can further cause starvation and increased per-tuple latency,
as low-priority operators with records in their input buffers
would need to wait a long time during bursts. Finally, exist-
ingmethods are restricted to streams that arrive in timestamp
order and do not support out-of-order or delayed events.

Re-configurable stream processing is a quite recent re-
search area, where stream processors are designed to not only
be capable of adjusting their resource allocation but other
elements of their runtime as well. Elasticity, the ability of
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Table 6: Evolution of streaming systems

Vintage (1st generation) Modern (2nd-3rd generation)
Results approximate or exact exact
Language SQL extensions, CQL Java, Scala, Python, SQL-like
Query plans global, optimized, with pre-defined operators independent, with custom operators
Execution centralized distributed
Parallelism pipeline data, pipeline, task
Time & progress heartbeats, slack, punctuations low-watermark, frontiers
State management shared synopses, in-memory per query, partitioned, persistent, larger-than-memory
Fault tolerance HA-focused, limited correctness guarantess distributed snapshots, exactly-once
Load management load shedding, load-aware scheduling backpressure, elasticity

a stream processor to dynamically adjust resource alloca-
tion can be considered as a special case of re-configuration.
Others include code updates for bug fixes, version up-
grades, or business logic changes, execution plan switch-
ing, dynamic scheduling and operator placement, as well as
skew and straggler mitigation. So far, each of the aforemen-
tioned re-configuration scenarios have been largely studied
in isolation. To provide general re-configuration and self-
management, future systems will need to take into account
how optimizations interact with each other.

7 Conclusion

While early streaming systems strove to extend relational ex-
ecution engines with time-based window processing, mod-
ern systems have evolved significantly in terms of architec-
ture and capabilities. Table 6 summarizes the evolution of
major streaming system aspects over the last three decades.

While approximate results were mainstream in early sys-
tems, modern systems have primarily focused on results cor-
rectness and have largely rejected the notion of approxima-
tion. In terms of languages, modern systems favor general-
purpose programming languages, however, we recently wit-
ness a trend to return to extensions for streaming SQL [28].
Over the years, execution has also gradually transitioned
from mainly centralized to mainly distributed, exploiting
data, pipeline, and task parallelism. At the same time, most
modern systems construct independent execution plans per
query and apply little optimization and sharing.

Regarding time, order, and progress, many of the inven-
tions of the past proved to be vintage at the test of time,
since they continue to hold a place in modern streaming sys-
tems. Especially Millwheel and the Google Dataflow Model
popularized punctuations, watermarks, the out-of-order ar-
chitecture, and triggers for revision processing. Streaming
state management witnessed a major shift, from specialized
in-memory synopses to large partitioned and persistent state
supported today. As a result, fault tolerance and high avail-
ability also shifted towards passive replication and exactly-
once processing. Finally, load management approaches have

transitioned from load shedding and scheduling methods to
elasticity and backpressure coupled with persistent inputs.

In state management we identify the most radical
changes seen in data streaming so far. The most obvious ad-
vances relate to the scalability of state and long-term persis-
tence in unbounded executions. Yet, today’s systems have in-
vested thoroughly in providing transactional guarantees that
are in par with those modern database management systems
can offer today. Transactional stream processing has pivoted
data streaming beyond the use for data analytics and has also
opened new research directions in terms of efficient meth-
ods for backing and accessing state that grows in unbounded
terms. Stream state and compute are gradually being decou-
pled and this allows for better optimizations, wider interoper-
ability with storage technologies as well as novel semantics
for shared and external state having stream processors as the
backbone of modern continuous applications and live scal-
able data services.

We believe the road ahead is still long for streaming sys-
tems. Emerging streaming applications in the areas of Cloud
services [11, 64], machine learning [60, 106], and streaming
graph analytics [10, 29] present new requirements and are
already shaping the key characteristics of the future genera-
tion of data stream technology. We expect systems to evolve
further and exploit next-generation hardware [142, 144], fo-
cus on transactions and iteration support, improve their re-
configuration capabilities, and take state management a step
further by leveraging workload-aware backends [79], shared
state and versioning.
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