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ABSTRACT 
Automated generation of a right set of materialized views is a 
challenging task. It is a highly desirable feature for autonomous 
databases. The selection of materialized views must be based on 
cost and verifiable in the actual database environment. This paper 
describes an automated system that generates, selects, verifies, 
and maintains materialized views in the Oracle RDBMS; it 
presents a novel technique, called the extended covering sub-
expression algorithm, for the automated generation of materialized 

views. An extensive set of experiments is described that 
demonstrates the feasibility and efficiency of this approach. This 
system has been fully implemented and is going to be deployed on 
the Oracle Autonomous Database on the Cloud. 
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1. INTRODUCTION 
Current relational database systems process complex SQL queries 
involving multiple fact and dimension tables and containing 
several nested sub-query blocks. Such queries are becoming 
increasingly important in Decision-Support Systems (DSS). 
Generating optimal execution plans for such queries has become 
critical for commercial database systems. Materialized view 
rewrite [8, 14] is a well-known technique that is used for 

optimizing such queries. The richness of structure of materialized 
views makes the task of selecting the right set of materialized 
views generally a daunting task for the DBA. 

Automated generation of materialized views, on the other hand, 
poses a variety of challenges [1, 17, 29] of its own. We could 

consider generating every syntactically relevant materialized view 
for workload queries based on all possible subsets of tables in 
workload queries, but it would explode the search space even with 
some heuristic-based pruning; arbitrary table subsets may 

introduce Cartesian Products in the materialized view definitions. 
At the other extreme, we could generate for each query, when 
syntactically possible, one candidate materialized view that 
exactly matches the text of the query; this would generally violate 
the storage constraints and result in making materialized view 
refresh an intractable task. The idealized objective is to generate a 
small number of materialized views, which are of reasonable size, 
contain large pre-computations of joins and grouping, and can 

rewrite a substantial number of current and future workload 
queries. This presents conflicting demands on the system. A 
materialized view that contains large pre-computations is more 
beneficial to the queries it rewrites, but it would normally rewrite 
fewer queries. Further, a materialized view that rewrites many 
queries tends to have large sets of grouping columns and very few 
or no selection predicates, which tend to increase materialized 
view size in terms of the number of rows it contains.  

In this paper, we discuss a novel technique, called the extended 
covering sub-expression (ECSE) algorithm, for automated 
generation of materialized views. The ECSE algorithm seeks to 
achieve a compromise between the conflicting demands and to 
find a balance between the two extremes. 

Automated materialized view project is a crucial component of a 
wider effort called Oracle Autonomous Databases. Other 
components of this project include task management, ML-based 

automatic refresh of materialized views, etc. 

The rest of the paper is organized as follows. We first give an 
overview of the system architecture for the automated generation 
of materialized views in Section 2. We describe the basic 
concepts, the ECSE algorithm, and the technique for cost-based 
selection of materialized views in Section 3. Section 4 describes 
the verification module. Materialized view maintenance is 
outlined in Section 5. In Section 6, we describe an extensive set of 
experiments we performed on several customer workloads. 

Finally, in Section 7 we survey the related work and provide our 
conclusion in Section 8. 
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2. ARCHITECTURE FOR AUTOMATED 

MATERIALIZED VIEWS 

In this paper, we focus on a class of single query-block 

materialized views that contain join of multiple tables, grouping, 
aggregation, and – in rare cases – filter (i.e., selection) predicates; 
these materialized views are based on queries containing one or 
more query blocks (a query block contains SELECT, FROM, 
WHERE, and, optionally, GROUP-BY clauses), which have filter 
predicates, join of multiple tables, grouping, and aggregation. The 
workload may contain arbitrarily complex SQL statements. 

  

 

 

 

 

 

 

 

 

 

 

Figure 1. Architecture for Automated Materialized Views 

Figure 1 presents an architectural overview of automated 
generation of materialized views (MVs) in Oracle. Our starting 
point is a workload containing a set of queries, for which a set of 
materialized views capable of rewriting a substantial number of 
current and future queries are to be generated. The key 
components of the architecture are: (i) query transformations, such 
as simple subquery unnesting and select-project-join view 

merging, to reduce the number of query blocks in a query (Oracle 
RDBMS performs complex transformations [4] in a cost-based 
manner after materialized view generation and rewrite modules 
have been invoked), (ii) candidate materialized view generation 
using the ECSE algorithm, (iii) heuristic-based pruning of 
candidate materialized views, (iv) enumeration of mapping 

between queries and materialized view groups and cost-based 
recommendation of materialized views, (v) verification of 
recommended materialized views by executing relevant workload 
queries with and without materialized view rewrite, and (vi) 
creation of materialized views that pass verification; the 

partitioning scheme, if any, of the underlying fact table is used to 
partition the materialized views.  

3. MATERIALIZED VIEW SELECTION 

In the following, we highlight the distinguishing aspects of our 
approach.  

We consider queries containing multiple query blocks. Each query 
block may be based on a star, snowflake, or snowstorm schema 
[3]. The materialized views generated by our system may require 
joins with other tables [6] for rewrite; this strategy is more 
versatile than the view-lattice approach [14, 28], which assumes 
that all workload queries have the same join pattern. In our 
scheme, a materialized view is generally anchored on a large fact 
table and can rewrite multiple queries; it can contain pre-

computations (i.e., joins and grouping) that do not appear in the 
queries eligible for rewrite, as it may be based on referential 
integrity constraints. 

The ECSE algorithm, using pair-wise comparisons, considers all 

possible relationships – equivalence, superset, subset, intersection, 
and union – that can exist among join graphs of given queries and 
exploits invariant join property, when applicable, for extracting 
covering sub-expressions, which are then used to generate 
candidate materialized views. The novel ECSE strategy is more 
efficient than generating arbitrary subsets or subplans of every 
query [1, 14, 19], and it is different from the reported works on 
sub-expression selection, multi-query optimization, and 

materialized view selection. 

Since the problem of the selection of materialized views or 
indexes has been shown to be NP-Hard [11, 26], it is critical that 
the proposed solutions recommend high quality materialized 
views in a scalable manner. Under the worst-case scenario, the 
time complexity of the ECSE algorithm (Section 3.4) is O(N2), as 
the ECSE algorithm does pair-wise comparisons of join graphs in 

a given workload, which contains N query blocks. In order to 
further restrict the search space, we apply several heuristics within 
and after the ECSE algorithm (Sections 3.3 and 3.4). 

3.1 Basic Concepts 
Join Graph. The join graph of a query block may have undirected 
edges resulting from inner or full outer joins and directed edges 
resulting from left outer, anti, and semi joins. In our scheme, a 
join graph is considered connected, if there exists at least one 
vertex from which all other vertices are reachable by traversing 
directed and undirected edges. For example, join graph {T1 ─ T2, 
T2 → T3} is connected but {T1 → T3, T2 → T3} is not. We 

consider only connected join graphs, as they do not produce 
Cartesian product. In our scheme, a join graph may have cycles; a 
join graph that has a cycle containing only directed edges is 
considered illegal in Oracle.  

Classification of join graphs of a given query workload is an 
important aspect of our candidate generation algorithm. We 
examine the shape of each join graph, table cardinalities, and 
number of distinct values (NDVs) of joining columns and identify 
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fact, dimension, and branch tables (i.e., the tables that join with 
dimension tables in snowflake and snowstorm schemas [3]). We 
then divide the join graphs into classes, where join graphs in each 
class reference a single common fact table. Each class of join 
graphs is considered separately by the ECSE algorithm for 

generating candidate materialized views, which contain the 
common fact table and various dimension and branch tables. The 
ECSE algorithm, however, will work correctly even if fact, 
dimension, and branch tables cannot be identified and thus the 
join graphs cannot be divided into classes. 

Join set is an abstraction of a connected join graph that is based 
on a query block. A join set, which is essentially a set of join 
edges, allows us to apply set operations on the underlying join 

graph. A join set has an associated field called QB set, which 
represents a set of query blocks (QBs) that can be potentially re-
written in terms of a materialized view based on the join set. For 
the sake of brevity, in this paper a join set is represented as a set of 
simplified join edges that do not show columns or relational 
operator: e.g., {F1 – D1, D1 – B1}, where F1 – D1 stands for a 
join edge between tables F1 and D1 and D1 – B1 stands for a join 
edge between tables D1 and B1. 

Set operations (i.e., equivalence, subset, superset, union, and 
intersection) are performed on join sets at various steps of the 
ECSE algorithm. Two join edges, which may originate from two 
different query blocks, are considered equivalent, if they are 
defined in terms of the same pair of Table.Column, relational 
operator (e.g., =, >, ≤, etc.) and join type (e.g., inner, outer, anti, 
etc.). Two join sets are considered equivalent, if they contain 
equivalent sets of join edges. The standard definitions of the set 

operations subset, superset, union, and intersection on join sets 
follow directly from the definition of equivalence of join edges. 
The join sets that result from these operations must be connected. 

Invariant joins can be derived from table and join properties. A 
table T1 is invariant in a join with table T2, if the following five 
conditions are satisfied: (i) The join is specified by a simple 
equality, inner join predicate T1.fk = T2.pk; (ii) there is a 
referential integrity constraint from T1.fk to T2.pk; that is, T1.fk 
is a foreign key that references the primary key T2.pk; (iii) the 

column T1.fk has a non-null constraint; (iv) T2 does not have any 
filter or subquery predicates; (v) T2 is invariant in joins with 
tables other than T1 (if any); e.g., dimensions that join with 
branch tables in snowflake schema. The conditions (iv) and (v) 
can be circumvented in materialized view creation by excluding 
from the materialized view definitions filter predicates and tables 
that violate the invariance property. The invariance of a table or 
join set J with respect to its join with table T is denoted by 

Invariant (J, T), which implies that table T joins with table(s) in J 
without affecting the resulting rows of J. The presence of invariant 
joins is used to identify a join set that is a union or superset of 
underlying join sets thereby allowing materialized views to 
contain larger pre-computations; i.e., a query block can be 
rewritten with a materialized view that has more tables and joins 
than the query block. 

Partition of Join Set. In a snowstorm schema [3], a join set may 

contain multiple fact tables, where each fact table has its own 
dimension and branch tables. Consider an example where there 
are two fact tables, F1 and F2, in a join set; JS1: {B1 – D1, D1 –
F1, F1 – F2, F2 – D2}. In such a case, JS1 will be partitioned into 
two join sets JS2 and JS3, each containing a single fact table and 

its dimension and branch tables; JS2: {F1 – D1, D1 – B1}; JS3: 
{F2 – D2}. The join sets JS2 and JS3 inherit the QB set of JS1.  

Reduction of Join Set. A join set may contain anti-joined or 
semi-joined tables, which result from subquery unnesting [4]. 
However, materialized views in Oracle may not contain anti-

joined or semi-joined tables. A join set is, therefore, reduced by 
removing tables that are anti-/semi-joined. 

Filter Predicates. Most workload queries are repeatedly issued 
over time where they differ only in the constant values of filter 

predicates. Therefore, most materialized view definitions in our 
system do not include filter predicates. This allows them to 
rewrite current as well as future queries with the same signature. 

Left Outer-Join. Oracle allows left outer-join in materialized 
view definitions.  Consider a query: SELECT * FROM T1 left 
outer join T2 on T1.x = T2.y and T2.z = 5; in case of a many-to-
many join between T1 and T2, rows of both tables can be 
duplicated. In our scheme, a materialized view definition with left 

outer-join contains an indicator column, which has value 1 
indicating inner-joined (i.e., matching) rows and 0 indicating anti-
joined (i.e., non-matching) rows. The rewrite of the above query, 
which contains a filter predicate on the outer-joined table T2, with 
a materialized view containing the left outer-join between T1 and 
T2 and no filter predicate is non-trivial, if the materialized view 
must appear only once in the rewrite. We use a technique that 
involves the LEAD window function and the indicator column to 

rewrite this type of queries by referencing the materialized view 
only once. The details of the technique are beyond the scope of 
this paper. 

Scope of Materialized Views. We support nested subqueries, 
views, standard aggregate functions in materialized view 
definitions, and distinct aggregates based on a bitmap technique. 

3.2 Operations on Join Sets 
In this section, we present functions for five basic set operations, 
which identify or create join sets for defining materialized views. 
We use a list of items, referred to here as JQLST, for each class of 
join graphs (Section 3.1). Every item in JQLST contains a join set 
and its associated QB set. Initially, the join set is based on a single 
query block; the QB set is initialized to the query block where the 
join set originates. We define a function Tables () that takes a join 

set and returns a set of tables that appear in the join set. 

Every set operation involves pair-wise comparisons of items from 
the list, where a union operation on QB sets shows the join set that 
can rewrite all query blocks belonging to both the operands. After 
the first step of the ECSE algorithm, a join set remains static, 
whereas its QB set may dynamically grow. 

Each set operation is illustrated by two single-block queries and a 
materialized view definition derived from the two queries. In the 

examples, every query is followed by the join set and QB set it 
produces, whereas every materialized view definition is preceded 
by join set and QB set, which are derived from the join and QB 
sets of the two query blocks by performing one of the set 
operations. We use the common notations () for a list, {} for a set, 
and [] for a structure; the join sets (i.e., join graphs) and QB sets 
are shown in bold. 

The derived join and QB sets are used to generate materialized 
view definitions. A derived join set is used to form the FROM and 
WHERE clauses of the materialized view definition. The 
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SELECT and GROUP-BY lists of the query blocks in the derived 
QB set are merged to construct its SELECT and GROUP-BY lists. 
The columns in the filter predicates of the query blocks in the 
derived QB sets are added to the GROUP-BY and SELECT lists 
to enable materialized views rewrite of query blocks with similar 

signatures. The joining columns used in join predicates with tables 
not included in the materialized view are also added to its 
GROUP-BY and SELECT lists.  

This materialized view definition can rewrite all query blocks in 
the derived QB set; such query blocks are considered eligible for 
the materialized view, and vice versa. In most of the following 
examples, materialized view rewrite would involve re-
computation of grouping and aggregation. 

3.2.1 Equivalence 

If the join sets of two items are found to be equivalent, one of 
them is removed and the QB set of the retained join set is 

augmented by the QB set of the removed item indicating that the 
join set of the retained item can be used to rewrite all the query 
blocks in its QB set. 

              
 

 

 

 

 

 

 
 

Figure 2. JS-Equivalence 

Consider two query blocks Q1 and Q2, whose join sets are 

equivalent; and therefore, one of the join sets can be discarded.     

SELECT F.n, F.g, SUM(F.m1), COUNT(F.m3), D2.z, D7.y          
FROM  F, D7, D2 
WHERE F.f7 = D7.k and F.f2 = D2.k and  
               F.x IN (4,6) and D7.c =  25  
GROUP BY F.n, F.g, D7.y, D2.z; 
[{F ─ D7, F ─ D2}, {Q1}] 

SELECT F.n, MAX(F.m2), D7.p, D2.y 
FROM F, D7, D2 
WHERE F.f7 = D7.k and F.f2 = D2.k and  
               F.x = 9 and D7.c =  5  
GROUP BY F.n, D7.p, D2.y; 
[{F ─ D7, F ─ D2}, {Q2}] 

[{F ─ D7, F ─  D2}, {Q1, Q2}] 
Create materialized view MV0 AS 
SELECT  F.n, F.g, D7.y, D2.z, D7.p, D2.y, F.x, D7.c, 
                MAX(F.m2), SUM(F.m1), COUNT(F.m3) 
FROM F, D7, D2 
WHERE F.f7 = D7.k and F.f2 = D2.k and  
               F.x IN (4, 6, 9) and D7.c IN (5, 25)  
GROUP BY F.n, F.g, D7.y, D2.z, D7.p, D2.y, F.x, D7.c;          

In materialized view MV0, merging of SELECT and GROUP-BY 
lists have taken place. For the purpose of illustration only, we also 

show, in the definition of MV0, a unification of filter predicates 
that originate from Q1 and Q2. 

3.2.2 Subset 

 

 

 

 

 

Figure 3. JS-Subset 

Consider two query blocks Q3 and Q4. The join set of Q4 is a 

subset of that of Q3.  

SELECT F.x, D1.y, D2.z, SUM(F.m1) 
FROM  F, D1, D2, B2 
WHERE  F.f1 = D1.k and F.f2 = D2.k and D2.c = B2.r and 
                F.y = 5 and D1.c =  9 and D2.s < 25  
GROUP BY F.x, D1.y, D2.z; 
[{F ─ D1, F ─ D2, D2 ─ B2}, {Q3}]  

SELECT  F.x, D1.h, COUNT(F.m2),  
FROM  F, D1 
WHERE F.f1 = D1.k and F.y = 7 and D1.g = 7 and D1.c = 9 
GROUP BY F.x, D1.h; 
[{F ─ D1}, {Q4}] 

[{F ─ D1}, {Q3, Q4}] 
Create materialized view MV1 AS 
SELECT  F.x, D1.y, D1.h, D1.c, D1.g, F.y, 
                 F.f2, COUNT(F.m2) , SUM(F.m1) 
FROM F, D1 
WHERE F.f1 = D1.k 
GROUP BY F.x, F.y, D1.y, D1.h, D1.c, D1.g, F.f2;        

In MV1, merging of the SELECT and GROUP-BY have taken 
place. The SELECT and GROUP-BY have been augmented with 
the columns in filter predicates and with F.f2, the column used in 

join with D2. This enables the rewrites with MV1 of Q4 without 
requiring any join and of Q3 by joining MV1 with D2. 

3.2.3 Intersection 

 

 

 

 

 

 

 

 

 

 

Figure 4. JS-Intersection 

Figure 4. JS-Intersect 

The function JS-Intersection in Figure 4 generates a new join set 
from the given join sets. In order to maximize computations 

Function JS-Subset (X, Y) 
{ 
   // Identify join set based on subset. 

   If (X.joinset ⊂ Y.joinset) 
      X.qbset = X.qbset ⋃ Y.qbset;  
} 
 

Function JS-Equivalence (JQLST) 
{ 
   // Prune join sets based on equivalence 
   For each item X in JQLST do 
        For each item Y in JQLST do 

            If (X != Y ∧ X.joinset = Y.joinset)  
            { 
                X.qbset = X.qbset ⋃ Y.qbset;  
                Remove Y from JQLST; 
           } 
} 

 

Function JS-Intersection (JQLST) 
{ 
    // Generate a new join set based on intersection. 
    For each item X in JQLST do 
        For each item Y in JQLST do 
           If (X != Y ∧ Y.joinset ⊈ X.joinset ∧  
               X.joinset ⊈ Y.joinset ∧  
               X.joinset ⋂ Y.joinset ≠ ∅) 
           { 
              Z.joinset = X.joinset ⋂ Y.joinset; 
              Z.qbset = X.qbset ⋃ Y.qbset;  
              Insert Z into NLST; 
           } 
   Append NLST to JQLST; 
} 
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contained in derived join sets, we do not generate intersection 
closure (i.e., derivation of intersection join sets from other 
intersection join sets). Consider queries Q5 and Q6, whose join 
sets overlap, and therefore intersection can be applied to them.     

SELECT  F.n, MIN(F.m1), D7.y, D2.z 
FROM  F, D7, D2 
WHERE  F.f7 = D7.k and F.f2 = D2.k and 
                F.x IN (4,6) and D7.c =  25  
GROUP BY  F.n, D7.y, D2.z; 
[{F ─ D7, F ─ D2}, {Q5}] 

SELECT F.y, SUM(F.m2), D7.h, D3.x 
FROM F, D7, D3 
WHERE F.f7 = D7.k and F.f3 = D3.k and D7.y = 5 
               F.x = 11 and D3.w > 15 
GROUP BY F.y, D7.h, D3.x; 
[{F ─ D7, F ─  D3}, {Q6}] 

[{F ─ D7}, {Q5, Q6}] 
Create materialized view MV2 AS 
SELECT F.n, F.y, D7.y, D7.h, D7.c, F.x, F.f2, F.f3, 
                MIN(F.m1) mn, SUM(F.m2) sm 
FROM F, D7 
WHERE F.f7 = D7.k 
GROUP BY F.n, F.y, F.x, D7.y, D7.h, D7.c, F.f2, F.f3; 

Here a new join set is generated. In MV2, merging of SELECT 

and GROUP-BY lists have taken place; the SELECT and 
GROUP-BY lists have also been augmented with the joining 
columns of tables not included in the materialized view MV2. 
Note that the rewrite of Q5 will require a join with D2 using F.f2 
and the rewrite of Q6 will require a join with D3 using F.f3. In the 
following, we show query Q6, which has been rewritten with the 
materialized view MV2. 

SELECT M.y, M.h, D3.x, SUM(M.sm) sm 
FROM  MV2  M,  D3 
WHERE  M.f3 = D3.k and M.x = 11 and D3.w > 15 and  
                M.y = 5 
GROUP BY M.y, M.h, D3.x; 

3.2.4 Superset 
Figure 5 presents the derivation of a superset join set. Superset 
join sets can be derived only if the invariance property is satisfied 
for relevant joins. The condition in Figures 5 checks if the join set 

of Y is invariant in join with all tables in the difference of join sets 
of X and Y. 

Consider two query blocks Q7 and Q8. The join set of Q7 is a 
subset of that of Q8; the superset operation can be applied to 
them, if the relevant join is invariant.     

SELECT F.n, SUM(F.m1), D1.m 
FROM F, D1 
WHERE F.f1 = D1.k and F.x = 6 and D1.y = 25  
GROUP BY F.n, D1.m; 
[{F ─ D1}, {Q7}] 

SELECT F.y, MIN(F.m2), D1.h, D5.z 
FROM F, D1, D5 
WHERE F.f1 = D1.k and F.fk5 = D5.pk and  
               F.x = 11 and D1.y = 33 and D5.g > 6  
GROUP BY F.y, D1.h, D5.z; 
[{F ─ D1, F ─ D5}, {Q8}] 

[{F ─ D1, F ─ D5}, {Q7, Q8}] 
Create materialized view MV3 AS 
SELECT  F.n F.y, D1.m, D1.h, D5.z, D1.y,  
                 D5.g, F.x, MIN(F.m2), SUM(F.m1) 
FROM F, D1, D5 
WHERE F.f1 = D1.k and F.fk5 = D5.pk 
GROUP BY F.n, F.y, F.x, D1.y, D1.m, D1.h, D5.z, D5.g; 

 

 

 

 

 

 

 

 

 
 

Figure 5. JS-Superset 

In Q8, F.fk5 must be a non-null foreign key (F.K.) that references 

primary key (P.K.) D5.pk, which indicates that the join between F 
and D5 is invariant (Section 3.1). Augmentation of SELECT and 
GROUP-BY with joining columns is not required. No join is 
needed to rewrite either Q7 or Q8 with materialized view MV3.   

3.2.5 Union 

Figure 6 presents the derivation of a new join set based on the 
union operation, which applies to overlapping join sets X and Y. 
The invariance condition is checked for all join edges that are 

either in X or Y but not in both. A union join set can be derived 
only if the invariance property is satisfied for relevant joins.  

For the sake of brevity, in Figure 6 we do not consider the case 
where two join sets have only a single (fact) table in common and 
no common join edges. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. JS-Union 
 

Function JS-Superset (X, Y) 
{ 
   // Identify invariance-based superset join set. 

    If (Y.joinset ⊂ X.joinset ∧  
        ∀ T ∈ Tables (X.joinset – Y.joinset), 
        Invariant (Y.joinset, T)) 
    { 

         X.qbset = X.qbset ⋃ Y.qbset; 
         Return True; 
    } 
    Else 
         Return False; 
} 

 
 

Function JS-Union (JQLST) 
{ 
   // Generate invariance-based union join sets. 
   For each item X in JQLST do 
       For each item Y in JQLST do 
          If (X != Y ∧ Y.joinset ⊈ X.joinset ∧  
              X.joinset ⊈ Y.joinset ∧  
              X.joinset ⋂ Y.joinset ≠ ∅ ∧ 
              ∀ T ∈ Tables ((X.joinset ⋃ Y.joinset)  –  
                                      (X.joinset ⋂ Y.joinset)), 
              Invariant (X.joinset ⋂ Y.joinset, T)) 
          { 

               Z.joinset = X.joinset ⋃ Y.joinset; 
               Z.qbset = X.qbset ⋃ Y.qbset;  
               Insert Z into JQLST; 
          }    
} 
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A materialized view produced by the successive application of the 
union operation may ultimately be not very useful, as it tends to 
have a large group-by list and thus high cardinality. Therefore, the 
operand (parent) join sets are also retained by the ECSE algorithm 
in JS-Union (Figure 6) along with resulting (child) join sets. Both 

parent and child join sets compete in the final selection of 
recommended materialized views (Section 3.5). 

Consider two query blocks Q9 and Q10, whose join sets overlap; 
the union operation can be applied, if the relevant joins are 
invariant.  

SELECT F.n, D1.m, D5.x, SUM(F.m1),  
FROM F, D1, D5 
WHERE F.fk1 = D1.pk and F.fk5 = D5.pk and F.x = 6      
               and D1.z =  25 
GROUP BY F.n, D5.x, D1.m; 
[{F ─ D1, F ─ D5}, {Q9}] 

SELECT  F.y, D2.w, D5.z, AVG(F.m2) 
FROM  F, D2, D5 
WHERE  F.fk2 = D2.pk and F.x = 12 and  D2.g > 7 and 
                F.fk5 = D5.pk 
GROUP BY F.y,  D5.z, D2.w; 
[{F ─ D2, F ─ D5}, {Q10}] 

[{F ─ D1, F ─ D2, F ─ D5}, {Q9, Q10}] 
Create materialized view MV4 AS 
SELECT  F.n, F.y, D1.m, D2.w, D1.z, D2.g, F.x, D5.x, D5.z, 
                SUM(F.m2), COUNT(F.m2), SUM(F.m1) 
FROM F, D1, D2 
WHERE F.fk1 = D1.pk and F.fk2 = D2.pk and F.fk5 = D5.pk 
GROUP BY F.n, F.y, F.x, D1.m, D2.w, D1.z, D2.g, D5.x,  
                    D5.z; 

In  Q9, F.fk1 must be a non-null foreign key (F.K.) that references 

primary key (P.K.) D1.pk. In Q10, F.fk2 must be a non-null F.K. 
that references P.K. D2.pk. A new join set is generated here. The 
filter predicates on the tables D1 and D2 cannot be included in the 
definition of materialized view MV4. Augmentation of SELECT 
and GROUP-BY lists with joining columns is not required, since 
no join is needed to rewrite either Q9 or Q10 with MV4. The 
rewrite module will validate the invariance property before query 
rewrite with MV4. 

3.3 Heuristics for Pruning Join Sets 
In this section, we describe five heuristics for pruning join sets 
based on (A) join set reduction, (B) join set size, (C) QB set size, 

(D) maximal join and QB sets, and (E) the cardinality ratio of a 
candidate materialized view and the fact table it references. 

These heuristics use four threshold values α, β, λ, and ρ, which are 
configurable. Precise determination of the threshold values 
depends upon many factors, such as the count and complexity of 
queries in the workload, cardinalities of fact tables, storage 
requirement, etc. Automated derivation of these threshold values 

for a given workload requires further research. 

3.3.1 Heuristic A: Join Set Reduction 

To prevent an explosion of materialized view size, it may become 
necessary to reduce a join set by removing a dimension or branch 
table that causes a many-to-many join. 

We identify a many-to-many equi-join by examining its join 
predicates to determine if neither of its operand columns has a 
unique constraint/index or number of distinct values (NDVs) close 
to the cardinality of the table. A join set is reduced by removing 
the table that causes a many-to-many join; all branch tables of the 

removed (dimension or branch) table are also recursively removed 
from the join set. 

3.3.2 Heuristic B: Join Set Size 

A join set is pruned, if the number of tables it contains is below a 

given threshold value α, which may be computed as half of the 
average number of tables in all query blocks in all queries of a 
given workload. In our experiments (Section 6), we set the value 

of α to 2. 

This heuristic ensures that only those materialized views are 
recommended which have a certain number of join computations. 

3.3.3 Heuristic C: QB Set Size 

A join set is pruned, if the cardinality of its QB set is below a 
threshold value, β (e.g., 2). This ensures that only those 
materialized views are recommended which can rewrite at least β 
query blocks. In our experiments (Section 6), the value of β is set 

to 2; that is, we always prune a join set if it can rewrite only a 
single query block.  

3.3.4 Heuristic D: Maximal Join and QB Sets 

Prune a join set Jk, if there exists a maximal join set Ji. Ji is 
considered maximal in relation to Jk, if Jk is a subset (not 
necessarily proper) of Ji and Jk’s QB set is a subset (not 
necessarily proper) of Ji’s QB set. 

For each item X in JQLST do 
    For each item Y in JQLST do 
        If (X != Y ∧ Y.joinset ⊆ X.joinset ∧ Y.qbset ⊆ X.qbset) 
           Remove Y; 

Here, a join set is pruned, if there exists another join set that 
contains larger pre-computations and it can rewrite more query 
blocks. 

3.3.5 Heuristic E: Cardinality Ratio 

In this scheme, every join set – or the materialized view based on 
the join set – contains one fact table and one or more dimension 
and branch tables. Experience has shown that in most cases if the 
cardinality of a materialized view is not significantly smaller than 
that of the fact table, then query rewrite based on the materialized 

view does not prove to be beneficial. Since in our scheme, 
materialized view definitions rarely contain any filter predicates, 
pruning out materialized view candidates based on their 
cardinality is crucial. 

We define cardinality ratio as the number of rows of the 
materialized view’s fact table divided by the number of rows of 
the materialized view. We prune a materialized view, if its 
cardinality ratio is smaller than a given threshold value, λ (e.g., 3).  

The accurate cardinalities of fact tables are found in the database 

dictionary tables. We do not use optimizer estimates of 
materialized view’s cardinalities, as cardinality estimation error in 
query optimizers remains a pervasive and persistent problem [16, 
23, 24]. Instead, we issue a query based on the materialized view 
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definition using a sample block clause to estimate the number of 
rows of a materialized view; alternative methods include 
approximate count distinct and the method described in [9]. For a 
given percentage, ρ, of block sampling, the linearly scaled 
cardinality is obtained by multiplying the number of rows returned 

by the query with 100/ρ. Block sampling with a small percentage 
gives a reasonably accurate estimate, since these materialized 
view definitions contain no filter predicates and all joins are 
many-to-one (Section 3.3.1). 

Consider, for example, the following materialized view definition 
for the TPC-DS schema. 

Create materialized view MV10 AS  
SELECT hd_vehicle_count, hd_dep_count, 
               s_store_name, t_minute, t_hour, 
               count (*), sum (ss_ext_sales_price) 
FROM store_sales, household_demographics, store,  
            time_dim 
WHERE hd_demo_sk = ss_hdemo_sk and  
               s_store_sk = ss_store_sk and  
               t_time_sk = ss_sold_time_sk  

 GROUP BY hd_vehicle_count, hd_dep_count, 
                t_minute, t_hour; 

The following shows a query that returns the cardinality of the 
materialized view MV10 using 1% block sampling of the fact 
table, stores_sales. 

SELECT count (*)  
FROM (SELECT 1 
             FROM  store_sales SAMPLE BLOCK (1),  
                          household_demographics, store, time_dim 
             WHERE hd_demo_sk = ss_hdemo_sk and  
                            s_store_sk = ss_store_sk and  
                            t_time_sk = ss_sold_time_sk  

               GROUP BY hd_vehicle_count, hd_dep_count, 
                            s_store_name, t_minute, t_hour); 

The estimation of cardinalities of candidate materialized views 
serves a dual purpose. First, it is used for pruning out unpromising 
materialized views. Second, the sampled cardinalities are injected 
into the database dictionary tables replacing optimizer estimated 
cardinalities; this enables the optimizer cost model to use more 
accurate cardinalities thereby significantly improving the count 
and quality of recommended materialized views (Section 3.5). 

3.4 The Extended Covering Sub-Expression 

(ECSE) Algorithm 
We describe the ECSE algorithm in Figure 7. As can be seen, the 
algorithm has in-built heuristics to weed out unpromising MV 

candidates. 

The input to automated materialized view candidate generation is 
the SQL Tuning Set [15], which is an Oracle tool for storing, 
managing, and tuning workloads. A SQL Tuning Set persistently 

stores the texts of SQL statements, their SQL-IDs, execution 
plans, optimizer estimated costs, execution statistics (e.g., CPU 
time, elapsed time, buffer-gets, rows processed), execution 
contexts, etc. 

As described in Section 3.1, we analyze the join graph of each 
query block in the given workload and classify the join graphs 
based on their fact tables. The ECSE algorithm is invoked for each 

class of join sets. The input to this algorithm is a list of items 
containing join sets and QB sets. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Algorithm ECSE 

3.4.1 ECSE Example 

We present a simple example that demonstrates the workings of 
the ECSE algorithm. Consider a workload of 8 single-block SQL 
statements: Q1, Q2, Q3, Q4, Q5, Q6, Q7, and Q8. In this example, 
there are no referential integrity constraints and thus no invariant 
joins. As every query block here references a single fact table, the 
partitioning of join sets is not required at Step 2 below. 

1. Generate join graphs and identify fact, dimension, and branch 
tables  

2. Divide join graphs into classes (Section 3.1) based on fact 
table: {Q2, Q3, Q5, Q6, Q8}, which references fact table F1, 
and {Q1, Q4, Q7}, which references fact table F3. 

3. Start with the initial JQLST for the class containing fact table 

F1. 

JQLST: ([{F1 – D4}, {Q2}],  

               [{F1 – D4, F1 – D3}, {Q3}],  

               [{F1 – D1, F1 – D5, F1 – D6}, {Q5}],  

               [{F1 – D1, F1 – D6, F1 – D7}, {Q6}],  

               [{F1 – D1, F1 – D5, F1 – D6}, {Q8}]) 

3.1 Apply JS-Equivalence. 

   [{F1 – D1, F1 – D5, F1 – D6}, {Q5, Q8}] ←  

   [{F1 – D1, F1 – D5, F1 – D6}, {Q5}],  

   [{F1 – D1, F1 – D5, F1 – D6}, {Q8}] 

  JQLST: ([{F1 – D4}, {Q2}],  

Algorithm ECSE (JQLST) 
{ 
    // Prune join sets based on equivalence  

    JS-Equivalence (JQLST); 

    // Generate intersection join sets.  

    JS-Intersection (JQLST); 

    // Generate invariance-based union join sets. 

    JS-Union(JQLST); 

    // Prune join sets based on equivalence. 

    JS-Equivalence (JQLST); 

    For each item X in JQLST do 

        For each item Y in JQLST do 

        { 
            // Identify invariance-based superset. 

            Valid := JS-Superset (X, Y)); 

            // Identify join sets based on subset. 

            If (! Valid)  
                JS-Subset (X, Y); 
        } 

    // Apply the heuristics in the given order. 

    Prune the join sets based on heuristics A, B, C, 

    D, and E; 

    Form candidate materialized view definitions   

    based on JQLST; 

 

 

 JQLST; 

} 
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                 [{F1 – D4, F1 – D3}, {Q3}],  

                 [{F1 – D1, F1 – D5, F1 – D6}, {Q5, Q8}],  

                 [{F1 – D1, F1 – D6, F1 – D7}, {Q6}]) 

3.2 Apply JS-Intersection.  

      [{F1 – D1, F1 – D6}, {Q5, Q6, Q8}] ←  
       [{F1 – D1, F1 – D5, F1 – D6}, {Q5, Q8}],  
       [{F1 – D1, F1 – D6, F1 – D7}, {Q6}]  

JQLST: ([{F1 – D4}, {Q2}],  

               [{F1 – D4, F1 – D3}, {Q3}], 

               [{F1 – D1, F1 – D5, F1 – D6}, {Q5, Q8}], 

               [{F1 – D1, F1 – D6, F1 – D7}, {Q6}], 

               [{F1 – D1, F1 – D6}, {Q5, Q6, Q8}]) 

3.3 JS-Equivalence, JS-Superset, and JS-Union are not 

applicable here. 

3.4 Apply JS-Subset. 

 [{F1 – D4}, {Q2, Q3}] ←  

 [{F1 – D4}, {Q2}],  
 [{F1 – D4, F1 – D3}, {Q3}]  

      JQLST:  ([{F1 – D4}, {Q2, Q3}],  
               [{F1 – D4, F1 – D3}, {Q3}], 

               [{F1 – D1, F1 – D5, F1–D6}, {Q5, Q8}],  
               [{F1 – D1, F1 – D6, F1 – D7}, {Q6}], 
               [{F1 – D1, F1 – D6}, {Q5, Q6, Q8}]) 

3.5 Apply heuristics A, B, C, D, and E, where α = 2, β = 2, λ = 

2 and ρ = 10. 

 JQLST:  ([{F1 – D1, F1 – D6}, {Q5, Q6, Q8}],  
                 [{F1 – D1, F1 – D5, F1 – D6}, {Q5, Q8}], 

                 [{F1 – D4}, {Q2, Q3}]) 

Note that for the class containing fact table F3 steps similar to the 
above take place.  

3.5 Cost-Based Recommendation 
In this section, we first discuss some basic concepts for the 
algorithm used for the cost-based selection and recommendation 
of materialized views. 

Figure 8 shows an example of 6 queries and 5 materialized view 
candidates. A query here is followed by the query blocks it 
contains and the set of materialized views that can individually 
rewrite the query block. 
     

Q1.   QB11 {MV1, MV2}, QB12  {MV3} 
Q2.   QB2   {MV2, MV4} 
Q3.   QB3   {MV5, MV4} 
Q4.   QB4   {MV3, MV5} 
Q5.   QB5   {MV2, MV4} 
Q6.   QB6   {MV5, MV1} 

Figure 8. Eligible Queries and MVs 
 

The relationships between candidate materialized views and 

eligible query blocks can be many-to-many; i.e., a materialized 
view can rewrite many query blocks and a query block can be 
rewritten individually with multiple materialized views. Several 
materialized view candidates can simultaneously rewrite a multi-
block or snowstorm query. These materialized view candidates are 
collected together to form a unique set of materialized views 
called MV-group. Figure 9 shows the enumeration of MV-groups 
for the example in Figure 8. It represents many-to-many 

relationships between MV-groups and eligible queries. All 
materialized views in an MV-group simultaneously rewrite the 
query. 

The estimated benefit of an MV-group for an eligible query is 
defined as the difference between the optimizer estimated costs of 

the query without rewrite and with rewrite. The cumulative 
estimated benefit of an MV-group is simply a summation over the 
estimated benefits for all its eligible queries; this is the 
performance metric used for the GGR algorithm below. 

[MV1, MV3]  ↔   {Q1} 

[MV2, MV3]  ↔   {Q1} 

[MV1]           ↔   {Q1, Q6} 

[MV2]           ↔   {Q1, Q2, Q5} 

[MV3]           ↔   {Q1, Q4} 

[MV4]           ↔   {Q2, Q3, Q5} 

[MV5]           ↔   {Q3, Q4, Q6} 

Figure 9. MV-Groups and Queries 

The reduction factor of a materialized view MVi is defined as the 
sum of cardinalities of all tables referenced in MVi divided by the 
cardinality of MVi. 

The global greedy recommendation (GGR) algorithm, shown in 
Figure 10, takes as an input a workload (a SQL Tuning Set), a set 

of candidate materialized view groups M and their eligible query 

blocks (Section 3.4), and a storage space constraint C. The 

objective of the GGR algorithm is to select a set of materialized 

view groups R (⊆ M) such that R maximizes the cumulative 

estimated benefit under the storage space constraint C. 

Although the GGR algorithm provides an efficient and effective 
solution, it does not guarantee a globally optimal solution [14], 
since the ECSE algorithm does not generate all possible 
materialized view candidates (Section 3.4) and the GGR algorithm 
uses heuristics to enumerate MV groups. 

Currently, the GGR algorithm considers only one type of 
constraint – the size of available storage space – but, in the future, 
it can be extended to also include materialized view maintenance 
cost (Section 5). 

Algorithm GGR { 

1. For each candidate materialized view definition, parse its text 
and create a virtual materialized view with only statistics and 
meta-data by invoking optimizer cost functions on the parsed 
structure to generate estimated statistics. 

2. Modify the statistics of virtual materialized views with 
sampling-based cardinalities (Section 3.3.5).  

3. For each query block QBi of the workload queries do: 

3.1. Sort all eligible materialized views of QBi in the 
descending order of their reduction factors. 

3.2. Retain only the top κ (e.g., 5) materialized views for QBi. 

4. Enumerate M, the set of MV-groups, for all workload queries 
using a greedy technique. 

5. For each MV-group G in M do:  

5.1. Rewrite all eligible workload queries with G (without 
considering other MV-groups) and compute its 
cumulative estimated benefit. 

5.2. Discard G, if its cumulative estimated benefit is not 
positive. 
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6. For each query Qj in the workload do: 

6.1. From all the MV-groups eligible for Qj, pick the MV-
group that has the highest cumulative estimated benefit 

and mark it.  

7. Discard MV-groups that have not been marked at Step 6.1 for 
any query.  

8. Let C be the specified storage space constraint. Sort all the 
MV-groups in the descending order of their (cumulative 
estimated benefit / estimated storage size).  

9. T := 0. For each materialized view group G, in the order 

generated at Step 8, do: 

9.1. S :=  Estimated storage size of G; 

9.2. If  (S + T) > C, then discard G; else, T := T + S; 

10. Recommend R, the set of all remaining candidate materialized 
views. } 

Figure 10. Algorithm GGR 

The optimizer rewrite strategy used in recommending materialized 
views at Step 5.1 in the GGR algorithm (Figure 10) is different 
from the optimizer rewrite strategy applied in a user environment. 
The objective of the former is to recommend the right set of 
materialized view candidates for multiple workload queries, 
whereas the objective of the latter is to optimize a single query at 
a time given one or more materialized views. The latter strategy is 

used in Section 4 for verification. 

At Step 3.2 in Figure 10, the heuristic simply selects the best κ 

materialized views for that query block without affecting any 
eligible materialized view of other query blocks.   

At Step 7 in Figure 10, the reason for discarding an MV-group 
that is not the best for any of its eligible queries is that there exist 
other MV-groups which are eligible for these queries and have 
higher cumulative estimated benefits than that of the MV-group 
being discarded. 

4. MATERIALIZED VIEW 

VERIFICATION  
At the final step, we verify the performance of recommended 
materialized views using an Oracle tool called SQL Performance 
Analyzer [15], which accepts a SQL workload and allows us to 
measure the impact of recommended materialized views on the 
execution of workload queries using various performance metrics. 

For the verification phase, the optimizer rewrite module decides in 
a cost-based manner which recommended materialized view(s) 

will be the most beneficial for the rewrite of each workload query.  

A stratified sample of the workload queries that can be rewritten 
with the recommended materialized views is used to verify their 
performance. Stratification partitions a set of eligible queries into 
non-empty disjoint strata such that every query appears in exactly 
one stratum. Here the criterion used for forming a stratum is that 
all queries in a stratum can be rewritten by the same set of 
recommended materialized views. The idea behind stratification is 

that it puts queries with structural similarity into a single stratum 
and thus provides a more representative sample. A random 
selection is used to choose a certain percentage of queries from 
each stratum; this forms a sample that is used for verification. 

Figure 11 shows an example of a workload of 19 queries Q1-Q19, 
for which 6 strata, S1-S6, are formed based on 5 recommended 

materialized views, MV1-MV5. Queries Q16 and Q18 do not 
appear in Figure 11, since they are not eligible for cost-based 
materialized view rewrite. Other subsets – e.g., {MV1, MV5} – 
belonging to the power set of the recommended materialized view 
set are not shown, since no queries are rewritten by the optimizer 

using those subsets. Each stratum below shows a set of queries 
and their eligible materialized view(s). The stratum S3, for 
example, contains queries Q3, Q8, and Q12, which are rewritten 
using materialized views MV1 and MV2 together. Unlike the 
groupings in Figure 9, stratification, shown in Figure 11, puts an 
eligible query in exactly one stratum. 

S1.   {Q2, Q9, Q11}         →     {MV1} 
S2.   {Q1, Q4, Q5, Q6}    →     {MV2}                
S3.   {Q3, Q8, Q12}         →     {MV1, MV2}       
S4.   {Q7, Q10}                →     {MV3}                 
S5.   {Q14, Q15, Q17}     →     {MV4}   
S6.   {Q13, Q19}               →     {MV4, MV5} 

Figure 11. Stratification of Queries 

A percentage improvement (or regression) of a query Qi with 

materialized view rewrite is called execution benefit (EB) and is 

given by the following formula, where MVR and PM refer to 
materialized view rewrite and performance metric (e.g., elapsed 
time, CPU time, buffer-gets, etc.) respectively. 

EB = [PM(Qi) – PM(MVR(Qi))] x 100 / PM(Qi).  

The baseline queries against which execution benefit is measured 
may involve pre-existing access structures. 

If multiple MVs are used to rewrite Qi, then the execution benefit 

of Qi is divided equally by the count of materialized views used in 

Qi. This provides a rough estimate of partial impact each 

materialized view has on execution benefit. 

The materialized views are first created with data in an invisible 
mode such that they are not accessible to the user. Once a 
materialized view is created for verification, the optimizer collects 
real statistics for it. The sampled queries are executed with 
materialized view rewrite to determine its performance; the non-
rewritten performance numbers found in the given SQL Tuning 

Set are used. 

A materialized view is considered to have passed verification, if 
its average execution benefit is more than a certain percentage. 
The materialized views that pass verification are made visible to 
the user; this step is called publication of materialized views.  

The materialized views that do not pass verification are registered 
in a feedback table before they are discarded. Subsequent runs of 
the selection module  will proactively discard recommended 

materialized views that have a match in the feedback table. 

5. MATERALIZED VIEW 

MAINTENANCE 

In this section, we briefly describe the maintenance [14] of 
automated materialized views (auto-MVs). This topic deserves a 
paper of its own. 

5.1 Tracking of DML and MV Usage 
Oracle provides Object Activity Tracking Subsystem (OATS) that 
tracks data manipulation language (DML) operations, partition 
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maintenance operations, materialized view query rewrites, and 
materialized view refreshes.  

Tracking, which is cumulative, is done for every 15-minute 
interval. For each table, OATS tracks the number of inserts, 
deletes, updates as well as the number of rows affected. For each 

materialized view, it tracks the number of query rewrites, type of 
rewrites (e.g., full, partial, etc.), method of refresh (e.g., 
incremental, complete, etc.), refresh times, and the number of 
missed rewrites due to its staleness. 

5.2 Materialized View Refresh 
Auto-MV refresh is performed by a background job that executes 
periodically every 15 minutes for a duration of one hour with pre-
defined resource limits. 

Auto-MV maintenance uses a neural-net-based machine learning 
algorithm [21] available in Oracle data mining package. The goal 

is to schedule the refresh of all stale auto-MVs so that the number 
of future query rewrites is maximized. For every 24-hour period, 
we build a new neural net model to predict future DML operations 
and future auto-MV usage. The data – number of inserted, deleted, 
and updated rows, and the number of auto-MV rewrites – for 
building the neural net model comes from OATS. Once a model is 
built, it is validated using a five-fold cross-validation technique 
[7], which divides the data from OATS into five equal chunks. To 
ensure the accuracy of the model, the neural net algorithm is run 

five times, each time using a different chunk as test set and the 
remaining four chunks as training set. 

The model, if it passes cross-validation for an auto-MV, provides 
its expected rewrite count and its next quiet window (i.e., the time 
period where the defining tables of the auto-MV’s are not 
modified and thus it can be used for rewrite). For each auto-MV, 
we determine its estimated refresh time using a generalized linear 
regression algorithm [5], whose input includes the size of the 

auto-MV, method of its refresh, affected number of rows in its 
defining tables, and the average CPU time of its previous 
refreshes. The stale auto-MVs are scheduled for refresh in the 
descending order of their effective net impact, which is computed 
from an auto-MV’s cumulative expected rewrite count, quiet 
window, estimated refresh time, and execution benefit supplied by 
the verification module (Section 4).  

However, if the model fails cross-validation, we use a simpler 

algorithm called change events. It first excludes those auto-MVs 
whose defining tables have undergone modifications within the 
last four time-intervals thereby avoiding the auto-MVs that are 
likely to become stale in the near future. The remaining stale auto-
MVs are then scheduled for refresh in the descending order of 
their execution benefit. 

6. EXPERIMENTS  
An implementation of the system of automated generation of 
materialized views was used to perform extensive experiments on 
several customer workloads. In this section, we provide a 
summary of these experiments for three customer workloads. The 

experiments were done on an Exadata X2-8 machine with 2 
compute nodes, each with 8x8-core Intel X7560 processors. Our 
performance reports show results in terms of three performance 
metrics buffer-gets, CPU time, and elapsed time, but we show the 
results of our experiments only in elapsed times.  

6.1 Customer Workload-P 
A customer workload, referred to here as Workload-P, has a star 
schema and contains 91 queries. These queries reference over 200 
base tables. The number of tables in the queries ranges from 1 to 
5. Seven of these tables are fact tables; the 3 largest fact tables 
contain about 2.4 B rows. 

In one experiment with Workload-P, we used the following 

threshold values: α = 2, β = 2, and λ = 2. There were only 2 
recommended materialized views, which contained 2 and 3 tables. 
These materialized views rewrote 5 queries, whose elapsed times 
showed an average improvement of over 250%. The reasons for 
the small numbers of recommendations are manifold: the query 
blocks have very few tables in common, as 91 queries reference 
over 200 tables; 26 of these queries contain only a single table; 
and our heuristics require that join sets must contain at least 2 

tables (α = 2) and the final derived join sets must rewrite at least 2 

query blocks (β = 2). If the restrictions on α and β were relaxed 
by setting them to 1, then many materialized views could be 
recommended.   

6.2 Customer Workload-G 
One customer workload, referred to here as Workload-G, has a 
snowstorm [2] schema and contains about 650 queries, which 

were used for this experiment. These queries reference over 30 
base tables. The number of tables in the queries ranges from 1 to 
19; four of these tables are fact tables. The average number of 
tables per query is 11. The largest fact table contains about 791 M 
rows.  

In an experiment with Workload-G, we used the following 

threshold values: α = 2, β = 2, λ = 2, and ρ = 0.1. There were 29 
recommended materialized views. The verification module 
discarded 12 materialized views, because the benefits of 7 

materialized views were below the required percentage and 5 
materialized views were not selected by the optimizer to rewrite 
any queries. It published 17 materialized views that rewrote a total 
of 83 queries. 

The scatter graph in Figure 12 compares the elapsed times of these 
queries before and after rewrite with the published materialized 
views. In the graph, every data point under the diagonal represents 
a query with improvement and a data point that appears above the 

diagonal represents a query with regression. 

 

Figure 12. Elapsed Times for Workload-G 
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The 17 published materialized views, which rewrote a total of 83 
queries, provided an average performance improvement of more 
than 440% in terms of elapsed time. 

6.3 Customer Workload-H 
Another customer workload, referred to here as Workload-H, has 
a snowflake schema and contains 64 queries and 12 base tables. 
The average number of tables per query is 7. There is only one 

fact table, which contains 3.6 B rows.  

In experiments with Workload-H, all 64 queries were selected. 

We used the following threshold values: α = 2, β = 2, λ = 2, and ρ 
(the block sampling percentage) was varied from 1 to 25. The 
results of recommendation and verification modules are 
summarized in Table 1. 

Since we inject sampled materialized view cardinalities into the 
dictionary tables, which are used by the optimizer cost model 
(Section 3.3.5), we observed increasingly better materialized view 
selection with larger sampling percentage, although the primary 

purpose of sampled cardinalities is to prune out unpromising 
materialized views. 

Table 1. Impact of Block Sampling Percentage 

Sampling 

% (ρ) 

Count of 

Recommended 

MVs 

Count of 

Published 

MVs 

Count of 

Rewritten 

Queries 

1 4 4 15 

2 4 4 15 

5 4 4 15 

15 5 5 21 

20 6 6 23 

25 8 7 32 
    

The scatter graph in Figure 13 compares the elapsed times of 32 
queries with ρ = 25 before and after rewrite with the published 
materialized views. 

The 7 materialized views, which rewrote a total of 32 queries, 
provided a performance improvement of more than 400% in terms 
of elapsed time. 

 

Figure 13. Elapsed Times for Workload-H 

7. RELATED WORK  
The literature on materialized view selection uses many ideas 
developed by multi-query optimization and common sub-
expression selection research [17, 18, 19, 20, 22, 25, 27, 29], as 
they share similar strategies, though not necessarily the same 
goals. The problem of materialized view selection is much more 
general than that of sub-expression selection, as the former can 

consider computations that do not appear in the workload queries; 
this increases the space of possible solutions and complicates 
query containment and materialized view rewrites. 

In [19], the authors use an ILP-based formulation and focus on the 

problem of sub-expression selection for large workloads by 
selecting common parts of logical plans of queries and 
materializing them to speed-up the evaluation of subsequent jobs; 
they consider one optimizer generated logical plan at a time and 
consider all its sub-plans. This technique has been integrated with 
Microsoft SCOPE. Another approach was previously taken in [27] 
for utilizing common sub-expressions for cloud query processing; 
this work has also been prototyped in SCOPE. Both these works 

present formal treatments of their techniques. 

There are currently several automated physical design tools [2, 15, 
31] offered by commercial database vendors and by third-party 
tool developers. These tools support tuning of different aspects of 
physical design.  

IBM’s DB2 Advisor [30, 31] recommends materialized views and 
indexes; this tool uses the query optimizer itself to both suggest 
and evaluate candidate MV’s and indexes; the algorithm, which is 
based on the Knapsack problem, trades off the cost of MV or 

index storage against its benefits of workload queries, builds a 
new ‘explain plan mode’ to build hypothetical configuration and 
exploits multi-query optimization techniques developed in [22] to 
construct candidate MVs. DB2 design Advisor is architected to 
have independent advisors for each physical design structure; the 
search step that produces the final integrated recommendation 
iteratively invokes each advisor for a physical structure in a staged 
manner. 

Oracle 10g shipped the SQL Access Advisor [15], which takes a 
workload and provides index and materialized view 
recommendations for the overall workload. The current work 
described in this paper is very different from the existing SQL 
Access Advisor. 

The Database Tuning Advisor (DTA) from Microsoft SQL Server 
2005 [2] is a tool that provides fully integrated recommendations 
for indexes, materialized views, and horizontal range partitioning. 

DTA builds upon the Index Tuning Wizard and improves it in 
several aspects. The basis of DTA’s recommendations is the 
“what-if” analysis of MS SQL Server [10] extended to support 
simulation of materialized views; it uses a three-step process of 
candidate recommendation, which is described in detail in [1]. 
The idea of workload compression [2, 12] as a technique to 
improve the scalability of workload was adapted into DTA. A 
workload is partitioned based on the signature of each query; two 

queries have the same signature, if they are identical in all respects 
except the literals. Workload compression chooses a subset from 
each partition using a clustering-based method. 

Given a workload of queries, [1] describes a technique for 
recommending materialized views. It uses table cardinalities and 
optimizer estimated costs of workload queries for exploring 

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30

R
e

-w
ri

tt
e

n
 q

u
e

ri
e

s 
(s

)

Original queries (s)

3056



 

 

arbitrary subsets of all tables in the database schema to come up 
with interesting table subsets, which can be used to generate 
hypothetical candidate materialized views. It then applies the 
Greedy (m, k) algorithm [13] to enumerate configurations for each 
query, at a time, and to choose the lowest cost configuration using 

estimated cost of the rewritten query. Lastly, it merges two or 
more materialized view definitions using heuristics involving their 
optimizer estimated cardinalities. This work has been 
implemented for the MS Tuning Wizard. 

8. CONCLUSION  
In this paper, we described a novel extended covering sub-
expression (ECSE) algorithm for the automated generation of 
candidate and recommended materialized views on various set-
based relationships among queries in a given workload. As 
searching the space of all possible materialized views in a scalable 

manner is of paramount importance, we apply the in-built 
heuristics in the ECSE algorithm, a set of external heuristics, and 
the optimizer-estimated cost-based selection for recommending 
effective and efficient materialized views, which are then verified 
by creating the recommended materialized views and comparing 
performance of a sample of workload queries with and without 
rewrite. These experiments show that our techniques provide 
significant performance gains for various customer workload 
queries. This system has been fully implemented and will be 

deployed on the Oracle Autonomous Database on the Cloud. 

Our future research may involve determining the threshold values, 

α, β, λ, ρ, and κ, based on factors such as the count and 
complexity of queries in the workload, cardinalities of fact tables, 
storage requirement, etc. Another direction our future work may 
take is the periodic monitoring of workload queries to identify 
static and dynamic filter predicates. The filter predicates that are 
static (i.e., their constant values do not change over time) can be 
included in the candidate materialized view definitions thereby 

making rewrites more efficient. We also plan to incorporate in the 
GGR algorithm the expected materialized view maintenance cost, 
which can be predicted by the neural-net-based machine learning 
algorithm. 
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