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ABSTRACT Big data processing systems are evolving to be more stream oriented where each data record
is processed as it arrives by distributed and low-latency computational frameworks on a continuous basis.
As the stream processing technology matures and more organizations invest in digital transformations, new
applications of stream analytics will be identified and implemented across a wide spectrum of industries.
One of the challenges in developing a streaming analytics infrastructure is the difficulty in selecting the right
stream processing framework for the different use cases. With a view to addressing this issue, in this paper
we present a taxonomy, a comparative study of distributed data stream processing and analytics frameworks,
and a critical review of representative open source (Storm, Spark Streaming, Flink, Kafka Streams) and
commercial (IBM Streams) distributed data stream processing frameworks. The study also reports our
ongoing study on a multilevel streaming analytics architecture that can serve as a guide for organizations
and individuals planning to implement a real-time data stream processing and analytics framework.

INDEX TERMS Dataflow architectures, data stream architectures, distributed processing systems
comparison, survey, taxonomy.

I. INTRODUCTION
The ability to handle and process continuous data streams is
becoming an essential part of building a data-driven orga-
nization. Data streams are sequences of unbounded tuples
generated continuously in time [1]. Unbounded and global
datasets such as Web logs, mobile usage statistics, and sensor
networks are increasingly becoming common in day-to-day
businesses [2]. Streaming data is also increasingly getting
important for social media platforms such as Facebook, Twit-
ter, and LinkedIn [3].

Unlike traditional batch processing which involves pro-
cessing of static data, streaming or online processing involves
processing dynamic or continuous data [4]. Extracting mean-
ingful and timely insights from unbounded data is very
challenging. Recent demands for scalable and low latency
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analytics tools [5] have revealed various shortcomings of
traditional batch processing systems such as MapReduce [6]
and Hive [7]. Batch processing systems suffer from latency
problems due to the need to collect input data into batches
before it can be processed. Under several application sce-
narios such as fraud detection in financial transactions and
healthcare analytics involving digital sensors and Internet of
Things (IoT), continuous data streams must be processed
under very short delays [8]. This is because certain types of
data streams such as stock values, credit card transactions,
traffic conditions, time-sensitive patient data, and trending
news rapidly depreciate in value if not processed instantly.
Thus, the ability to handle and process continuous streams of
data is becoming an essential part of building today’s data-
driven organizations.

Currently many tools exist for ingesting, processing, stor-
ing, indexing, and managing streaming data, which makes it a
difficult task for practitioners to select the right combination
of tools and platforms for building data stream analytics
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applications [9]. The main motivation of this paper is to strive
to alleviate this task by first identifying the major compo-
nents of a modern Data Stream Processing System (DSPS).
Before choosing a DSPS or any of its components, it is
important to understand and evaluate why it is necessary,
what is needed and what are the available options.

Data Stream Processing Engines (DSPEs) lie at the
core of DSPSs and enable the definition and execution of
stream processing pipelines. According to Russo et al. [10],
DSPEs have emerged as key enablers to develop pervasive
services that process data in a near real-time fashion. How-
ever, with the myriad of DSPEs that exist today, the large
design space for DSPSs, and the intermingle of technical and
marketing content from the different vendors and platforms,
it is challenging to map design requirements to efficient and
compatible hybrid solutions. This underscores the need for
systematic studies to showcase advances in tools enabling
data stream processing and open challenges, which form the
basis of further research.

A number of literature reviews on DSPEs have emerged
in recent years. Some of the early DSPE survey papers
include the reports by Kamburugamuve et al. [4] and
Bockermann [11], a selective survey of tools enabling data
stream processing by Gorawski et al. [12] and a survey of
open source near real-time technologies by Liu et al. [13].
Other surveys of DSPEs and their applications in various
domains have been outlined in [14]–[16]. Recent surveys on
DSPEs include a taxonomy of DSPEs by Zhao et al. [17],
a global view of some popular DSPEs by Kolajo et al [18]
and a performance comparison of some of the existing DSPEs
with regards to time-series analysis by Gehring et al. [19].
Our work extends these recent studies by reviewing both
design and implementation aspects of DSPEs unlike most of
the previous surveys which focus either on the design, or the
implementation aspect. Besides explaining the usefulness and
the key features ofDSPEs, this paper also provides insights on
the design and implementation choices such as when DSPEs
are not the most suitable paradigms, and when to choose
distributed or single-node approach. The main contributions
of this paper are:

1. An overview of DSPS including usability and
architecture.

2. The listing of the key features of DSPEs based on an
extensive study of the state-of-the-art DSPEs, whichwe
used to propose a taxonomy of DSPEs.

3. A literature review of DSPEs based on the pro-
posed taxonomy and a critical review of some of the
popular DSPEs.

4. A comparison of DSPEs based on the key features.
5. A real-world DSPS use case scenario and the rational

for selecting the most appropriate DSPE.
6. A discussion on the open research problems in this area.
The rest of the paper is organized as follows. Section 2

describes an overview of the architecture and the main com-
ponents of a general DSPS. Section 3 presents the key fea-
tures and taxonomy of DSPEs. A literature review of DSPEs

encompassing the work of both academic researchers and
industry professionals is presented in Section 4. A com-
parative analysis of some of the cutting edge open source
distributed DSPEs (Storm, Spark Streaming, Flink, Kafka
Streams, and IBM Streams) is also presented in Section 4.
A use case scenario and design considerations for developing
a DSPS is presented in Section 5 along with discussions
and recommendations for choosing a DSPE for different
applications. Section 6 summarizes the paper and draws the
conclusion.

II. MOTIVATION AND AN OVERVIEW OF DSPS
Modern Data Stream Processing Systems (DSPS) try to com-
bine batch and stream processing capabilities into a sin-
gle or multiple parallel data processing pipelines [2]. The
motivation behind developing such infrastructures is that
massive processing can be done on historical data to train
machine learning models using batch data analytic pipelines,
which can then be deployed on real-time incoming data
streams for scoring using a separate data analytic pipeline.
Marz and Warren propose the lambda architecture [20],
which includes batch and stream processing within a single
framework. The lambda architecture was designed for appli-
cations that have delays in data collection and online process-
ing due to the use of interactive interfaces or dashboards and
data validation steps [21]. It is, however, limited in applica-
tion because of the requirement of having to build, maintain,
and integrate two separate systems. It is, therefore, desirable
to reduce this complexity by providing a single interface at
a higher level of abstraction to manage the underlying batch
and streaming systems [2].

In this section, we first motivate the reader by describ-
ing data analytics scenarios that will necessitate the use of
streaming analytics approach. Next, we give an overview of
the general architecture of a DSPS, and finally, describe the
main data processing components of a DSPS.

A. WHEN TO USE A DSPS
The traditional approach to processing data at scale is batch
processing. Schreiner and Topolnik [22] described a typical
example of a batch processing application in the financial
sector where a bank collects and stores its transactional data
in a data warehouse during the day. The bank then processes
and analyzes the stored data offline after the closing time
for decision making. Another scenario described by Dean
in his book [23], uses a Web search system where crawlers
constantly scrape the web and extracts knowledge but relies
on batch processing to update its search index every hour.
While both scenarios are simple and robust, the batch pro-
cessing approach utilized in both cases clearly introduces a
large latency between gathering the data and being ready to
act upon it.

The goal of DSPS is to overcome this latency by pro-
cessing big data volumes and provide useful insights into
the data prior to saving it to long-term storage. It processes
the live, raw data immediately as it arrives and meets the
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challenges of incremental processing, scalability, and fault
tolerance [22]. Streaming processing offers the competitive
advantage of timeliness and should be used where real-time
results matter or when the value of the information contained
in the data stream decreases rapidly with time [23]. Typical
example of scenarios that can benefit from DSPS include
real-time analytics for systems monitoring and decision sup-
port. For example, hospital intensive care units have constant
patient health monitoring systems, businesses implement
financial news analytics for getting business insights fast, and
fraud detection systems for ensuring secured transactions.
Also, processing data as it arrives spreads out workloads
more evenly over time, thereby, making the consumption of
resources more consistent and predictable while enabling real
time decision support [22].

Stream processing, however, raises new operational chal-
lenges and introduces new semantics for analytics [23].
To achieve low latency, a DSPS must be able to perform
message processing without having a costly storage opera-
tion. It should also be able to handle imperfections in the
data streams and process delayed, missing and out-of-order
data. A detailed discussion on the requirement of a DSPS,
is provided by Stonebraker et al. [24].

B. GENERAL ARCHITECTURE OF A DSPS
A DSPS can be deployed on a single machine consisting
of multiple components, where each component directly
calls the next component(s) in the processing pipeline. For
greater throughput, efficiency, and fault tolerance, large
stream processing systems are set up on multiple distributed
machines with the help of additional software stack. A sim-
ple Extract, Transform, and Load (ETL) transactional DSPS
architecture for processing IoT streams was proposed by
Meehan et al. [25]. The architecture comprises three
main components (i) stream collection for data ingestion,
(ii) streaming ETL engine for real-time query processing, and
(iii) an Online Analytical Processing (OLAP) backend for
handling long-running queries. A data migrator component
is used to connect the ETL and the OLAP components to
facilitate data transformations.

The DSPS at Facebook [26] is relatively complex and
powers many use cases such as the real-time reporting of
aggregated voice of Facebook users, analytics for mobile
applications, and insights for Facebook page administrators.
It is made up of data sources such as mobile and web prod-
ucts; Scribe as a data distribution tool; stream processing
systems such as Puma, Stylus, and Swift; and data stores
such as Laser, Scuba, and Hive. The Facebook DSPS flow
is a complex Directed Acyclic Graph (DAG) comprising of
data streams from the mobile and web products that are fed
into Scribe. Real-time data processing systems read from
and write to Scribe. The data stores also use Scribe for data
ingestion and serve different types of queries. According
to Psaltis and de Assuncao et al. [8], [9], the architec-
ture of a DSPS is generally multi-tiered and is com-
posed of many loosely coupled components that include

FIGURE 1. Architecture of a Data Stream Processing System (DSPS).

data sources, data collection systems, data storage systems,
messaging systems, and stream processing and delivery
systems.

C. COMPONENTS OF A DSPS
The input to a DSPS is a sequence of immutable and
potentially infinite records which hold information about
an event that happened. These records form what is called
a data stream [22]. For most DSPSs, despite the diverse
data domains and business logic, a generic data processing
pipeline exists, which consists of (i) a data stream inges-
tion layer at the front-end, responsible for accepting streams
of data into the DSPS, (ii) a data stream processing layer,
which pre-processes and analyses data in one or more steps,
(iii) a storage layer, which stores, indexes, and manages the
data and the generated knowledge, (iv) a resource manage-
ment layer, which manages and coordinates the functions
of distributed compute and storage resources, and (v) an
output layer, which directs the output data stream and knowl-
edge to other systems or visualization tools. Fig. 1 repre-
sents a generic architectural blueprint of a DSPS. We also
provide a concise description of each component.

1) DATA STREAM INGESTION LAYER
Data ingestion is the process of getting data streams from
its source to its processing or storage system as efficiently
and correctly as possible [25]. The ingestion layer ensures
scalable, resilient, and fault-tolerant data distribution across
the DSPS architecture from multiple input data streams, and
decouples the input data sources from the other parts of
the DSPS [9], [27].

There are many sources of input data streams [28]. These
include data streams from various IoT devices such as sen-
sors, video and other electronic monitors, social network
Application Programming Interfaces (APIs), WebSockets,
Representational State Transfer (REST) Web services, ser-
vice usage logs, other stream processing systems, or any
object which can collect and transmit time-sensitive data [8].
These input data streams can be comma or tab delimited
text, graphs, JSON objects, WebSockets, events or any time-
series data. The data stream ingestion layer deploys a variety
of tools to accept different types of input data streams from
one or more sources.

Queueing systems encompass the spectrum of messaging
services, from the traditional message queuing products such
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as MQTT, RabbitMQ, and ActiveMQ to the newer products
such as NSQ and ZeroMQ [9], [29]. Apache Kafka and
DistributedLog have grown to embody more than a message
system, and both currently support publishing and subscrib-
ing to streams of records [8]. There are alsomany commercial
stream ingestion systems including Scribe [26] developed
at Facebook, Kinesis Data Firehose managed by Amazon
Web Services (AWS), IBM WebSphere MQ and Microsoft
Message Queuing [29].

2) DATA STREAM PROCESSING LAYER
The data stream processing layer is where the streaming
data processing applications or jobs are executed. It can host
loosely coupled disjoint applications or a DSPE or both.
DSPEs generally offer a set of streaming data processing
operators which can be configured and threaded together to
build a stream data processing pipeline to analyze incoming
data streams [30].

Many DSPEs exist today some of which are marketed by
large software vendors while others were created as a part of
open-source research projects. The main categories of DSPEs
include Data Stream Management Engines (DSME), Com-
plex Event Processing Engines (CEPE) and general-purpose
DSPEs (GDSPE) [8].

Traditional Database Management Systems (DBMSs) are
best equipped to run periodical queries over finite stored
data sets. However, many modern data analytics applica-
tions such as financial data analytics, and network and sen-
sor data monitoring, need to support continuous queries
over dynamic unbounded data streams [31]. DSMEs provide
extensions to DBMSs by enabling long-running queries over
dynamic data, providing support for SQL-like operations and
declarative interfaces. The basic requirements that a DSME
should meet were outlined by Stonebraker et al. [24]. These
requirements include the ability to (i) process continuous data
on-the-fly without any requirement to store them, (ii) support
high-level languages such as SQL, (iii) handle imperfections
such as delayed, missing and out-of-order data, (iv) guar-
antee predictable and repeatable outcomes, (v) efficiently
store, access, modify, and combine (with live streaming data)
state information, (vi) ensure that the integrity of the data
is maintained at all times and relevant applications are up
and available despite failures, (vii) automatically and trans-
parently distribute the data processing load across multiple
processors and machines, and (viii) respond to high-volume
data processing applications in real-time using a highly opti-
mized execution path. Cutting edge DSMEs include Samza-
SQL [32], KSQL, and SQLstream Blaze [30], [33].

CEPE is the core logic of Complex Event Processing (CEP)
which denotes application of business rules to streaming
event data (such as log or sensor data streams) associated with
a timestamp [34]. This enables useful real-time actions to be
taken over data streams [35]. A CEPE supports exploring
relationships among events using specific rules as well as
declarative interfaces [8]. Cutting edge CEPEs include Esper,
StreamBase, and WSO2 CEP [30], [34], [36].

TABLE 1. Data Stream Processing Engines (DSPEs).

Generic-purpose DSPEs (GDSPE) are being developed
to perform distributed stream processing with the aim of
achieving scalable and fault-tolerant execution on cluster
environments. Unlike DBMSs or CEPEs, GDSPEs do not
provide declarative interfaces, thereby requiring developers
to program applications rather than writing queries. Most
modern GDSPEs support streaming SQL and CEPE either
natively or through an add-on library. GDSPEs are commonly
used to process high volume and velocity of streaming data.

A good DSPE should have the ability to process data in
real-time and for any given time interval, as well as to peek
into the data within a sliding window of time [37]. Cut-
ting edge GDSPEs include Kafka Streams, Spark Streaming,
Storm, Flink, and Samza as listed in TABLE 1 [8], [9]. There
are also many commercial GDSPEs including IBM Streams,
Amazon Kinesis, Azure Streams, Google Cloud Dataflow,
Facebook’s Stylus, Swift, and Puma [8], [26]. The detailed
discussion of DSPEs will follow later in the paper.

3) STORAGE LAYER
DSPSs often store analyzed data, discovered patterns and
extracted knowledge from different data processing stages
for further processing [8]. Stored data must be organized
and indexed along with external knowledge or metadata for
executing subsequent analytics jobs.

Data storage solutions for supporting DSPS architecture
ranges from traditional file systems such as HDFS and Baidu
File System (BFS) to distributed file relational databases
such as PostgreSQL, key-value stores such as Redis,
in-memory databases such as VoltDB, document storage such
as MongoDB, graph storage systems such as Neo4j, NoSQL
databases such as Cassandra, and NewSQL such as Cock-
roachDB [38].

4) RESOURCE MANAGEMENT LAYER
The resource management layer coordinates actions among
compute and storage nodes and manages resource allo-
cation and scheduling in distributed systems to enable
parallel processing of high volume and velocity of data
streams [39]. A typical data stream cluster consists of sev-
eral compute nodes, and a cluster manager, which coordi-
nates communication between the nodes [9]. Processes in
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a distributed system can either exchange messages directly
through a network or read/write into some shared storage.
Coordination tasks such as electing a master node, man-
aging group memberships, and managing metadata are
important when building a multi-cluster distributed sys-
tem [40]. Cutting-edge resource management tools include
ZooKeeper [40], Yet Another Resource Negotiator (YARN),
Mesos, Tupperware, andmanaged services such as Borg [39].

5) OUTPUT LAYER
The results from data stream processing pipelines can be
directed to an application, another workflow, a visualization
tool, or an alert or monitoring dashboard [8]. At the same
time, data and extracted knowledge can be passed on to the
temporary in-memory or permanent storage for subsequent
analysis and query. Different data types and structures require
specialized tool sets to visualize.

These tools were categorized by Liu et al. [41] into four
groups: (i) graph visualization which includes static graph
visualization (matrix representation and node-link diagrams)
using tools such as TreeNetViz, and dynamic graph visual-
ization (mental maps, animation techniques) using tools such
as StoryFlow, (ii) text visualization which includes static text
visualization (feature-based and topic-based) using tools such
as Word Clouds or Phrase Nets, and dynamic visualization
using tools such as SparkClouds, TextFlow and EventRiver,
(iii) map visualization for geographic data exploration using
tools such as BirdVis, and (iv) multivariate data visualiza-
tion for generic data types using Multidimensional Scaling
(MDS) projection tools. Visualization tools are often utilized
in decision support systems (DSS) for both streaming and
non-streaming data applications [27], [41], [42].

In this paper, we mainly focus on the comparative study
of DSPEs which lie at the core of DSPSs and enable defini-
tion and execution of stream processing pipelines [10]. Key
features of the distributed DSPEs are described in the next
section.

III. DATA STREAM PROCESSING ENGINES (DSPEs)
DSPEs are complex stream processing engines which are
composed of multiple components as described below in
Section A. These components differ in the underlying pro-
gramming models, configurations, and operations. Research
in DSPEs has diverged [11] into (i) query-based systems such
as NiagaraCQ [43], TelegraphCQ [44], and AsterixDB [45],
(ii) online distributed machine learning systems such as Scal-
able Advanced Massive Online Analysis (SAMOA) [46],
(iii) streaming graph analytics systems such as GraphJet [47],
and (iv) general purpose streaming data processing frame-
works [48] such as Flink and Spark Streaming, hav-
ing low-latency [49] and a distributed parallel processing
architecture [50], [51]. Here, we explain the key features
of DSPEs in Section B and propose a taxonomy for com-
paring the state of the art DSPEs in Section C. For more
information on use case scenarios and advantages of DSPEs
such as Storm, S4, SQLstream, Splunk, Kafka, and SAP

HANA refer to Khalifa et al. [49], Chen and Zhang [52].
Kejariwal et al. [53], and Sakr [54] provide detailed
descriptions of design choices and challenges of selected
DSPEs which include S4, Storm, Trident, M3, Samza, Akka,
Flink, Spark Streaming, MillWheel, Pulsar, Heron, IBM
Streams, Microsoft Trill, and Stream Insight.

A. COMPONENTS OF DSPES
DSPEs represent stream data processing pipelines as DAG
of logically connected stream processing jobs, execute the
DAG, and return the results. The fundamental components
of DSPEs include (i) data sources and sinks, (ii) an applica-
tion driver, (iii) a stream manager, and (iv) stream proces-
sors. Generally, data sources refer to the inputs to streaming
engines while sinks refer to the outputs from the streaming
engines. Some engines allow data ingestion from multiple
sources whereas others support a single source only. The
application driver represents the client code that communi-
cates with the stream manager to submit program codes and
data as jobs, controls the lifetimes of these jobs, and then
collects the results. The stream manager is responsible for
assigning the submitted streaming jobs to the available stream
processors which execute the assigned jobs [9]. Each proces-
sor receives input from one or more data source queues, per-
forms some computation on the input, and produces results
that are added to the output queues [4].

Modern computing infrastructures rely on distributed sys-
tems for increased performance and reliability in managing
huge volumes of data [55]. In a typical distributed system,
it is common to have one or more worker nodes (stream
processors), a cluster (stream) manager, and an application
driver that appropriately allocates and controls task execution
at the workers with the help of the manager.

B. KEY FEATURES OF DSPEs
The following sub-sections highlight the key features of
DSPEs. These features include the programming model, data
source interaction model, data partitioning strategy, state
management, message processing guarantee, fault tolerance
and recovery, deployment, and support base (e.g. community,
high level language, advanced input sources, storage, and
analytics).

1) PROGRAMMING MODELS
The programming model of a DSPEs consist of a processing
task which receives stream items from a source, performs
some processing, and then emits some items to a sink [22].
Specifically, a programming model is an abstraction of the
DSPE that allows for stream transformations and processing.
Given the unbounded nature of streaming data, it is therefore,
not feasible to have a global view of the incoming streaming
data [56]. Hence, data is processed in chunks by defining
finite, bounded time windows on top of an infinite data
stream.

A window in DSPEs is usually defined by either a time
duration or a record count. The time-based window speci-
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FIGURE 2. Windowing patterns [56].

fies a moving view that decomposes a stream into subsets
and computes a result over each subset [57], [58] while the
count-based window is sized by the number of events
included in the window. This enables transformations to be
executed on the records contained in the window [22].

Time-based windows are common in stream applica-
tions [59]. Luu [56] described three commonly used time-
based windowing patterns that most modern DSPEs support
as shown in Fig. 2. (i) Fixed or tumbling windows divide the
incoming data stream into fixed-size segments, each with a
window length, a start time, and an end time. Each incoming
piece of data gets slotted into one and only one fixed win-
dow making it easy to perform aggregation transformations.
(ii) Sliding windows divide the incoming stream of data
into fixed-size segments, each with a window length and a
sliding interval. If the sliding interval is the same size as
the window length, then it is the same as the fixed window.
If the sliding interval is smaller than the window length,
then one or more pieces of data will be included in more
than one sliding window; aggregation transformations in a
sliding window will produce a smoother result than in the
fixed window because of the overlapping of the windows.
(iii) Session windows, unlike the fixed and sliding windows,
do not have a predetermined window length. Instead, it is
determined usually by a gap of inactivity that is greater than
some threshold. A session is a burst of user activity followed
by period of inactivity or timeout [22].

Many transformations on streams are carried out on each
record independently and are often called stateless. Among
the common types of stateless transformations are (i) Map,
which transforms one record to another record, (ii) Filter,
which filters out the records that do not satisfy a given pred-
icate and (iii) FlatMap, which transforms each record to a
stream and then flattens these streams into a single stream
by combining the stream elements.

Transformations that require the processor to maintain
internal state across the records and are called stateful. Com-
mon types of stateful transformations are (i) Aggregation,
which combines all the records to produce a single value,
(ii) Group-and-aggregate, which extracts a grouping key from
the record and computes a separate aggregated value for each
key, (iv) Join, which joins same-keyed records from several
streams, and (v) Sort, which sorts the records observed in the
stream. In stateful transformations, all the ingested records
within a specified time window are included in the compu-

tation. The concept of windowing, meaningfully bounds the
scope of the aggregation and can represent distinct or partially
overlapped time frames [22].

In summary, DSPEs can do real time streaming data pro-
cessingwhere tuples are processed as soon as they arrive or do
batch data processing where time windows are used to split
the tuples into batches or do both. A batch of stream elements
for a given stream is a finite subset of the stream in a time
interval. Distributed DSPEs usually process incoming data
streams either natively (one tuple at a time) or in micro
batches. A query or process is represented as a DAG consist-
ing of a set of node operators, and the source and sink data
stream operators. Operators can be either stateless or state-
ful. Most distributed DSPEs use the continuous operator
model [60] where streaming computations are performed by
a set of long-lived stateful operators. Each operator processes
data stream records as they arrive by updating the internal
state and sending new records in response [61].

2) DATA SOURCE INTERACTION MODEL
Understanding the interaction of data stream processing
engines with data sources or message queuing systems is
very important. The basic interaction model is the push model
where a daemon process of a data stream engine keeps
listening to an input channel. Another approach where the
streaming engines continuously pull published data instances
from stream sources such asWebSocket, Kafka, and Flume at
a given frequency, is called a pull model. A challenge here is
that the frequency of pulling and the speed of processing the
data by the DSPEs should match the rate of data generation
at the source to avoid data loss [9]. DSPEs can also interact
with data sources using a combination of the two models.

3) DATA PARTITIONING STRATEGY
Large web companies run massive deployments of DSPEs in
production. In this case, good utilization of resources is very
critical. Skewed distribution of workloads within a DSPE can
lead to poor resource utilization and inefficiency [62]. For
efficiency, large volumes of data streams are partitioned and
handled in a parallel or distributed environment. A partition
is a logical chunk of data distributed across a cluster [63].
Partitioning strategies affect a system’s scalability and data
handling approach [4] and represents a distinctive feature
of DSPEs as it varies for the different DSPEs. Data parti-
tioning methods can be classified into horizontal and ver-
tical approaches [64]. The horizontal method divides data
into disjoint sets of rows. Horizontal partitioning method
is further grouped into three techniques based on data set
values, these are round-robin, range and hash partitions.
According to Hamdi et al. [64], range partitioning is the
most popular approach especially when there is a periodic
loading of a new data. The vertical method divides data into
vertical and disjoint sets of columns and can be categorized
further into cost-based and procedural approaches. The cost-
based method utilizes a cost model to predict the perfor-
mance of the system and then selects the configuration to
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optimize operational cost. The procedural approach applies
scheduling and distributed computing procedures to define a
good configuration.

4) STATE MANAGEMENT
A data streaming analytics program can be modelled as
a directed tree where the analysis results are the roots,
operators are the intermediate nodes, and data are the leaves.
The data flows from the leaves through the operator nodes
to the roots. Each operator node performs an operation
that transforms inputs flowing through it into outputs. As
described at the beginning of this section, operators can
either be stateless or stateful. Stateless operators are purely
functional, they produce output solely based on their input.
On the other hand, stateful operators compute their output
on a sequence of inputs and potentially use additional side
information, maintained in an internal data structure called
state. A state in a data stream application is a data structure
that preserves the history of past operations and influences
the processing logic for future computations [65].

In traditional DSPEs, state was separated from the
application logic that computed and transformed the data,
and the state information was stored in a centralized database
management system to be shared among applications [66].
Handling state efficiently presents numerous technical chal-
lenges [65]. The state management facilities in various
DSPEs naturally fall along a complexity continuum from
naive in-memory-only choice to a persistent state that can be
queried and replicated [9].

5) MESSAGE PROCESSING GUARANTEE
Message-processing guarantees is an important feature of
DSPEs, and the semantics for this are at-most-once, at-
least-once, or exactly-once. In an at-most-once semantics,
a message is guaranteed to be delivered at most once, which
implies that a message may get lost during routing and, if it
is lost, no more attempts will be made to deliver it. This
is the simplest guarantee semantics and it is the least fault
tolerant. In an at-least-once semantics, greater fault tolerance
is provided by ensuring that a message is delivered at least
once until an acknowledgement of the delivery is received.
Delivery may be attempted multiple times resulting in mul-
tiple instances of the same message being delivered in some
cases at an additional cost for repeated processing. This is
the most common guaranteed semantics offered by most data
processing frameworks. In an exactly-once semantics, a mes-
sage is guaranteed to be delivered exactly once with more
acknowledgement checks along the way to prevent multiple
delivery of the same message. This is the most desirable
semantic. The choice of these semantics involves trade-offs
between reliability needed for an application and the cost.
For instance, for a streaming web analytics application a less
complex faster process having weaker guarantees may be
okay, while a streaming fraud detection application would
possibly require a more reliable process with a stronger mes-
sage guarantee [9].

6) FAULT TOLERANCE AND RECOVERY
Data stream processing engines must be operational for the
length of time needed to recover from failures. Failures hap-
pen due to bugs in the system logic, problem in the network,
crash of a compute node in a cluster environment including
other hardware issues, reliance on a third-party software, and
bottlenecks caused by the volume and speed of incoming
data. The ability of a DSPE to keep running in the face of
failures demonstrates its fault-tolerance capabilities. DSPEs
should support good fault tolerance with minimum impact
and overhead. Data loss (e.g. due to a crash in a node or for
the data being in memory) and resource access loss (e.g. due
to cluster manager fault) are common losses due to failures
in DSPEs. Failure recovery incurs an additional resource
demand on top of regular processing [61] and repeated pro-
cessing causes overhead. For real-time applications, repro-
cessing from the start of the pipeline is impractical. Ideally
a system should be able to restore itself to a previous state
before the fault occurred and repeat only some of the failed
components of the data processing pipeline. Fault tolerance
in distributed DSPEs can be generally categorized into two
types, passive (such as checkpoint, upstream buffer, and
source replay) and active (such as replicas) approaches [67].

7) DEPLOYMENT
DSPEs can be deployed locally on a single machine, in a
cluster, or in the cloud. Local deployment may lack the
capacity to handle huge data volume and velocity. Clus-
ter or cloud deployments of DSPEs are generally used for
high volume and velocity data processing at the production-
level. As for typical distributed applications, distributed
DSPEs have one or more worker nodes where jobs are exe-
cuted, a cluster manager which coordinates communications
among the nodes [9], and a driver program that appropri-
ately allocates and controls task execution at the worker
nodes. ZooKeeper, Spark Master, Mesos Master, and YARN
Resource Manager are some of the cluster management tools
used by the different DSPEs.

8) COMMUNITY SUPPORT
Some of the DSPEs have vibrant community support groups
and documentations, which greatly help in developing new
data processing pipelines, codes to add to existing libraries,
and configuring or customizing systems. The nature of devel-
oper and user base of a DSPE helps understanding its dynam-
ics. Examples of community support include forums of code
committers, contributors and Q/A, conference and summits
for meetups and publications, and notifications on planned
releases.

9) SUPPORT FOR HIGH LEVEL LANGUAGES
DSPEs with support for multiple high-level languages such
as Java, Scala, Python, R, and SQL provide developers with
greater choice of language to use for coding to reduce the
implementation time of processing pipelines.
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10) SUPPORT FOR ADVANCED INPUT SOURCES
DSPEs that support advanced input data sources such as
local file systems, socket connections, databases (HDFS, S3,
and Cassandra), and queuing tools (such as Kafka, Flume,
Kestrel, NiFi, Cloud Dataflow, and RabbitMQ) can provide
greater flexibility in linking with an existing big data inges-
tion pipeline to implement a DSPS. Refer to Section 2 for a
detailed description of some of the advanced input systems.

11) SUPPORT FOR STORAGE SYSTEMS
DSPEs such as Spark Streaming provides a native in-memory
storage, while others generally do not have their own data
storage systems but provide data source and sink connectors
to data ingestions systems such as Kinesis, Kafka, HDFS,
and Cassandra, and search tools such as Solr and Elastic-
Search. Refer to Section 2 for a detailed description of some
of these storage systems.

12) SUPPORT FOR ANALYTICS
Besides the regular search and data storage systems, another
desirable feature of DSPEs is support for analytical and con-
tinuous queries. The usual pipeline for mining and modelling
data involves taking a sample or a snapshot from produc-
tion data, cleaning and pre-processing the data, training and
evaluating a model, and finally deploying the model to a
production system. Most implementations of this traditional
data mining pipeline such asWEKA and R are unable to cope
with web-scale datasets. Hence the evolution of distributed
data mining systems such as Mahout [30]. However, most
data are now generated in the form of a stream and requires
streaming models [31]. This involves analyzing data in near
real-time or as soon as it arrives into the system. Most imple-
mentations of traditional stream processing systems such as
Massive Online Analysis (MOA) are limited by the memory
and bandwidth of a single machine [46]. Hence the evolution
of distributed data stream mining systems such as the Scal-
able Advanced Massive Online Analysis (SAMOA), which
enables the development of distributed streaming algorithms
and executing them on multiple DSPEs [46].

C. TAXONOMY OF DSPEs
Although using DAGs for the abstract representation of
streaming applications is followed by most streaming plat-
forms, they differ in multiple ways. The field of data stream
processing is very dynamic and new features of DSPEs get
added to or updated in every new release. We propose a tax-
onomy as illustrated in Fig. 2 based on the features identified
above and use the same to compare the state-of-the-art DSPEs
in the next section.

IV. REVIEW AND COMPARISON OF DSPEs
Due to the rapidly evolving nature of streaming data analytic
tools and big data processing systems in general, most recent
studies about comparative performances of DSPEs are avail-
able in white papers published by industry researchers, blog
posts of scientific analysts, and competitors’ evaluations.
We used scientific research publications from both the

academia and the industry publications on a variety of online
publication venues for the literature review.

A. LITERATURE REVIEW
Gualtieri and Curran [30] grouped about 26 criteria into
three high-level categories namely current offering, strategy,
and market offering to evaluate the strengths and weak-
nesses of 15 top commercial and open-source DSPE ven-
dors and their products. The authors used a combination of
product briefings and demos, vendor surveys, and customer
reference calls for their study. This evaluation by Forrester
uncovered a market with seven leaders (IBM, Software AG,
SAP, TIBCOSoftware, Oracle, DataTorrent, and SQLstream)
and eight strong performers (Impetus Technologies, SAS,
Striim, Informatica, WSO2, Cisco Systems, data Artisans,
and EsperTech).

The similarities, differences, implementation trade-offs,
and the intended use-cases of five open-source distributed
streaming frameworks were described by Zapletal in a the-
oretical overview [68] and an expert recommendation was
made based on fault tolerance, state management and perfor-
mance observations [69]. The study included Apache Storm,
Apache Storm Trident, Apache Spark Streaming, Apache
Samza, and Apache Fink. The author recommended that
a careful evaluation of streaming application requirements
should be conducted before choosing a framework.

Wähner [70] compared Spark Streaming, Flink, Beam,
Storm, StreamBase, and IBM Streams. Matei et al. [71] com-
pared Structured Streaming with Spark Streaming, Storm,
Flink, Kafka Stream, and Google Dataflow. They concluded
that Spark Structured Streaming facilitates integration into
larger applications. A number of technologies have sprung
up to solve the problem of real-time stream processing in
a Hadoop environment [72]. Braida reported a comparative
analysis of five top-level Apache projects, Apache Storm,
Samza, Apex, Spark Streaming, and Flink, which provide
stream processing capabilities, with IBM Streams. The study
concluded that suitability of the options for stream processing
depends on the specific use cases.

According to the study by Kamburugamuve et al. [4],
the requirements of a good stream processing framework
revolves around two important attributes; the latency of the
system and the high availability of the system. The study
also identified some expectations of a distributed DSPEs,
which include (i) high data mobility, a key for maintaining
low latency, (ii) high availability and data processing guar-
antees, (iii) effective data partitioning and parallel handling,
(iv) support for high level languages and tools for querying
data streams, (v) ability to recover from failures in the case
of non-deterministic processing, (vi) support for data persis-
tence, and (vii) ability to handle stream imperfections such
as delay, out of order, duplicates or loss. These attributes and
the architecture were used as the criteria to compare several
streaming frameworks which included Apache Aurora, Bore-
alis (no longer active as a research project), Storm, S4, and
Samza.

VOLUME 7, 2019 154307



H. Isah et al.: Survey of Distributed Data Stream Processing Frameworks

The study by Gorawski et al. [12] developed three
(StreamAPAS, THSPS, and AGKPStream) DSPEs and com-
pared themwith five (Borealis, Storm, Samza, StreamInsight,
StreamGlobe) existing DSPEs based on the eight require-
ments of DSPE’s identified by Stonebraker et al. 2005 as
detailed in section 2. Gorawski et al. reported that all the
tested DSPEs fulfilled requirements (i) and (viii). Require-
ments (iii), (iv), (vi) and (vii) were satisfied by most of
DSPEs. Finally, requirements (ii) and (v) remained unfilled
by most of the compared DSPEs. The technical report by
Bockermann [11] compared several DSPEs (Storm, Samza,
S4, MillWheel, Stratosphere, Streams) using the following
criteria: message processing semantic, state handling and
fault tolerance, scalability, support for distributed processing,
and whether it is embeddable. Bockermann reported that the
compared DSPEs differ from one another in terms of the
guarantees they provide and the modelling capabilities they
address. According to the study, Streams does not provide any
fault-tolerance features by its own runtime, Storm, however,
provides fault-tolerance similar to transactions and expects
data to arrive in order. According to Bockermann, MillWheel
builds upon low watermark timestamps and does treat all data
streams as unordered.

Liu et al. [13] studied the shortcomings of Hadoop and the
potential of lambda architecture with regards to data stream
processing. Liu et al. also compared open-source messag-
ing technologies and DSPEs including Hadoop Online, S4,
Storm, Flume, Spark streaming, Kafka, Scribe, S4, HStream-
ing, and Impala based on their architectures, use case support,
recoverability from failures, and license types. According to
Liu et al., despite their diversity, DSPEs share a great similar-
ity especially in terms of using main memory and distributed
computing technologies. Hesse and Lorenz [15] compared
four DSPEs namely Storm, Flink, Spark Streaming, and
Samza based on their language, stream abstraction, latency,
throughput, message processing guarantees, and main com-
ponents. According to Hesse and Lorenz, even though there
are features that are common to all the compared DSPEs such
as the use of Java Virtual Machine (JVM), a clear ranking
cannot be created based on the presented results. Developing
a use case and feature based ranking and recommendation
system for DSPEs would be a good future research.

The study by Singh et al. [14] compared several stream
processing solutions namely, Storm, Spark Streaming, S4,
Amazon Kinesis, and IBM Streams based on the type of
framework, implementation language, supported languages
for application development, abstraction or primitiveness,
data sources, model of computation or transformation, per-
sistence entity, execution reliability, fault tolerance, latency,
and vendor. Pääkkönen [3] compared AsterixDB and Spark
Streaming with Cassandra in terms of their latency and
throughput in processing semi-structured social media data
streams. Pääkkönen reported that AsterixDB scaled better
as more nodes were added to the cluster. AsterixDB with
Java also achieved significantly higher throughput and lower
latency when data feeds were utilized. AsterixDB stream

processing was, however, delayed by batching of streamed
tweets. The study by Yadranjiaghdam et al. [16] compared
several DSPEs based on their application domains and rec-
ommend the extension of the use of DSPEs to other evolving
application areas that may be beneficial to the society.

Chintapalli et al. [48] described the need for a benchmark
for DSPEs and proposed one for selecting platforms for
streaming data analytic needs. The benchmark focused on
Apache Flink, Storm, and Spark Streaming within the context
of a complete DSPS that utilized Kafka for ingestion and
filtering of JSON events, and Redis for storing windowed
count and timestamps of relevant events. Each of these frame-
works has its advantages and disadvantages according to this
study, for example, Storm and Flink have much lower latency
than Spark Streaming at high throughput, while in terms of
throughput rate, Spark Streaming can handle higher maxi-
mum throughput rate with its performance quite sensitive to
the batch duration setting. Chintapalli et al. also added that
tuning is required for Spark to achieve the desired latency
to meet the service level agreements and recommended fur-
ther work to look beyond just performance by incorporating
other features such as security, and integration with other
tools and libraries. Shukla et al. [73] proposed a benchmark
suite for evaluating DSPEs for IoT applications and eval-
uated Storm using the same. According to Shukla et al.,
the benchmark offers a set of realistic IoT tasks and appli-
cations that can be configured and utilized to evaluate DSPSs
and DSPEs on public and private clouds. A recent study by
Karimov et al. [74] proposed a framework to evaluate the
performance of three DSPEs namely Storm, Spark Stream-
ing, and Flink. Karimov et al. applied the proposed method to
various use-cases and utilized the proposed benchmark for the
evaluation of the DSPEs. Karimov et al. also proposed some
recommendations for using DSPEs in various applications,
for example, Spark Streaming is the recommended DSPE if
a stream contains skewed data.

What is missing in all of the above studies is a system-
atic taxonomy based on which the DSPEs were compared.
Zhao et al. [17] identified the need to develop a set of
standard criteria for characterizing DSPEs. Zhao et al. devel-
oped a taxonomy for both open source and commercial data
stream processing frameworks. The taxonomy developed by
Zhao et al., however, does not fully cover the technical depth
and majority of the ingredients that are essential for charac-
terizing data stream engines. In our proposed taxonomy in
Section 3, we dived deeper into the key and technical features
of the DSPE’s such as programming and data models as well
as the integration of these frameworks with other big data
processing systems.

B. COMPARISON OF DSPEs
In this sub-section, we took a closer look at some rep-
resentative leading-edge DSPEs selected based on their
popularity [48], [74] and potentials. These DSPEs include
Storm, Spark Streaming, Flink, Kafka Streams, and IBM
Streams. We then compared these DSPEs based on a subset
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FIGURE 3. Taxonomy of streaming analytics frameworks.

of the key features in the taxonomy we have proposed and
described in Section 3. The features that we found impor-
tant for the comparison of the selected DSPEs are the pro-
gramming model, data partition strategy, state management,
message processing guarantees, fault tolerance and recov-
ery. We also discuss additional criteria under the ‘‘Other’’
category.

1) PROGRAMMING MODEL COMPARISON
Storm is a native GDSPE. It has several processing layers
such as Trident, Streams API, and SQL for processing data
streams. There are three basic abstractions in Storm, these are
spouts, bolts, and topologies. A spout is a source of streams in
a computation, it reads data from message queues, databases,
and other external sources and emit tuples to bolts in the
topology without performing any processing. A bolt accepts
a tuple from a spout, and then persist the data or performs
some transformations (such as filtering, aggregation, or join
operations) which may lead to the emission of new tuples
to its output streams. A topology is a multi-stage stream
computation network of spouts and bolts; each edge in the

FIGURE 4. simple word count topology Storm.

FIGURE 5. Micro-batch model of Spark Streaming [75].

network represent a bolt subscribing to the output stream of
some other spout or bolt. Fig. 4 is a simple Twitter stream
wordcount topology in Storm. The topology consists of a
single spout for ingesting tweet streams and three bolts for
word tokenization, counting, and reporting.

Spark Streaming is a micro-batch GDSPE, an extension
of the core Spark API. The main data abstraction in Spark
is called the Resilient Distributed Dataset (RDD). Spark
Streaming provides an abstraction which represents a con-
tinuous stream of data represented as a sequence of RDDs
calledDiscretized Stream as shown in Fig. 5. Spark Streaming
enables the processing of data streams as a series of small
batch jobs thereby achieving end-to-end latencies as low as
100 milliseconds (ms).

However, from version 2.3, Spark introduced a Structured
Streaming [76] library, built on the Spark SQL engine. Struc-
tured Streaming is based on a new low-latency processing
mode called Continuous Processing which can achieve an
end-to-end latency as low as 1ms. The evolution of Structured
Streaming has made developers to consider Spark Streaming
obsolete and not recommended for developing new streaming
applications with Spark [77]. Therefore, further discussion in
this paper is focused on Structured Streaming.

Flink is a native GDSPE with a support for batch data
processing. The basic building blocks of Flink programs
are streams and transformation operators mapped to stream-
ing dataflows [78]. A stream is a continuous flow of data
records while a transformation is an operation that takes
streams as input and produce processed streams as output.
Data streams in Flink can be created from message queues,
socket streams, or files sources. Common examples of trans-
formations on data streams include filtering, updating state,
defining windows, and aggregating. Each dataflow starts with
one or more sources and ends in one or more sinks which
can be writing data to files or to other outputs. The dataflows
in Flink as shown in Fig. 6, resemble arbitrary DAGs, with
one or more sources and one or more sinks.

Programs in Flink are inherently parallel and distributed.
Aggregating events (e.g., counts, sums on streams are scoped
by windows, such as count over the last 50 seconds, or sum
of the last 50 elements [78]. Windows can also be time, data
driven, session driven as described in Section 3.
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FIGURE 6. Flink’s programming model [78].

FIGURE 7. Kafka Streams topology [79].

Kafka Streams is part of the overall Kafka ecosystem
which consists of immutable records or messages, stream of
records called topics, consumers, producers, brokers, logs,
partitions, and clusters. Kafka Streams is a GDSPE. A stream
which represents an unbounded and immutable data records
is the most important abstraction in Kafka Streams. A proces-
sor topology is the feature used in Kafka Streams to define
the stream processing computational logic for an application.
A topology is simply a graph of stream processors (nodes)
that are connected by streams (edges) or shared state stores.
There are two special processors (source and sink) in the
topology as shown in Fig. 7. A source processor produces
an input stream to its topology from one or multiple Kafka
topics by consuming records from these topics and forward-
ing them to its down-stream processors. A sink processor
then sends any received records from its up-stream proces-
sors to a specified Kafka topic. The processed results can
either be streamed back into Kafka or written to an external
system [79].

Kafka Streams offers two ways to define the stream pro-
cessing topology. The first being the Kafka Streams Domain
Specific Language (DSL) which provides the most common
data transformation operations such as map, filter, join and
aggregations out of the box. The second is the Processor
API which enables the definition and connection of custom
processors as well as interaction with state stores [79]. Win-
dowing operations are available in the Kafka Streams DSL.

IBM Streams is a managed DSPE with a development
environment, runtime and analytic toolkits. An IBM Streams
application is a directed flow graph of operators [80].
As shown in Fig. 8, the fundamental building block of a
Streams application is an operator.

FIGURE 8. IBM Streams’ programming model [80].

An operator can have one or more input and output ports.
Individual records are structured list of attributes and their
data types while a schema is a specification of data types and
attributes in a tuple. The operator processes the records in
memory and produces a new stream of records as output. The
new stream of data is then emitted from the output port of the
operator. The operator can process data on a tuple-by-tuple
basis or on a window or batches of data.

2) DATA PARTITION COMPARISON
Storm provides complete control over how tuples are par-
titioned among the many tasks of a bolt subscribed to a
stream using a feature called stream grouping. There are eight
built-in and a custom stream grouping in Storm, these are
(i) Shuffle, where tuples are randomly distributed across the
bolt’s tasks in a way such that each bolt is guaranteed to get
an equal number of tuples. (ii) Fields, where the stream is
partitioned by the fields specified in the grouping. (iii) Partial
key, where the stream is partitioned by the fields specified
in the grouping but are load balanced between two down-
stream bolts to provide better utilization of resources [62].
(iv) All, where the stream is replicated across all the bolt’s
tasks. (v) Global, where the entire stream goes to a single
one of the bolt’s tasks (usually the task with the lowest id).
(vi) None, which does not care how the stream is grouped.
(vii) Direct, which means that the producer of the tuple
decides which task of the consumer will receive this tuple.
(viii) Local, where tuples are shuffled to just those in-process
tasks if the target bolt has one or more tasks in the same
worker process, otherwise, it acts like a normal shuffle.
(ix) Custom, which is achieved by implementing the Storm’s
custom stream grouping interface.

Spark automatically partitions RDDs and distributes the
partitions across different nodes.Hash and Range are the
common partitioning strategies supported in Spark. In hash
partitioning, data is evenly spread across various partitions.
However, in range partitioning, data tuples having key values
within a given range will appear on the same machine [81].

Flink programs are inherently parallel and distributed. Dur-
ing execution, a stream in Flink has one or more stream
partitions and each operator has one or more operator sub-
tasks. Streams can transport data between two operators in
a one-to-one pattern; this preserve the same partitioning and
ordering of the elements. Streams can also transport data in
a redistributing pattern by using partitioning strategies such
as hashing or random re-partitions; this changes the original
partitioning of streams [78].
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Kafka Streams partitions data for processing while the
messaging layer in the Kafka ecosystem partitions data for
storing and transporting. In both cases, this partitioning
enables data locality, elasticity, scalability, high performance,
and fault tolerance. Kafka Streams uses the concepts of
stream partitions and stream tasks as logical units of its paral-
lelismmodel. Each stream partition is an ordered sequence of
data records that maps to a Kafka topic partition. The Kafka
producer picks which partition to send a record to based on
the record’s key. Records with the same key get sent to the
same partition. The default partitioner for Java uses a hash of
the record’s key to choose the partition or uses a round-robin
strategy if the record has no key [82].

IBM Streams supports a number of different partitioning
methods using its DataStage technique [83]. These methods
include (i) Round-robin, which assigns the first record to the
first processing node; the second to the second processing
node; and so on until it reaches the last processing node.
It then starts over again. The round robin method always
creates approximately equal-sized partitions; it is useful for
resizing partitions of an input data set that are not equal
in size. (ii) Random, a method that randomly distributes
records across all processing nodes; similar to round robin,
this method can rebalance the partitions of an input dataset
to guarantee that each processing node receives an approxi-
mately equal-sized partition; however, the random partition-
ing has a slightly higher overhead than round robin because
of the extra processing required to calculate a random value
for each record. (iii) Same, a method which performs no data
repartitioning and output from the preceding stage is fed as
is to the next stage. (iv) Entire, where every instance of a
DataStage receives the complete data set as input at every
processing node. (v) Hash, amethodwhich is based on a func-
tion of one or more columns (the hash partitioning keys) of
each record; this method examines one or more fields of each
input record (the hash key fields) and assigns records having
the same values for all hash key fields to the same processing
node. (vi) Modulus, which is based on a key column modulo
the number of partitions; this method is similar to hash by
field but involves simpler computation. (vii) Range, which
divides a data set into approximately equal-sized partitions,
each of which contains records with key columns within a
specified range; this method is also useful for ensuring that
related records are in the same partition. (viii) Db2, which
partitions an input dataset in the same way that Db2 would
partition it. (ix) Auto, which allows the DataStage to deter-
mine the best partitioning method to use; typically, DataStage
would use ‘round robin’ when initially partitioning the data,
and ‘same’ for the intermediate stages of a job.

3) STATE MANAGEMENT COMPARISON
Storm provides abstractions for bolts to manage (save and
retrieve) the state of its operations. Currently, Storm has a
default in-memory based state implementation and also a
Redis backed implementation that provides state persistence.
The only supported state implementation in Storm, at the time

of writing this paper, is the KeyValueState, which provides
key-value mapping.

At a high level, structured streaming tracks state in a man-
ner similar in both its micro-batch and continuous modes.
The state of an application is tracked using two external
storage systems, a write-ahead log that supports durable,
atomic writes at low latency, and a state store that can store
larger amounts of data durably and allows parallel access
(e.g., S3 or HDFS). Structured streaming uses these systems
together to recover from failure [76].

Flink’s ecosystem of modules and services built on its core
offers different flavours of external state access and isolation.
Each stream operation in Flink can declare its own state and
update it continuously in order to maintain a summary of
the data seen so far [66]. State information during Flink’s
operations is maintained in an embedded key/value store [78].

Kafka Streams provides applications with powerful, elas-
tic, highly scalable, and fault-tolerant stateful processing
capabilities. Kafka Streams provides state stores, which can
be used by stream processing applications to store and query
data, which is an important capability for implementing state-
ful operations. These state stores can either be a RocksDB
database, an in-memory hashmap, or another convenient data
structure [79].

IBM Streams operators can be configured to keep state
information between subsequent tuples. This is achieved
using tuple history, operator windows, operator custom
logic, or primitive operators. The tuple history approach
means that expressions in parameters or output assignments
of operator invocations can refer directly to tuples received
in the past. This is because history access maintains a list of
tuples that can be subscripted by using the input port name.
The operator windows approach uses a window which is
a logical container for tuples recently received by an input
port of an operator. The operator custom logic approach is
made up of local operators’ states that persist across operator
firings and statements. An operator fires and statements get
executed when an input port receives a tuple or a punctuation.
Finally, the primitive operators which can either be generic
or non-generic are user-written operators with some state
mechanisms built into them. These are often controlled by
the developers of the operators [84].

4) PROCESSING GUARANTEES COMPARISON
Storm offers several levels of message processing guarantees.
These include best effort, at least once, and exactly once
through Trident, a higher-level abstraction in Storm. Trident
has consistent, exactly-once semantics and adds primitives
for doing stateful, incremental processing on top of any
database or persistence store.

Structured Streaming provides fast, scalable, fault-
tolerant, end-to-end and exactly-once stream processing
using a micro-batch processing engine. These guarantees
can be achieved by selecting the relevant mode based
on the application requirements without changes in the
Dataset orDataFrame operations. An at-least-once guarantee
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in Structured Streaming is achieved with the Continuous
Processing model.

The mechanism for message processing guarantees in
Flink ensures that even in the presence of failures, the pro-
gram’s state will eventually reflect every record from the data
stream exactly once. Flink can guarantee exactly-once state
updates to user-defined state only when the source partici-
pates in the checkpointing mechanism. In addition to exactly-
once state semantics, Flink can also guarantee an end-to-
end exactly-once record delivery, provided that the data sink
participates in the checkpointing mechanism.

Starting from version 0.11.0, Kafka has added an end-
to-end exactly-once processing semantics which guarantees
that for any record read from the source Kafka topics, its
processing results will be reflected exactly once in the out-
put Kafka topic as well as in the state stores for stateful
operations [79].

Consistent region is a recent concept introduced in IBM
Streams for providing resiliency to streams applications by
providing the ability to recover from failures. On a failure,
an IBM Streams application is reset to its last successfully
persisted state; this allows source operators in the application
to replay tuples submitted after the restored state. Consis-
tent region replay usually enables applications to achieve
an exactly-once tuple processing semantic. For all other use
cases, the replay enables applications to achieve at-least-once
processing semantic [85].

5) FAULT TOLERANCE COMPARISON
Storm relies on a strategy called acking mechanism to replay
tuples in case of failures. This mechanism tracks the comple-
tion of each tuple tree with a checksum hash. The checksum
will be zero if all tuples have been successfully acknowl-
edged. Every topology in Storm has a ‘‘message timeout’’
associated with it; hence, if Storm fails to detect that a
spout tuple has been completed within that timeout, it will
be considered to have failed the tuple and then it will be
replayed later. The mechanism periodically (default to every
second) checkpoints the state of the bolt to ensure that the
bolt is initialized to its previous state during a system crash or
restart.

Structured Streaming ensures an end-to-end exactly-once
fault-tolerance guarantees through checkpointing and write-
ahead logs. Structured Streaming checkpointing system uses
a larger-scale state store to hold snapshots of operator states
for long-running aggregation operators. The write-ahead log
approach keeps track of which data has been processed and
reliably written to the output sink from each input source.
This log can be integrated with the sink to make updates to
the sink atomic [76].

Flink implements fault tolerance using a combination of
stream replay and checkpointing. A streaming dataflow in
Flink can be resumed from a checkpoint while maintaining
consistency or exactly-once processing semantics. This is
achieved by restoring the state of the operators and replaying
the events from the checkpoint [78].

Kafka Streams builds on a fault-tolerance capability inte-
grated natively within the Kafka core. Kafka partitions are
highly available and replicated, as such when a data stream is
persisted to Kafka, it is available even if the application fails
and needs to re-process it. Tasks in Kafka Streams leverage
the fault-tolerance capability offered by the Kafka consumer
to handle failures. If a task runs on a machine that fails,
Kafka Streams automatically restarts the task in one of the
remaining running instances of the application [79].

IBM Streams provides a number of facilities to allow
recovery from failed hardware and software components
[80]. IBM Streams provides support for the following fail-
ure recovery: (i) operator state by providing a checkpoint-
ing mechanism at regular intervals; (ii) failed processing
elements by maintaining the status of each processing ele-
ment using the Streams management services; (iii) failed
application hosts by either restarting the host controller ser-
vice or pausing/stopping the failed hosts; and (iv) manage-
ment hosts by persisting the state of the critical management
services and recovering it when the services are restarted.
Streams applications can also achieve fault tolerance through
user-applied consistent regions [86]. The summary of fea-
tures of the selected five DSPEs considered in this study is
described in TABLE 2.

6) OTHER COMPARISONS
Other features or criteria that are useful in deciding about
what DSPE to use include the community base, third party
integration, usability, and support for complex query process-
ing and analytics. In terms of maturity and user base, Spark
and Storm will have an edge over the other DSPEs; both are
matured projects with bigger user base, more training materi-
als, and more support for third-party libraries. The nature of
the developer and user base of a DSPE helps in understanding
its dynamics. For a project that requires complex stream
processing and machine learning analytics, Spark and Flink
will be the best options because of their built-in libraries
for large-scale computations and their support for machine
learning algorithms. For time critical applications that require
a collection of services and hard real-time processing, Kafka
Streams and IBM Streams are good options. We will describe
a DSPS design use case scenario and our choice of DSPE for
this use case based on this study.

V. DESIGN AND DEVELOPMENT OF A DSPS
A. USE CASE SCENARIO
Our industry-academic collaboration with Gnowit, a media
analytics company is striving to develop a DSPS that can
facilitate complex multilevel predictive analytics for real-
time streaming text data from a variety of sources including
the Web and social media data. Gnowit scrapes news articles
from various sources for business intelligence [28]. The arti-
cles are collected on a continuous basis from several sources
including news and blog websites, social media streams,
and RSS/Atom news feeds, which need to be analysed to
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TABLE 2. Comparison of DSPEs.

FIGURE 9. News articles stream processing use case.

determine correlations among news items, topics, objects,
news publishers, and the peoplementioned in the articles. The
data processing for the DSPS would typically include Natural
Language Processing (NLP), topic modelling from articles,
sentiment analysis, and identification of duplicate and fake
news.

B. DSPE SELECTION
With so many DSPE choices, Gnowit will have to factor in
a number of things before picking the right DSPE for their
stream processing needs. This is because the DSPE is the
core component of a DSPS. Often, the choice of DSPE will
determine the choice of other components of the DSPS. The
main criteria that we considered for selecting the DSPE for
this case study include support for a variety of programming
languages, manageability and ease of integration with other
data processing systems; other factors include the availability
of a rich set of tools for data engineers like libraries for
machine learning, complex event processing, graph process-
ing and streaming SQL. Spark Structured Streaming and
Flink turned out to be the two options that were well suited
for this case study. Finally, we chose the Spark ecosystem
because of its maturity and current user base.

Fig. 9 shows the different components that were selected
to build such a DSPS. Data streams are ingested and pre-
processed in Kafka [87], a distributed messaging and stream-
ing platform. Kafka brokers publish the ingested streams as
topics that are further processed and analysed using Solr,

Hadoop, or Spark clusters [38]. Topics from Kafka are saved
in a Hadoop Distributed File System (HDFS). Spark is used
for distributed parallel execution of analytics processes to
extract further knowledge from the data as needed. Solr is
a real-time multilingual intelligent keyword searching and
content clustering tool. Streaming data can be processed by
Spark Structured Streaming and stored in efficient big data
storage systems such as Cassandra. The extracted knowledge
can be used to define machine learning models for predictive
analytics to build a Decision Support System (DSS) sending
outputs to a visualization tool. Thus, the framework supports
processing and storage of large volumes of both streaming
and batch data using Spark MLlib and Structured Streaming
for decision support.

VI. CONCLUSION
A. SUMMARY
There are many existing and emerging applications that
require real-time processing of high-volume heteroge-
neous data streams. There are also many open-source and
proprietary systems for data stream processing. Extracting
meaningful timely insights from unbounded data is very chal-
lenging. The large number of available systems is good but
poses a major challenge in terms of selecting the right compo-
nents or processing framework for different use cases. Under-
standing the required capabilities of streaming architectures
is vital in making the right design or usage choice. This paper
reports our contributions towardsmitigating these challenges.
We present a literature survey and a study of the components
of data stream processing systems (DSPS). A critical review
of the literature and key features of stream processing engines
(DSPE) is presented which highlights some key differences
in capabilities and applications of the DSPEs. We propose
a taxonomy for categorizing DSPEs and use the same to
compare cutting-edge open source and propriety DSPEs. Our
ongoing work on streaming data analytics with our industry
partner is presented as a use case that can serve as a guide
for organizations and individuals planning to implement a
real-time data stream processing and analytics framework.
We discuss important gaps that were revealed in our study
as future research.
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B. OPEN CHALLENGES
The ever-increasing volume and highly irregular nature of
data rates pose new challenges to DSPS. One such challenge
is how to accurately ingest and integrate data streams from
various sources and locations into an analytics platform. This
demands new strategies and systems that can offer the desired
degree of scalability and robustness in handling failures.
Another interesting research gap revealed by this study is
the lack of a well-organized benchmark for measuring the
performance of DSPEs. There is a need for benchmarking
DSPEs using attributes such as performance, security, and
integration with big data tools and libraries for different
use cases. Most of the previous surveys and comparative
studies of DSPEs suggest that there are features that are
common to most DSPEs such as the use of Java Virtual
Machine (JVM), however, the ranking and recommendations
for DSPEs for different use cases remain an active research
area. There is also a need for big data stream mining systems
that can combinemachine learning algorithms and distributed
stream processing in a single platform under an open source
umbrella [35]. Spark and Flink are among the cutting edge
DSPEs with these capabilities but more work is needed on the
extension and integration of analytic libraries with DSPEs.
For instance, there are many machine learning algorithms
that are not yet supported in Spark Streaming and Structured
Streaming.

The use case scenario discussed in this paper shows the
inherent complexity of streaming data processing systems
due to the need to include multiple data processing and man-
agement components, install these components on distributed
computing resources that must be coordinated and managed,
define and schedule data processing pipelines to be executed
efficiently, and deliver the results in the desired format. There
are many commercial or proprietary DSPSs which facilitate
stream processing, but such systems provide limited flexibil-
ity for customization in choosing the different components of
the DSPS. Researchers and developers can also build custom
DSPS using open source software and tools, which can be
extended as needed with new software code and deployed as a
centralized or distributed multi-cluster system with preferred
data storage and query systems.

The rapid growth of data in volume, veracity, and velocity
has enabled exciting new opportunities and presented huge
operational, data storage, and knowledge management chal-
lenges. There is a need for research on systematic compara-
tive analysis and recommendations of databases or persistent
stores for large streaming data. In addition, knowledge min-
ing and management strategies are needed to identify, rep-
resent and store only the important data stream components
and extracted knowledge instead of the massive raw data for
further analytics and decision support.
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