
A Survey Of Stream Processing �R. StephensComputer Systems Research Group,Department of Electronic and Electrical Engineering,University of Surrey,Guildford,Surrey.GU2 5XH.email: r.stephens at ee.surrey.ac.ukOctober 24, 1995AbstractStream processing is a term that is used widely in the literature to describe a varietyof systems. We present an overview of the historical development of stream processingand a detailed discussion of the di�erent languages and techniques for programming withstreams that can be found in the literature. This includes an analysis of dataow, specializedfunctional and logic programming with streams, reactive systems, signal processing systems,and the use of streams in the design and veri�cation of hardware.The aim of this survey is an analysis of the development of each of these specializedtopics to determine if a general theory of stream processing has emerged. As such, we discussand classify the di�erent classes of stream processing systems found in the literature fromthe perspective of programming primitives, implementation techniques, and computabilityissues, including a comparison of the semantic models that are used to formalize streambased computation.
�To appear in Acta Informatica. This report is a revised version of Reports CSRG95-03 and CSRG95-04.

CONTENTS iContents1 Introduction 11.1 A Theory of Stream Processing : 21.2 Overview : 21.3 Acknowledgements : 32 A Brief History of Stream Processing 32.1 The 1960s : 32.2 The 1970s : 32.3 The 1980s : 42.4 The 1990s : 53 Dataow 53.1 Origins : 63.2 Dataow Networks : 63.3 Dataow Computation and Semantics : 63.4 The Uptake of Dataow : 73.5 Synchronous Dataow : 84 Specialized Functional and Logic Programming 84.1 Overview : 84.2 Functional Approaches to Stream Processing : 84.3 Logic Programming Languages with Streams : 105 Reactive Systems and Signal Processing Networks 115.1 Streams, Signals and Sensors : 115.2 The Strong Synchrony Hypothesis and Multiform Time : : : : : : : : : : : : : : 116 Stream Processing in the Design and Veri�cation of Hardware 126.1 SCAs : 127 Other Stream Processing Formalisms 137.1 ALPHA : 137.2 Stream X-Machines : 148 Stream Processing Primitives and Constructs 148.1 Introduction : 148.2 Common Functional Stream Processing Operations : : : : : : : : : : : : : : : : : 148.3 Stream Processing Primitives in Logic Programming : : : : : : : : : : : : : : : : 169 Stream Processing Languages 199.1 A Running Example: the RS-Flip-Flop : 199.2 Formalization of the Flip-Flop as a ST : 199.3 An Implementation of the Flip-Flop as a SPS : 209.4 Lucid : 219.5 LUSTRE : 239.6 Other Dataow Languages : 26

CONTENTS ii9.7 SIGNAL : 269.8 ESTEREL : 299.9 AL : 329.10 PL : 339.11 Daisy : 359.12 PROLOG with streams : 359.13 STREAM : 379.14 ASTRAL : 4010 Conclusions 42References 44

1 INTRODUCTION 11 IntroductionWithin computer science the term stream processing is used generically to refer to the study ofa number of disparate systems. For example, dataow systems, reactive systems, synchronousconcurrent algorithms, signal processing systems, and certain classes of real-time systems are allexamples of stream processing research.At the conceptual level the mathematical analysis of each of these systems is usually based onthe study of a particular type of stream processing system (SPS); that is, it is based on the studyof a system comprised of a collection of modules that compute in parallel, and that communicatedata via channels. In particular, in a typical SPS modules are usually divided into three classes:sources that pass data into the systems; �lters (also called agents) that perform some atomiccomputation; and sinks that pass data from the system. SPSs are often visualized as directedgraphs, for example, a three-source, two-sink SPSs with �ve �lters is shown in Figure 1.SPSs take their name from the communication performed by their channels that pass infor-mation between modules as in�nite sequences of data that are referred to as streams. A stream,is essentially an in�nite list of elements a0; a1; a2; : : : taken from some data set of interest A, andis usually formalized mathematically as a function a : T ! A, wherein T = N = f0; 1; 2; : : :grepresents discrete time.
M

In

In

Out

Out1

2M

M

M

4

5

M

In

1

2

31

2

3 Figure 1: A Typical SPSsStream processing research, in particular the study of SPSs, can be traced back at least asfar as the 1960s, although not always in a form that is immediately recognizable as such today.Indeed, stream processing has been a particularly active area of research as the visualizationof systems as SPSs is appropriate to formalize many types of computational models that arisequite naturally in computer science including: arti�cial neural networks, coupled map lattice

1 INTRODUCTION 2dynamical systems, cellular automata and also operating systems and many types of safety crit-ical systems. Moreover, stream based computation is also appropriate to formalize hardware atseveral levels of abstraction including the conceptual level and the register transfer level.1.1 A Theory of Stream ProcessingDespite the usefulness of stream based computation as a conceptual tool, in our opinion the pre-occupation of stream processing with SPSs has from some perspectives hindered the developmentof a clear, concise and mathematically neutral theory of systems that compute over streams. Webelieve this observation is supported by the large variety of di�erent implementation techniquesand semantic models that can be found in the literature to model SPSs, whose advantages overother techniques are often justi�ed using qualitative rather than quantitative arguments. In-deed, we believe it is fair to observe that with a few exceptions stream processing systems havebeen used as a convenient tool in research that has been concerned with other issues, ratherthan the development of a general theory of stream processing encompassing topics such as: theanalysis of the computability of stream processing primitives and stream based computation; astudy of the languages and logics needed to specify and reason about systems that compute overstreams; and the theory of the veri�cation of di�erent classes of stream processing systems.For example, dataow is considered to be a canonical example of stream processing research,but dataow is predominately concerned with the development of parallel processing techniques.In particular, this is highlighted by the fact that dataow is often considered to be a specializedimplementation method for functional programming rather than a separate area of research.As another example, M Broy has carefully developed an extensive theory of parallel, dis-tributed, asynchronous SPSs using functional techniques (see Section 4.2.2). However, this workis by de�nition also specialized and hence does not provide a general theory of stream processingin the sense de�ned above (see [45]).1.2 OverviewTo clarify some of the issues that we believe are important in the development of a generaltheory of stream processing, in this paper we present a survey of the literature. It is our aim tohighlight some important theoretical as well as practical considerations and so our discussionsare based on the analysis of stream transformers (STs) of which SPSs can be considered as aspecial case. Speci�cally, a ST is an abstract system that takes n streams as input and producesm streams as output for some n;m � 1, and can be characterized as a functional� : [T ! A]n ! [T ! A]m:In contrast, a SPS is a system composed of a collection of separate, but communicating processesthat receive stream data as input and produce stream data as output. Thus, a SPS can beviewed as a (parallel) implementation of an abstract ST speci�cation, and stream processing canbe de�ned as the study of both STs and SPSs.1.2.1 Summary. In Section 2 we have a brief historical perspective of the developmentof stream processing from the early 1960s to the present day.The three sections following this historical overview are devoted to a more detailed analysisof some of the di�erent approaches to visualizing and representing SPSs: dataow (Section 3);specialized functional and logic programming (Section 4); reactive systems and signal processing

2 A BRIEF HISTORY OF STREAM PROCESSING 3(Section 5); and stream processing in the design of hardware (Section 6). In each case we discussthe basic motivations and ideas underlying each paradigm. However, for convenience in orderto clarify certain issues relating to computability theory and language design we have deferredthe topic of stream processing primitives and languages arising in this research until Sections 8and 9. Our literature survey is concluded in Section 7 wherein we briey mention some topicsrelated to stream processing.In Section 10 we make some concluding remarks.1.3 AcknowledgementsI would like to thank the following colleagues for their comments and suggestions during thepreparation of this survey: B C Thompson, B R McConnell, M J Poole (Swansea) and L JSteggles (Newcastle). In addition, I would also like to thank the (anonymous) referees for theircomments that have improved the presentation of this paper. In particular, I thank S D Johnson(Indiana) for his very detailed and constructive comments.2 A Brief History of Stream ProcessingIn this section we present a brief historical perspective of the development of stream processingover the last four decades. We note that we only mention either well-known research or researchthat we believe is representative of a particular topic within stream processing, and that providesa useful starting point for any further reading the reader may wish to undertake. Some of thetopics covered in our overview are analysed in more depth in the following sections.2.1 The 1960sWithin computer science the term stream has been attributed to P J Landin (see [50]) formu-lated during the development of operational constructs presented as part of his work on thecorrespondence between ALGOL 60 and the �-calculus (see [138] and [139]). Indeed, we notethat P J Landin's original use for streams was to model the histories of loop variables, but healso observed that streams could have been used as a model for I/O in ALGOL 60.The �rst type of SPSs that can be identi�ed within the literature are dataow systems thathave certainly existed, although not always under the name `dataow', as early as the late 1960s(see for example [157] and [5]). The term dataow originates from the term data ow analysis(see [3]) used to evaluate potential concurrency in computations.2.2 The 1970sThe �rst dataow language, and probably still the most famous, is Lucid (see [223]) that wasconceived in 1974. Lucid is based in part on the language POP-2 (see [51]), that allowed alimited use of streams. Other relevant dataow references from the 1970s are [6], [135], [68],[226] and [10]).In 1974 G Kahn published his well-known work (see [121]) outlining a simple parallel pro-gramming language designed for representing SPSs using a �xed-point semantics. The use of a�xed-point semantics for SPSs in the style of Kahn's work is common, and for this reason SPSsare sometimes referred to as Kahn networks.

2 A BRIEF HISTORY OF STREAM PROCESSING 4In 1975 W Burge (see [50]) discussed the use of streams as a method for structured program-ming and introduced a set of functional stream primitives for this purpose.In 1976 P Henderson and J H Morris (see [100]) and D P Friedman and D S Wise (see [78])published their work on lazy evaluation techniques that are useful for computing with in�nitedata types of which streams are an example. The work presented in [78] was the �rst in theresearch project `applicative programming for streams' examining the issue of concurrency usingstream programming. This work is continued in [79] that presents a �le system and text editor,and [79] that explores the use of streams in programming problems such as approximations toreal arithmetic, the Sieve of Eratosthenes and 2-3-5 composites.In 1977 G Kahn made another contribution to the �eld with his joint paper with D Mac-Queen (see [123]) wherein they introduced a language designed to model distributed processinteraction using ideas from [121].2.3 The 1980sDataow continued to be an area of widespread research during the 1980s and several additionalsemantic models for dataow were introduced, for example, [76], [21], [197], [198], [199], [131]and [120].Logic programming languages also began to be used to model SPSs. A modi�cation ofPROLOG used to model what have become termed perpetual processes (see [147]) within logicprogramming was introduced in [19].Functional programming languages were also used widely to model SPSs. Notable in thisarea is the work of M Broy and his use of functional languages to study stream based distributedprocessing (see for example [35], [36], [37], and [38]).In 1985 the �rst paper on the subject of synchronous concurrent algorithms (SCAs) wasreleased. Conceived by B C Thompson and J V Tucker, SCAs (see [209]) have been the stimu-lation for much of our own work into stream processing.The year 1985 also saw the publication of a paper by D Harel and A Pneuli (see [91]) onthe subject of reactive systems. Reactive systems, together with signal processing networks andsynchronous dataow networks { that can be considered as special cases of reactive systems {have been the stimulation for a large body of stream processing research (see for example [84],[53] and [25]).During the 1980s streams and STs have also been used extensively for hardware description,for example, [192], [193], [194], [65], [66], [95], [177] and [92]. We note that the work of MSheeran on Ruby, as discussed in [192], [193] and [194] above, includes a generalization of therepresentation of streams to the function space [Z! A] (wherein Zrepresents the integers) toavoid dealing with initial conditions in hardware speci�cations. (References on the incorporationof streams into foundational mathematics can be found in Section 10.)Two surveys of the use of stream processing in hardware design during the 1980s can befound in [176] and [64]. Indeed, the work presented in [176] is based in part on the work of D PFriedman and D S Wise and is the �rst in a large body of research concerned with the use ofapplicative stream processing for the design and synthesis of hardware based on the languageDaisy.

3 DATAFLOW 52.4 The 1990sAs with the 1980s, semantic models for dataow are still being developed, for example, [125],[14], [15], [77], and [141], although the work in [14], [15] is concerned with owchart schemes (see[142]) that has applications to the study of dataow schemes. A useful overview of the conceptof dataow with an extensive bibliography can be found in [190].Developments of Ruby have continued including formalizations of the Ruby algebra (see forexample [195] and [191].)SCAs continue to be an intensive area of research (see Section 6.1 for references) as doesresearch into reactive systems (see for example [28], [88], [85], [184] and [87]).The 1990s have also produced a body of work concerned with the theoretical foundations ofstream processing. In 1992 J V Tucker and J I Zucker (see [213]) released the �rst in a seriesof generalizations of computability theoretic results from the natural numbers to algebras withstreams. This work is continued in [214]. In addition, [201] presents a theoretical study of thecompositional properties of STs in Cartesian form.The theoretical work of K Meinke has applications to the speci�cation, veri�cation andparameterization of STs (see [160], [161], [162], [163]) as does the work of K Meinke with L JSteggles and B M Hearn (see [164] and [99] respectively).Finally, M Broy continues his functional study of distributed processing over streams (seefor example [42], [46], and in particular [45]).3 DataowAs dataow networks were the �rst type of SPSs to appear in the literature we begin our moredetailed survey with an examination of the research aims of dataow and an analysis of thesemantic models and implementation techniques that have been developed. A more detailedintroduction to the concept of dataow can be found in [190].To aid in this discussion, because so much of the stream processing research in the literatureis concerned with SPSs, in the sequel it is useful to be able to identify di�erent types of SPSsconcisely. Therefore, we will classify SPSs by the following three main characteristics:(1) Either synchronous or asynchronous �lters { that is, �lters that either compute in a syn-chronized manner with respect to other �lters (as for example in Section 6.1) or �ltersthat compute with no synchronization with respect to other �lters.(2) Either deterministic or non-deterministic �lters { that is, �lters that either do or do notcompute a function.(3) Either uni-directional or bi-directional channels.Notice that in our de�nitions each of these three classifying features only reect the behaviourof individual �lters and not the whole SPS of which they are a part. Thus, from the perspectiveof our classi�cation synchrony and asynchrony are independent from determinism and non-determinism, whereas from the perspective of the whole network behaviour this may not be thecase.

3 DATAFLOW 6We will use the following shorthand notation to denote SPSs that are designed to modelnetworks with speci�c combinations of the above three properties: &��-SPS, wherein & 2 fS;Ag,� 2 fD;Ng, and � 2 fU;Bg. For example, using this classi�cation a synchronous, deterministicSPS with unidirectional channels is denoted SDU-SPS, and an asynchronous, non-deterministicSPS with bidirectional channels is denoted ANB-SPS.3.1 OriginsAs we have mentioned dataow research began as far back as the 1960s and continues to bean area of widespread research. One of the continuing aims of the dataow approach has beento avoid the so-called `von Neumann bottleneck' (see [12] and [13]) and exploit the parallelismo�ered by VLSI technology. As part of this research many experiments with specialized archi-tectures have been undertaken (the interested reader can consult the bibliography of [190] for alist of references).We note in passing at this point that it has been observed that the link between J von Neu-mann and sequential computing methods is historically inaccurate, as he was one of the earlyadvocates of parallel computing methodologies ([127]). However, we use this phrase as it can befound in the dataow literature.3.2 Dataow NetworksA classical dataow network is an ADU-SPS, although dataow computation based on ANU-SPSs has also been studied, and more recently dataow computation based on SDU-SPSs hasbeen of interest. The �lters within a dataow network (sometimes referred to as coroutines { see[157]{ and also agents) compute over streams { that is, A! (see below) wherein the data type Ais usually restricted to int, bool, real and lists of these types.3.3 Dataow Computation and SemanticsFrom an operational perspective the dataow model of computation is typically divided into twobasic forms: data driven (eager evaluation) wherein �lters compute depending upon the avail-ability of data at their inputs; and demand driven (lazy evaluation) wherein �lters request dataon the input lines when they wish to compute. However, in [112] it is argued that neither of theseinformal implementation ideas embody a semantics that is suitable for dataow computers. Incontrast, [112] suggests four operational semantic models for dataow: piped eager, tagged eager,piped lazy and tagged lazy based on a graphical language called at operator nets. Furthermore,[112] shows that using such a model it is possible to determine whether the operational semanticsof a dataow network is equivalent to its intended denotational semantics.3.3.1 Kahn's Work. The most common approach to a denotational model for dataowis a domain-theoretic semantics based on the inuential work of G Kahn (see [121]), whereinhe introduced a simple parallel language for representing ADU-SPSs in an ALGOL like style.However, the generality of the method Kahn introduced to provide a semantics for this languagemeans that his techniques can also provide a language independent semantic model for bothSDU-SPSs and some ADU-SPSs (see Section 3.3).Kahn's interest in such a language was not motivated by the development of a user-friendlyprogramming methodology for describing ADU-SPSs, rather Kahn was interested in how to

3 DATAFLOW 7prove formally properties of programmes written in such a language. In particular, propertiesrelating to the networks they described including termination, non-termination and propertiesof their output.Kahn observed that the (possible in�nite) sequences of data from some data type D passingalong arcs (what he referred to as histories) that connect modules in a SPS can be formalizedmathematically as the set D! = [T ! D]SD� (see Section 8.2). As such by associating theusual partial ordering with D! he observed that D! is a complete partial order. Therefore, itis possible to view a SPS N with n 2 N input arcs and m 2 N output arcs as computing afunctional FN : (D!)n ! (D!)m:Hence, with the assumption that each module in N computes a continuous function (not anunreasonable assumption) the functional F is itself continuous and so it is possible to applythe First Recursion Theorem (see for example [167], [59] and [202]) to derive a semantics forN . More speci�cally, Kahn observed that the least �xed point of the functional FN is therequired semantics of the network N . Moreover, Kahn showed that using this method thestep from formalizing the semantics of SPSs to formalizing the semantics of the language heintroduced for describing such networks (or indeed any well-typed language for describing SPSs)is straightforward.As such, in line with Kahn's motivations he observed that by adopting a �xed-point semanticapproach that Scott's Induction Rule (Kahn cited [148]) and several techniques for provingproperties of recursive programs found in [220] are now available to the programmer, includingstructural induction and recursion induction.3.3.2 Other Dataow Semantical Models. Despite the generality of Kahn's methodit is not appropriate for some more general classes of dataow network (see [132]). For example,non-deterministic models of dataow computation. Furthermore, `straightforward' extensionsto the Kahn semantic model to cope with non-determinism can fail to be compositional (see[34] and also [183]). Consequently for this and other reasons many other semantic models havebeen formulated for dataow. For example, some recent references include [76], [21], [197], [131],[112], [125], [141], and [77].Despite the many semantic models for dataow none seems to have been widely adopted.In addition, while the equivalence of certain operational and denotational semantic models fordataow is addressed (see for example [76], [112], [126], [36] and [40]) the formal relationshipbetween the many di�erent approaches to dataow is poorly addressed in the literature, as isthe correspondence between the model of computation provided by dataow and formal modelsof computation. For example, it is interesting that despite the fact that the dataow approachis in many senses closely related to CCS (see [170]) that (as far as we are aware) dataow hasnot been formalized using this well-developed formalism. It has been suggested that this is dueto the `value' passing nature of dataow networks that CCS does not handle concisely; andthat the modelling of dataow creates too much overhead to make its mathematical formulationusing CCS worthwhile.3.4 The Uptake of DataowDespite the extensive body of dataow research the dataow approach appears to have hadlittle impact on the traditional approach to `von Neumann computing'. Indeed, even the most

4 SPECIALIZED FUNCTIONAL AND LOGIC PROGRAMMING 8well-known dataow language Lucid (see Section 9.4) has been described as `a language lookingfor an application'.The reasons for the poor uptake of the dataow approach may stem from two di�erent areas:on the practical side, implementation of the dataow approach on conventional architecture leadsto ine�ciencies, including large and wasteful memory usage, that has required the developmentof specialized architectures; and on the theoretical side, as we have already mentioned, the lackof a generally accepted clear and straightforward semantics.3.5 Synchronous DataowThe asynchronous nature of dataow can lead to problems with non-determinism and associatedanomalous behaviour (see [42]); and cyclic networks can su�er from deadlock (see [222] and[172]). Synchronous dataow has been developed to avoid these problems. While each �lter ina synchronous dataow network still has its own clock, rather than a global clock as the namemight suggest, the interplay between these clocks is restricted and ensures synchronous (andhence deterministic) behaviour.We discuss synchronous dataow more fully in Section 9.5 when we examine the languageLUSTRE that is used to describe synchronous dataow networks.4 Specialized Functional and Logic ProgrammingThe theoretical approaches used to incorporate streams into functional and logic programminglanguages are in many cases closely related, and are essentially that of a domain-theoreticapproach. For this reason we have grouped these two areas of research together into a separatesection of our literature survey. A detailed discussion of the domain-theoretic relationshipbetween functional and logic programming languages can be found in [196].4.1 OverviewIn Section 4.2 we examine the functional approach to stream processing and in particular thework of M Broy.In Section 4.3 we look and logic programming with streams, and in detail at a modi�cationof PROLOG that can be used for stream processing.4.2 Functional Approaches to Stream ProcessingThe use of the function abstraction operator (�-abstraction) provides a mechanism for the rep-resentation of STs in functional languages in both second-order and higher-order forms. Indeed,most dataow languages are functional languages, and some researchers regard dataow as aparticular implementation technique for the functional paradigm (see the bibliography of [190]for a list of references on this subject). In particular, within functional programming STs areoften referred to as being in data passing form and higher-order STs (third-order or above) arereferred to as being in agent passing form.As dataow languages and functional languages are closely related, in some sense any func-tional programming language can be considered suitable for general purpose stream program-ming. For example, the well-known functional languages LISP, ML and MIRANDA (see [169]and [215]) can all be used to represent STs. However, whether such languages provide a natural

4 SPECIALIZED FUNCTIONAL AND LOGIC PROGRAMMING 9and straightforward mechanism for the speci�cation of STs is less clear and for this reason sev-eral specialized stream orientated functional languages have been developed including ARTIC(see [60]), HOPE (see [52]) and RUTH (see [98]) designed to meet more speci�c needs such asreal-time programming over streams.4.2.1 Functional SPSs and Semantics. Typically ADU-SPS and ANU-SPS arestudied using the functional paradigm and as with dataow languages the work of G Kahn hasbeen widely adopted as a semantic approach for functional stream processing. However, other(sometimes related) approaches are also used including greatest �xed points (see [61] and [82])and Aczel's logical theory of constructions (see [2], [71] and [72]). In addition, the work of [78]and [100] on lazy evaluation has provided an implementation technique for functional streamprocessing that has been widely adopted.4.2.2 Applications. The veri�cation of functionally speci�ed STs has been explored inthe literature. In particular, operating systems have been an area of quite extensive research(see [119] for an overview) as the swapping of processes can be modelled using agent passingstream transformers. An example of operating system speci�cation can be found in [46] andin addition this paper provides an example of how ANU-SPS can be speci�ed using classes offunctions.As a more detailed example of functional stream processing research we now discuss thework of M Broy who has made a signi�cant contribution to the development of techniquesfor functionally based stream processing. In particular, we discuss the FOCUS project thatprovides a functional framework for the speci�cation of distributed systems based on streamcommunication.The FOCUS Project. FOCUS (see [45]) is based on the work developed in [36], [39], [40],[41], [42], [47], [43], and [44].FOCUS is not a language, but rather a collection of tools and modelling concepts that pro-vide a framework for the description of parallel distributed systems as concurrent asynchronousprocessing elements. Within such networks data is exchanged via unbounded FIFO channelsthat are modelled as streams.FOCUS aims to provide a theory of stepwise re�nement and modular development of parallelsystems and includes veri�cation calculi that are intended to provide a formal system to reasonabout the correctness of system implementations at various level of abstraction. However, itis not the intention of FOCUS to provide a theory of stream based distributed processing (see[45]).Despite the fact that FOCUS is a paradigm and not a language it does provide two con-crete representations for expressing STs (as SPS). The �rst (and most abstract in the sense ofspeci�cation) is the language AL based on AMPL (see [36]) and the second is the language PLbased on the work in [47] and [62]. We discuss the languages AL and PL in Sections 9.9 and9.10 respectively.Given the speci�cation of an ST in AL the FOCUS paradigm provides transformationalrules (re�nements) towards more concrete representations (in the sense of speci�cation). Indeed,within FOCUS a representation is considered to be in its most concrete form (an implementa-tion) if no further re�nements and no further re-writings to another formalism (representation)are possible. Given this de�nition the implementation language of FOCUS can be consider to bePL, although one can imagine that these techniques could be extended to additional languages.

4 SPECIALIZED FUNCTIONAL AND LOGIC PROGRAMMING 104.3 Logic Programming Languages with StreamsAs logic programming provides a high-level and useful method of speci�cation for some classes ofsystems it is natural that some researchers have explored the use of logic programming languagesfor the speci�cation of SPSs. Indeed, there are several examples of modi�cations of relationallanguages for stream processing that can be found in the literature. In [179] these languages aredivided into three groups:(1) Committed choice parallel programming systems, for example, PARLOG (see [54]).(2) Extension of PROLOG to include either the parallel and or parallel or operators (see forexample [145]).(3) Extension to PROLOG to include functional constructs, for example, [122], [146], [203],[174], [20], and [63].However, a di�erent classi�cation can be found in [20] wherein logical languages for programmingwith streams are divided into two groups:(A) Languages based on static input-output mode variable declarations for example the lan-guages of [56] and [216].(B) Languages based on dynamic variable annotations for example [55], [189] and [203].While we are not aware of any work in the literature that describes the relationship betweenthese two classi�cations, it is possible to make the following general comments on the methodsused to incorporate the use of streams in logic programming.4.3.1 Describing SPSs as Relations. The use of the term `coroutine' in relationallanguages does not directly imply the use of streams (see [179]). However, typically logic pro-gramming languages modi�ed for stream programming are designed to represent ADU-SPSs,although the particular description of ANU-SPSs will of course depend on the stream process-ing operations and types of concurrency allowed in the particular language.4.3.2 The Use of Streams. As with the functional approach, streams are treated as theunion of �nite and in�nite sequences. In particular, streams are typically implemented as �nitelists, although the declaration and manipulation of in�nite lists (and hence streams) may be per-mitted. However, the use of in�nite lists in some relational languages may be non-terminatingas they tend to use eager evaluation.Specialized logic programming languages extended with non-strict processes and lazy evalua-tion to cope with stream programming are sometimes termed perpetual processes (see [147]) andhave many similarities with functional languages. (A survey of the relationship between logicaland functional languages can be found in [63] and [20].) Alternatively, relational languages canbe modi�ed to cope with streams by eliminating the occurs check, although this can lead to`unsound inferences' (see [179]).4.3.3 Semantics. Several semantic approaches have been adopted for dealing withperpetual processes including a �xed-point semantics in the style of Kahn. A discussion andcomparison of these approaches can be found in [143].

5 REACTIVE SYSTEMS AND SIGNAL PROCESSING NETWORKS 114.3.4 Languages. In addition to the specialized logic programming languages we havealready mentioned in Section 4.3 we look in detail at a modi�cation of PROLOG to cope withthe use of streams.5 Reactive Systems and Signal Processing NetworksThe reactive system paradigm (see [91]) and signal processing paradigm are conceptually closelyrelated. The essential di�erence between the two approaches is that reactive system research isconcerned with SDB-SPSs and signal processing is concerned with SDU-SPSs; that is, in reactivesystems channels are bidirectional. Consequently, from this point we will use the term `reactivesystems' to mean both reactive systems and signal processing networks.Reactive systems are designed to model real-time systems such as operating systems andprocess control programs that `repeatedly respond to inputs from their environment by producingoutputs'. Stream communication provides a natural method for the speci�cation of real-timesystems. However, real-time system speci�cation is not limited to this technique and is the reasonthat in general real-time system theory is less related to stream processing than the specializedreal-time system research explored in reactive system theory. Therefore in this section we discussreactive systems as a separate topic.5.1 Streams, Signals and SensorsReactive systems and signal processing systems communicate via signals that are related to ourconcept of streams. Signals are divided into two types: pure signals that are un-typed andsimply communicate an `event' that can be used for synchronization; and typed signals thatcommunicate data. Within the reactive system paradigm signals may be used for both inputand output, but we note that typed signals are only used for input and are referred to as sensors.Given this informal de�nition signals in signal processing networks are all sensors. A comparisonof typed signals and streams can be found in Section 9.7.5.2 The Strong Synchrony Hypothesis and Multiform TimeThe reactive system paradigm is based on what is referred to as either the strong or perfectsynchrony hypothesis (see [26]) that requires all �lters within a network to react instantly toinput producing a corresponding output in zero time. As a consequence the whole computationperformed by a reactive system is `instantaneous'. In addition, reactive systems use what isreferred to as a multiform notion of time (see [26]) wherein signals (streams) may be used as atime unit. As such, co-operation of sub-tasks (processes) de�nes new temporal relations thatare used to de�ne the global ordering of the data (compare [92]).5.2.1 Semantics. The semantics of reactive systems have been formalized using temporallogic (see [181]). In addition, [181] also includes a comparison of several di�erent semanticapproaches to general concurrent systems and how these approaches can be applied to reactivesystems.5.2.2 Languages. In Sections 9.5, 9.7, and 9.8 we describe three languages for pro-

6 STREAM PROCESSING IN THE DESIGN AND VERIFICATION OF HARDWARE 12gramming reactive systems, respectively LUSTRE, SIGNAL, and ESTEREL, and contrast thedi�erent approaches that they take.6 Stream Processing in the Design and Veri�cation of HardwareAt many levels of abstractions of hardware description the role of clocks is an important one.The so-called state transformer formalization of hardware (see [94]) relies on the use of an ab-stract clock T = f0; 1; 2; : : :g to provide a discrete measure of the evolution within a device ofthe values of (for example) the registers and memory from some initial values to the values atsome time t 2 T { referred to as the evolution of the device's state.As the state transformer model of hardware can be naturally viewed as a special case of astream transformer model of hardware, the use of streams is common in the hardware speci�-cation and hardware veri�cation literature. Indeed, many of the stream processing techniquesand languages that are discussed elsewhere in this survey are used for the study of hardware.As such, most of the remaining literature on the subject of hardware speci�cation and veri�-cation lies outside the scope of this paper as the use of streams is incidental rather than the mainthrust of the research. (Although, the interested reader may still like to consult [81], [166], [58],[155], [224], [117], [232] and [89].) Therefore, in this section we discuss the topic of synchronousconcurrent algorithms, a stream based computational model that has been used extensively forthe study of hardware, but for technical and other reasons contrasts with many other approachesin this subject.6.1 SCAsThe concept of a synchronous concurrent algorithm (SCA) was developed by B C Thompson andJ V Tucker in the early 1980s (see [207], [206] and [208]), and was motivated originally by theneed for an algebraic formalism for the speci�cation and veri�cation of general purpose hardware(see [94], [93], [92], [74], [96], [73] and [97] for case studies.) However, SCAs are also appropriatefor the study of specialized hardware devices and specialized models of computation including:systolic arrays (see [207], [206], [104], [69] and [103]); neural networks (see [108], [109], [111],[230] and [210]); and cellular automata and coupled map lattice dynamical systems (see [149], [29],[110], [107] and [30]). (For general introductions to the topics of systolic architectures; neuralnetworks; and cellular automata and coupled map lattice dynamical systems see respectively:[158], [137]; [154], [227], [171], [129], [130], [185], [186], [187]; [124] and [90]; and [219] and[229].)Informally, an SCA can be visualized as a particular class of dataow SDU-SPS; that is, aSCA is as a �xed, synchronous, deterministic dataow network wherein modules compute andcommunicate in parallel via channels synchronized by a discrete global clock T . As such, allmodules receive and produce data deterministically and hence the SCA as a whole also computesa total function. This is in contrast with all the other stream processing formalisms we havediscussed that allow the speci�cation of partial functions.6.1.1 Streams. Within SCA theory streams are represented using the function space[T ! A] for some A of interest. However, again in contrast to the other approaches discussed,the overall functionality of a SCA is modelled using a Cartesian form stream transformer CFST

7 OTHER STREAM PROCESSING FORMALISMS 13of the form F � : T � [T ! A]m ! Anrather than the more classical F : [T ! A]m ! [T ! A]n:While the use of CFST seems an apparently unimportant di�erence in speci�cation technique(as F � is essentially only the un-Curried form of F), Cartesian form speci�cation is subtle in itsimplications. Speci�cally: from the perspective of computability the reconciliation of these twotechniques is by no means straightforward (see [201]); and from the perspective of automatedveri�cation the use of Cartesian forms has signi�cant advantages, in that it permits the use ofessentially �rst-order techniques to establish the correctness of stream transformers (see [200]).6.1.2 Semantics. A denotational semantics for SCAs is provided using value functions thatare a special case of primitive recursive functions (see [209]). As such, SCAs have a rich theoryfounded in (generalized) computability theory, equational speci�cation and term re-writing (seefor example [22] and [200]) that addresses many theoretical issues that are neglected elsewherein the stream processing literature.The SCA computational model has also been generalized and formalized in several ways:graph theoretical models (see [159] and [165]); process theoretic models (see [211]); operationalsemantic models (see [206], [151], [150] and [182]); and in�nite SCAs (see [153] and [152]).6.1.3 Languages. Several formally equivalent languages have been developed for spec-ifying, simulating and reasoning about SCAs: PR (see [206]); FPIT (see [206]), CARESS (see[150] and [182]) { both based on the concurrent assignment statement (see [225]); ASTRAL;and PREQ (see [200]). The language ASTRAL is discussed in Section 9.14.7 Other Stream Processing Formalisms7.1 ALPHAWhile the language ALPHA (see [70]) is not speci�cally a stream processing language we mentionALPHA here as it is described by its authors as `: : :a grandson of Lucid: : : ' and is used for thedesign and synthesis of systolic VLSI (see [218]). In particular, ALPHA is an equational languagethat involves a generalization of stream variables that can be used to represent a `spatial domain';that is, a (possibly in�nite) matrix indexed by a sub-set of Zn. For example, if variable X isdeclared on the domain D de�ned byD = f(i; j) j i > 0; 1 � j � 2gthen X represents a matrix " x1;1; x1;2; x1;3; : : :x2;1; x2;2; x2;3; : : : # :Using this methodology if variable Y was declared over domain D0 de�ned byD0 = fi j i > 0gthen Y would essentially be a stream y0; y1; y2; y3; : : : :To compute over spatial domains ALPHA uses a generalization of point-wise extensionscalled `motionless operators' whose semantics is formalized denotationally in the style of Kahn.

8 STREAM PROCESSING PRIMITIVES AND CONSTRUCTS 147.2 Stream X-MachinesStream X-machines (see [106]) are based on the X-machine model of computation (a generaliza-tion of the Turing Machine { see [105]) that allow streams as both input and output. StreamX-machines have been used in the study of system testing and veri�cation for which the authorsclaim they o�er signi�cant advantages.8 Stream Processing Primitives and Constructs8.1 IntroductionIn this section, in order to clarify basic issues relating to computability we analyse in some detailthe abstract stream processing primitives and constructs that can be found in the literature. Inthe following section we look at speci�c languages that are used to specify the particular classesof stream processing systems that we discussed in Sections 3, 4, 5 and 6.1.8.2 Common Functional Stream Processing OperationsIn this section we describe informally the typical functional stream processing primitives thatcan be found in the literature de�ned using a generalized concept of a stream. (However, wenote in passing that these primitives are used in other formalisms as well, sometimes under adi�erent name.) This formalization is based on the description given in [46].In the sequel we use A to denote any data type (algebra), with sort names taken from theset S � fn;bg; that is, we assume that A includes as two of its carriers the natural numbers N(also denoted T when it is being used to represent discrete time) and the Booleans B . A typicalcarrier of A is denoted As, for some s 2 S, and Aw for some w 2 S� is used to denote a Cartesianproduct As1 �As2 � � � �Asn . For example, An = N = T and Ab = B .We denote a stream algebra by A with sort names taken from the set S = S [fs j s 2 Sgwith the convention that for each s 2 S that As is the stream [T ! As].In the following section we also assume that A is a continuous algebra with an appropriatepartial ordering for each carrier. We use A! = [T ! A]SA� to denote the set of all �niteand in�nite sequences (generalized streams) wherein <> 2 A! denotes the empty sequence. Acontinuous mapping is denoted �.8.2.1 Functional Stream Processing Primitives.(1) Stream construction operator. We de�ne the stream construction operator, denoted :,with functionality : : A! A! � A! by (in in�x notation)(8a 2 A) (8s 2 A!) a:s = s0wherein if jaj < jNj then(8t 2 f0; : : : ; jsj+ 1g) s0(t) = (a if t = 0;s(t � 1) otherwiseand if jaj = jNj then s0 = a.

8 STREAM PROCESSING PRIMITIVES AND CONSTRUCTS 15(2) Concatenation. We de�ne the concatenation operator, denoted �, with functionality� : A! ! A! � A! by (in in�x notation)(8a 2 A!) <> � a = aand (8(a:s); s0 2 A!) (a:s) � s0 = a:(s � s0):(3) First element selection. We de�ne the head operator, denoted hd (and also first),with functionality hd : A! ! A? by hd: <> = ?and (8(a:s) 2 A!) hd:(a:s) = a:(4) First element elimination. We de�ne the tail operator, denoted tl (and also rest), withfunctionality tl : A! ! A! by tl: <> = <>and (8(a:s) 2 A!) tl:(a:s) = s:(6) Last element selection. We de�ne the last operator, denoted last, with functionalitylast : A! ! A? by(8s 2 A!) last:s = 8>><>>:? if s =<> or jsj = jNj;a if s =< a > for some a 2 A;last:(tail:s) otherwise.(7) Filtering. We de�ne the �lter operator, denoted c, with functionality c : }(A)! A! !A! by (in in�x notation) (8S 2 }(A)) S c <> = <>and (8S 2 }(A)) (8(a:s) 2 A!) S c(a:s) = (S cs if a 62 S;a:S cs otherwise.

8 STREAM PROCESSING PRIMITIVES AND CONSTRUCTS 16(8) Pointwise change. We de�ne the pointwise change operator, denoted :[: 7! :], withfunctionality :[: 7! :] : A! ! T ! A! A! by (in in�x notation)(8s 2 A!) (8t; t0 2 T) (8a 2 A) s[t 7! a](t0) = (s(t0) if t0 6= t;a otherwise.It is also common in functional stream processing to use the following two higher-order primitivesthat act directly on STs themselves.(A) After. We de�ne the after operation, denoted �, with functionality � : (A! � B!) !A! (A! � B!) by (in in�x notation)(8f 2 (A! � B!)) (8a 2 A) (8s 2 A!) (f � a):s = f:(a:s):(B) Then. We de�ne the then operation, ambiguously denoted�, with functionality� : B !(A! � B!)! (A! � B!) by (in in�x notation)(8b 2 B) (8f 2 (A! � B!)) (8s 2 A!) (b� f):s = b:f:s:8.3 Stream Processing Primitives in Logic ProgrammingIn this section we identify four generic stream processing primitives that can be found in thelogic programming literature. We conclude the section with some concrete examples of thesetypes of stream processing primitives based on the list given in [17].8.3.1 Generic Relational Stream Processing Primitives. In [179] stream processingprimitives in logic programming languages are referred to as transducers (see [1]) and are dividedinto four groups. However, as pointed out in [178] this list of transducer types is not exhaustive,although no indication is given as to why this is the case.(1) Enumerators (Generators). Enumerators produce a stream derived from some initialvalues. A generic enumerator de�nition is as follows:enumerate(Stream) :-initial state(State),enumerate(State,Stream).enumerate(S,[X j Xs]) :-next state and value(S,NS,X),!,enumerate(NS,Xs).enumerate(,[]).

8 STREAM PROCESSING PRIMITIVES AND CONSTRUCTS 17(2) Maps. Maps produce an output stream by applying a function to an input stream. Ageneric map de�nition is as follows:map f([X j Xs],[Y j Ys]) :-f(X,Y),map f(Xs,Ys).map f([],[]).(3) Filters. Filters produce part of their input stream as output, the elements selected beingbased on de�ned criteria. A generic �lter de�nition is as follows:�lter([X j Xs],Ys) :-inadmissible(X),!,�lter(Xs, Ys).�lter([X j Xs],[X j Ys]) :-�lter(Xs,Ys).�lter([],[]).(4) Accumulators. Accumulators produce an `aggregate' of input values as output. A genericenumerator de�nition is as follows:accumulate(Stream,Value) :-initial state(State),accumulate(List,State,Value).accumulate([X j Xs],S,Value) :-next state(X,S,NS),accumulate(Xs,NS,Value).accumulate([],S,Value) :-�nal state value(S,Value).Notice that accumulators are strictly �rst-order primitives.8.3.2 Examples of Relational Stream Processing Primitives. We now list theexamples of second-order stream processing primitives (in functional form) presented informallyin [179] based on the list given in [17].(A) For each constant c 2 As for some s 2 S we de�neConStrc :! [T ! As]by (8t 2 T) ConStrc(t) = c:

8 STREAM PROCESSING PRIMITIVES AND CONSTRUCTS 18(B) For each constant i 2Zwe de�neIntFromi :! [T !Z]by (8t 2 T) IntFromi(t) = i+ (t� 1):(C) For each binary operator � : As �As ! As for some s 2 S we de�neAgg� : [T ! As]! [T ! As]by (8a 2 [T ! As]) (8t 2 T) Agg�(a)(t) = (a(0) if t = 0, and�(Agg�(a)(t� 1); a(t)) otherwise.(D) For each unary operator � : As ! As for some s 2 S we de�neMap� : [T ! As]! [T ! As]by (8a 2 [T ! As]) (8t 2 T) Map�(a)(t) = �(a(t)):(E) For each binary relation � � As � As for some s 2 S we de�neCom� : [T ! As]� [T ! As]! [T ! B]by (8a1; a2 2 [T ! As]) (8t 2 T) Com�(a1; a2)(t) = (tt if �(a1(t); a2(t)), and� otherwise.(F) For each n 2 N and for each s 2 S we de�neRepns : [T ! As]! [T ! As]by (8a 2 [T ! As]) (8t 2 T) Repns (a)(t) = a(t div n):(G) For each s 2 S and for each n; x 2 As we de�neLagn;xs : [T ! As]! [T ! As]by (8a 2 [T ! N]) (8t 2 T) Lagn;xs (a)(t) = (x if t < n, anda(t� n) otherwise.(H) For each s 2 S we de�neMerges : [T ! As]� [T ! As]! [T ! As]by (8a1; a2 2 [T ! As]) (8t 2 T) Merges(a1; a2)(t)(a1(t) if t is even, anda2(t) otherwise.

9 STREAM PROCESSING LANGUAGES 199 Stream Processing LanguagesAs promised we now examine some examples of stream processing languages designed to repre-sent the particular classes of SPSs we have identi�ed in the literature.In Section 9.4 and Section 9.5 we discuss the languages Lucid and LUSTRE designed toprogramme asynchronous and synchronous dataow SPSs respectively. Also, in Section 9.6 webriey discuss the so-called Manchester Languages and mention some other dataow languagesthat can be found in the literature.In Section 9.7 and Section 9.8 we discuss the related languages SIGNAL and ESTEREL thatare used for programming signal processing networks and reactive systems respectively.In Sections 9.9, 9.10 and 9.11 we discuss the functional languages AL, PL and Daisy respec-tively.In Section 9.12 we examine a modi�cation of PROLOG designed for stream programming.In Section 9.13 we look at the language STREAM used in the design and veri�cation ofhardware.Finally, in Section 9.14 we describe the language ASTRAL that has been developed fromSCA theory. However, we begin this section with a discussion of the RS-Flip-Flop, that wewill use as a running example for presenting and hence comparing the syntax of the streamprocessing languages that we discuss. We note that we choose to use a running example com-bined with a formal analysis of language constructs, rather than use speci�c examples tailoredto demonstrate the features of each language, as we believe this is more objective and morein keeping with the aim of this survey as discussed in the introduction. The reader interestedin examples that have motivated speci�c features of our example languages is directed to thereferences cited in the appropriate section.9.1 A Running Example: the RS-Flip-FlopThe RS-Flip-Flop (or simply Flip-Flop) is a widely occurring device found in computer hardware.The Flip-Flop is designed to output a stream of `true' (tt) and `false' (�) signals controlled bytwo input streams of true and false control signals.Valid control signals consist of one of three simultaneous input pairs:� `Reset' { (tt,�). This indicates that the Flip-Flop's next output should be a �.� `Set' { (�,tt). This indicates that the Flip-Flop's next output should be a tt.� `Hold' { (�,�). This indicates that the Flip-Flop should repeat its previous output.However, while the pair (tt,tt) is considered to be illegal input, a practical implementation ofthe Flip-Flop must be able to cope with this input.9.2 Formalization of the Flip-Flop as a STThis informal description of the Flip-Flop's operation can be made more precise by de�ning theFlip-Flop as an abstract ST as follows:Flip-Flop : [T ! B]2 ! [T ! B]

9 STREAM PROCESSING LANGUAGES 20de�ned by (8b1; b2 2 [T ! B]) Flip-Flop(b1; b2)(0) = ttand (8b1; b2 2 [T ! B]) (8t 2 T)Flip-Flop(b1; b2)(t+ 1) = 8>><>>:� if b1(t) = tt and b2(t) = �;tt if b1(t) = � and b2(t) = tt; andFlip-Flop(b1; b2)(t) otherwise.In particular, notice that this speci�cation outputs its previous output if the illegal control signal(tt,tt) is supplied as input.9.3 An Implementation of the Flip-Flop as a SPSA typical implementation of the Flip-Flop can be visualized at the conceptual level as a SDU-SPS comprising two input streams, two modules, and two output streams wherein both modulescompute the `nor' function. To reconcile this implementation with the functionality of thespeci�cation only one stream is considered as `proper output' (the �rst module's output), withthe other stream used only as `feedback' to compute the Flip-Flop's next output.9.3.1 The Flip-Flop SPS's Computation. The SPS representing the Flip-Flop isshown in Figure 2. Initially the modules of the SPS representing the Flip-Flop will output
nor

norFigure 2: The RS-Flip-Flop as a SPSsome initial values that for convenience we will assume is the pair (tt,�).After the Flip-Flop's initial output each module computes (synchronously) on the streamsof control signals and the previous output of the other module to produce the next output.9.3.2 Properties of the Flip-Flop. We note that this description of the Flip-Flop isa highly conceptualized model of idealized hardware, for which the Flip-Flop SPS requires pre-

9 STREAM PROCESSING LANGUAGES 21and post-processing of its input and output respectively to meet its speci�cation. Indeed, it hasbeen pointed out that `real' discrete models of Flip-Flop implementations should be developedusing three- or four-valued logic (see for example [48], [228] and [133]). This stems from thefact that associating tt and � with low and high signal values leads to a false correspondencebetween boolean logic and voltage values.However, as our use of this example is only to demonstrate certain basic, but importantlanguage features we �nd it convenient. In particular, our model of the Flip-Flop enables us toshow how mutual recursion is expressed; how vector-valued components are speci�ed; and howeach language deals with explicit synchronization.The interested reader can �nd studies of the Flip-Flop at various levels of abstraction in[114], [208], [200] and [134].9.4 LucidLucid ([223]) is perhaps the best known of all the dataow languages that have been developed.A Lucid programme is essentially a system of recursion equations, although Lucid is describedby its authors as a `functional dataow programming language'. The term `dataow' is chosenbecause each Lucid programme is semantically equivalent to a dataow network; and `functional'because the output of each �lter is a function of its inputs. (Note that the term `functional' usedhere does not imply a computation without side-e�ects as in the mathematical sense.) Lucid isalso described by its authors as a `typeless' language as there is no declaration section. However,a more formal description would be to say that Lucid operators are overloaded and their typeis inferred from their context.Lucid was conceived by its authors in 1974 with what they claim to be quite modest aims;that is, to show that real-life programmes could be written in a purely declarative style so thatprogramme veri�cation would be possible. The authors felt that a purely functional language wasnot creditable for this purpose for reason of e�ciency, and so Lucid contains iterative constructsso that (the authors claim) when writing Lucid programmes the programmer may make use ofalgorithms used in real `everyday' programming. It was also (later?) intended that Lucid couldexploit the new highly-parallel, multiprocessor dataow machines.9.4.1 Constructs and Primitives. Each Lucid programme is an expression structuredusing the `where' clause taken from ISWIM (see [140]) over simple `data types', for exam-ple: integers; reals; Booleans; words; character strings; and �nite lists. Lucid also uses theif: : : then: : :else construct.Lucid has the `usual' operators over the data types just mentioned and treats them as point-wise extensions over time and hence can be used to manipulate streams directly. In additionLucid uses six explicit stream processing primitives with the following semantics.(1) First. For each u 2 S+ we de�neFirstAu : [T ! Au]! [T ! Au]by (8a 2 [T ! Au]) (8t 2 T) FirstAu (a)(t) = a(0):

9 STREAM PROCESSING LANGUAGES 22(2) Next. For each u 2 S+ we de�neNextAu : [T ! Au]! [T ! Au]by (8a 2 [T ! Au]) (8t 2 T) NextAu (a)(t) = a(t+ 1):(3) Followed By. For each u 2 S+ we de�neFbyAu : [T ! Au]� [T ! Au]! [T ! Au]by (8a1; a2 2 [T ! Au]) (8t 2 T) FbyAu (a1; a2)(t) = (a1(t) if t = 0, anda2(t� 1) otherwise.(4) At Time. For each u 2 S+ we de�neAtTimeAu : [T ! Au]� [T ! N]! [T ! Au]by (8a 2 [T ! Au]) (8n 2 [T ! N]) (8t 2 T) AtTimeAu (a; n)(t) = a(n(t)):(5) Whenever. For each u 2 S+ we de�neWheneverAu : [T ! Au]� [T ! B] ! [T ! Au]by (8a 2 [T ! Au]) (8b 2 [T ! B]) (8t 2 T)WheneverAu (a; b)(t) = (a(t) if b(t) = tt, andWheneverAu (a; b)(t+ 1) otherwise.(6) As Soon As. For each u 2 S+ we de�neAsaAu : [T ! Au]� [T ! B] [T ! Au]by (8a 2 [T ! Au]) (8b 2 [T ! B]) (8t 2 T) AsaAu (a; b)(t) = a(� k:�b(k) = tt�):

9 STREAM PROCESSING LANGUAGES 23(7) Upon. For each u 2 S+ we de�neUponAu : [T ! Au]� [T ! B] ! [T ! Au]by (8a 2 [T ! Au]) (8b 2 [T ! B]) (8t 2 T)Uponu(a; b)(t) = (a(0) if t = 0,a(NumOfTrues(NextAb(b))(t)) otherwisewherein NextAb is de�ned as above and NumOfTrues : [T ! B] ! [T ! N] is de�ned by(8b 2 [T ! B])NumOfTrues(b)(0) = (1 if b(0) = tt, and0 otherwiseand NumOfTrues(b)(t+ 1) = (1 + NumOfTrues(b)(t) if b(t+ 1) = tt, andNumOfTrues(b)(t) otherwise.9.4.2 The use of Streams. As with many of the other languages we will discuss streamsare represented as variables. In the particular case of Lucid any free variables (not explicitlydeclared) are treated as input streams.9.4.3 Language Development and Current Uses. Since its conception variousimplementations of Lucid have been written (see [75] and [188]) and one such implementationpLucid { Lucid over the algebra of POP-2 taken from [51] { has been used experimentally forsoftware design (see [221]). Recently work on GLU (Granular Lucid) has appeared in [11].9.4.4 Lucid Syntax. The RS-Flip-Flop can be described in Lucid as follows:ipop(In1, In2) = (Out1, Out2)whereOut1 = true fby (In1 nor Out2)Out2 = false fby (In2 nor Out1)9.5 LUSTRELUSTRE (see [53]) is a synchronous dataow language related to Lucid. Like Lucid it is basedon the description of a SPS as a system of equations. However, unlike Lucid, LUSTRE requiresthat the output at time t of the functions de�ned by such a set of equations depends only oninput received either before or at time t. This property is referred to by the authors of LUSTREas causality.We note in passing that intuitively causality appears to restrict LUSTRE to expressing the

9 STREAM PROCESSING LANGUAGES 24class of course-of-values recursive functions (see [212]). However, the authors do not discuss theissue of computability in this respect.In common with languages for describing reactive systems LUSTRE is based on the strongsynchrony hypothesis and has a multiform notion of time (see Section 5). Furthermore, incommon with the language ESTEREL (see Section 9.8) LUSTRE programs are implementedvia compilation into �nite automata.The authors state that LUSTRE programs are subject to a strict analysis for deadlock basedon a domain theoretic analysis of the various clocks de�ned using the When operator, ratherthan by the cycle sum test that is applied to Lucid programmes (see [222]). However, the authorsconcede that while this approach does detect any potential deadlock it also rejects some validprogrammes. It is this strict approach to the interplay between the various clocks over which thevarious �lters compute within a programme that ensures the synchronous nature of LUSTRE.9.5.1 Primitives and Constructs. In common with Lucid underlying operations aretreated as point-wise extensions over time in LUSTRE and can be directly applied to streams.Any LUSTRE program, that is correct with respect to the various static-semantic tests thatare applied to it, is compiled into a simpli�ed basic abstract syntax. Compilation into thisrestricted syntax eliminates separate node (�lter) de�nitions, used to employ a modular pro-gramming technique. In particular, stream operators are compiled into a restricted subset ofstream operators that form a functionally complete set. This functionally complete set consistsof the following four operations that we now de�ne informally.LetA be some algebra wherein S = fs1; : : : ; sng for some n 2 N. Also, letU=< Us1; : : : ;Usn >be some collection of distinct values such that Usi 62 Asi for i = 1; : : : ; n, and let AU= A [U.(1) Previous. For each u 2 S we de�nePreAu : [T ! A]u ! [T ! AU]uby (8a 2 [T ! A]u) (8t 2 T) PreAu (a)(t) = ((a)(t� 1) if t > 0, and(Uu1; : : : ;Uujuj) otherwise.(2) Followed By. For each u 2 S we de�neFByAu : [T ! A]u � [T ! A]u ! [T ! A]uby (8a1; a2 2 [T ! A]u) (8t 2 T) FByAu (a1; a2)(t) =(a1(0) if t = 0, anda2(t) otherwise.Notice that this is di�erent from the Lucid operator Fby.(3) When. For each u 2 S we de�neWhenAu : [T ! A]u � [T ! B] [T ! A]u

9 STREAM PROCESSING LANGUAGES 25by(8a 2 [T ! A]u) (8b 2 [T ! B]) (8t 2 T) WhenAu (a; b)(t) = a(� k:�b(k) = tt ^ k � t�):(4) Current. For each u 2 S we de�neCurrentAu : [T ! A]u � [T ! B] ! [T ! A]uby (8a 2 [T ! A]u) (8b 2 [T ! B]) (8t 2 T)CurrentAu (a; b)(t) = 8>><>>:a(t) if b(t) = ttCurrentAu (a; b)(t� 1) if b(t) = � ^ t > 0WhenAu (a; b)(0) otherwise.9.5.2 The use of Streams. As is common in equational stream processing languagesunde�ned variables are treated as input streams in LUSTRE programmes. Indeed, the notionof a stream in LUSTRE is the same as in standard dataow and is not the same as in thereactive system paradigm. It is for this reason that we choose to classify LUSTRE as a dataowlanguage.9.5.3 Semantics. Two separate approaches to the semantics of LUSTRE have beenapplied. The �rst is a domain-theoretic approach in the style of Kahn's work. The secondapproach is an operational semantics based on the work of Plotkin (see [180]). This operationalsemantics can been used for proofs of equivalence of di�erent LUSTRE programs, and is thesemantic model that has been used to analyse the properties of the compilation of LUSTREprogrammes into �nite automata.9.5.4 Language Development and Current Uses. LUSTRE has been used forsuch diverse applications as music synthesis description (see [8]) and for veri�cation of real-timesystems (see [87]).9.5.5 Syntax. The RS-Flip-Flop can be expressed in LUSTRE as follows:node ipop(In1, In2 : bool)returns(Out1, Out2 : bool);let Out1 = tt : FBy pre(In1) nor pre(Out2);Out2 = � : FBy pre(In2) nor pre(Out1);tel

9 STREAM PROCESSING LANGUAGES 269.6 Other Dataow Languages9.6.1 The `Manchester Languages'. There are several so-called `Manchester Languages'(see [101]) including SASL, SISAL, LAPSE and MAD that have been used on the ManchesterDataow Machine. In this Section we very briey discuss these languages. The reader interestedin the topic of specialized dataow architecture can consult [86] and more recently [190].SASL. The language SASL (see [101]) is a functional language. SASL derives its namefrom the fact that only single assignment functions (one argument) are permitted. Multipleargument functions are achieved with Currying.SISAL. The language SISAL (see [156]) is a typed `value orientated' functional languagedesigned for dataow computing machines. The name SISAL is derived from Streams and It-eration in a Single Assignment Language. SISAL allows recursive constructs and looping. Inaddition to being implemented on the Manchester Machine, SISAL has also been implementedon the VAX, CRAY and HP dataow machines (see [190]).VALID. The language VALID (see [7]) is a higher-order functional language designed toachieve very high-level parallelism. VALID derives its name from Value Identi�cation Languageand has a mix of ALGOL- and LISP-like syntax, including block-structuring and case state-ments.DCBL. The language DCBL (pronounced `decibel' { see [101]) is a high-level dataow languagedesigned to de�ne the operational semantics for dataow computing languages. In particular,DCBL is designed to enable users to express programmes with many forms of concurrency, at ahigh-level of abstraction without any machine dependent characteristics.9.6.2 General Dataow Languages.VAL. The language VAL (see [68] and [33]) is a synchronous functional language with im-plicit concurrency. The name VAL is derived from the languages `value orientated' rather than`variable orientation' nature; that is, new values can be derived, but cannot be modi�ed. Thisprinciple is used in the language so that values can be assigned to identi�ers, but identi�ers can-not be used as variables in order to address certain issues arising from the automatic generationof concurrent implementations.ID. The language ID (see [9]) is an un-typed, functional, block-structured language thatsupports non-determinism and the use of streams. A programme in ID consists of a list ofexpressions wherein each expression is either a `loop', a `conditional', a `block' or a `procedureapplication'.9.7 SIGNALSIGNAL (see [84]) is an applicative language designed to programme real-time systems usingsynchronous dataow. The authors claim that a SIGNAL representation is very close to thespeci�cation of a system, either mathematical or graphical, and leads to an elegant formal

9 STREAM PROCESSING LANGUAGES 27`synchronization calculus'.SIGNAL uses two concepts of time: logical time and an associated timing calculus based onthe strong synchrony hypothesis (see Section 5); and physical time. Using this system temporalreferences are determined entirely by the sequence of communication events and not as (theauthors claim) by the input events as in either LUSTRE or the dataow approach.Individual processing elements in a SPSs described by SIGNAL are not synchronized bya single global clock T = f0; 1; 2; : : :g, rather SIGNAL has a `multiform notion' of time (seeSection 5).9.7.1 The use of Streams. The name SIGNAL is derived from the in�nite sequencescalled signals over which all processes in a SIGNAL system compute (see Section 5.1). Eachsignal is a map a : T ! A for some data set A and some clock T = f1; 2; : : :g. (Notice thatthe clock starts at 1 and not 0.) It would appear from this description that signals are streams.However, the individual values of a signal may be `sampled' at continuous points rather thansimply at the discrete division indicated by the signal's clock. In addition, the values are notpersistent and as such may only be sampled in order; that is, once the value of a signal a hasbeen sampled at time t 2 T it may henceforth only be sampled at some time t0 wherein t0 > t.(Also see the following section on further operators.) Notice that this interpretation of a signalis related to Kahn's visualization of streams as asynchronous FIFO queues (see Section 3.3.1).9.7.2 Constructs and Primitives. SIGNAL operators are divided into two classes: `S-operators' that de�ne signals and `P-operators' that are used to create interconnections betweenprocesses. We will only consider signal de�nition operators here.(1) Basic Operations. The syntax a := b+ 1for some signals a 2 [T ! A] and b 2 [T 0 ! A] for some data set A wherein 1 is a constantsignal creates a process with the following semantics:(8t 2 T) a(t) = b(t) + 1;that is, it creates a process that takes a single signal input b and produces a single signaloutput a that at every time cycle t is precisely the value of a(t) plus one.Notice here that because of the nature of the process speci�ed the two clocks T andT 0 are synchronized and hence considered to be the same. This is not a property of signalprocesses in general.(2) Delays. The syntax a init ca := b $1for some signals a 2 [T ! A] and b 2 [T 0 ! A] for some data set A wherein c is a constantsignal and creates a process with the following semantics:(8t 2 T) a(t) = (c if t = 0 andb(t� 1) otherwise;

9 STREAM PROCESSING LANGUAGES 28that is, the statement creates a process with a single input that delays its output by onetime cycle and outputs a constant at time t = 0.Notice here that a delay is de�ned by two separate processes (statements) and henceif the �rst statement is omitted (as in some of the reference examples) then the signaldescribed by its process is unde�ned at time t = 0. Also, there is an inconsistency in thereference examined in that the signal's underlying clocks are given as T = f1; 2; : : :g, butthe init statement de�ne values of streams at time t = 0.(3) Composition. The syntax (ja init cja := b+ 1jb := a $1j)denotes the process formed by the composition of the processes a init c, a := b + 1 andb := a $1 speci�ed in the previous examples. The ordering of the sub-processes within acomposition is unimportant; that is, it is associative and commutative, and communicationis implied between processes wherein an output signal of one process (an identi�er on theleft of an `:=') has the same name as an input signal (an identi�er on the right of an `:=')from a di�erent process. So our example has the intended semantics(8t 2 T) a(t) = (c if t = 0 anda(t� 1) + 1 otherwise;(4) Further operators. SIGNAL also uses the operators when, event and synchro with thefollowing syntax a := b when c;a := event band synchro a; brespectively. Because the semantics of these statements is `formalized' using a clock calcu-lus, that we will not discuss, we will only give the intuitive meanings of these statements:when is a so-called undersampling operator that, in the context of our example, producesthe input signal b if it is de�ned at the same time the Boolean signal c is de�ned and `true';event delivers an always `true' Boolean signal whenever (in the context of our example)signal b is de�ned; and synchro (again in the context of our example) explicitly synchro-nizes the signal's a and bs clocks.Because of the lack of a global clock and the de�nition of a signal, when examiningthe current value of a particular signal a : T ! A we have two possible results: it mayeither be unde�ned or will have some value in the data set A. Because of this de�nitionof signals the authors use a clock calculus to give and check the semantics of SIGNALde�nitions. As Boolean signals are used to de�ne clocks (via the event operator) thisclock calculus requires two data sets (and is the reason, the authors claim, that a Booleancalculus is insu�cient); that is, C = f�1; 0; 1g for Boolean signals, wherein 0 denotes theabsence of a value, �1 denotes `false', and 1 denotes `true'; and C 0 = f0; 1g for all other

9 STREAM PROCESSING LANGUAGES 29signals, wherein 0 denotes the absence of a value and 1 the presence of a value. Withinthis calculus the data set C is given the structure of a commutative �eld onto which allSIGNAL processes can be mapped. This `mapping' of a process is used to analyse therelationship of any sub-modules clocks and to detect incorrectly de�ned processes. Forexample, the compositional process(jx := a when (a > 0)jy := a when (not(a > 0))jz := x+ yj)gives rise to the following equations in the clock calculus (using c to represent the Booleanexpression a > 0) x2 = a2(�c� c2)y2 = a2(c� c2)z2 = x2 = y2that gives �c = c. As this has a single solution (c = 0) the process de�ned by thiscomposition is unde�ned. This is intuitively clear from the example as the clocks overwhich x and y are de�ned are mutually exclusive.9.7.3 Semantics. SIGNALS semantics is based on the clock calculus described above thatwe will not discuss further.9.7.4 Syntax. The RS-Flip-Flop can be expressed as follows in SIGNAL:(j Out1 init tt j Out2 init � jIn10 := In1$1 j In20 := In2$1 jOut10 := Out1$1 j Out20 := Out2$1 jOut1 := In10 nor Out20 j Out2 := In20 nor Out10j)9.8 ESTERELESTEREL (see [24], [25], [26] and [32]) is a real-time imperative concurrent language for de-scribing reactive systems. However, ESTEREL is designed for describing ADB-SPSs rather thanADU-SPSs as in the case of the languages LUSTRE and SIGNAL. (See the following sectionon the use of streams in ESTEREL.)The authors state that the aim of ESTEREL is to develop a rigorous formal model of real-time computation with an operational semantics that can be used for tasks where programmingusing conventional languages is di�cult.9.8.1 Constructs and Primitives. The basic structuring device in an ESTEREL pro-gramme is the module with input and output signals for broadcast communication and internalsignals for internal broadcast communication.The body of a module that describes its operation can include the following basic primitivesand constructs:

9 STREAM PROCESSING LANGUAGES 30(1) Null process. The command nothingcreates a process that does nothing in zero time.(2) Local variable declaration. The commandvar X : type in i endcreates a local variable X for process i.(3) Variable assignment. The command X := expassigns variable X with the value of the expression exp.(4) Signal Transmission. The command emit s(exp)emits the value of exp on signal s.(5) Conditional execution. The commanddo i upto s(exp)repeatedly execute process i until the value exp is broadcast onto signal s anddo i uptonext s(exp)repeatedly execute process i until the value exp is broadcast onto signal `s' twice.(6) Sequential Composition. The commandi1; i2invokes process i2 immediately upon completion of process i1.(7) Parallel Composition. The command i1jji2

9 STREAM PROCESSING LANGUAGES 31simultaneously invokes processes i1 and i2 sharing the same local variables and local sig-nals.(8) Iteration. The command loop i endexecutes process i in a continuous loop. However, processes likeX := 0; loop X := X + 1 end; loop emit s(X) endhave no semantics, due to the strong synchrony hypothesis, and are checked for duringstatic semantic evaluation.(10) If Then Else. The command if boolexp then i1 else i2 �has the usual semantics, but because of the strong synchrony hypothesis, we assume herethat boolexp is evaluated in zero time so control is passed immediately to either i1 or i2.(11) Process termination. The commandtag T in i endexit Texecutes process i until `exit T' is executed (in i) whereupon process i is terminated.From these basic primitives many `higher-level' construct are formed. However, these are justfor convenience during programming and do not occur in the semantic model.9.8.2 The use of Streams. ESTEREL uses the same notion of stream processing asSIGNAL; that is, signals and a multiform notion of time. However, unlike SIGNAL in ESTERELsome signals are used for both input and output from processes and information is broadcast inthe sense that complete connectivity is assumed between processes. A commutative operator `*'is explicitly associated with each signal to deal with simultaneous transmission (see [168]) suchthat if the values v1; v2; : : : ; vn for n > 1 are broadcast simultaneously onto a signal s then thevalue on s is v1 � v2 � � � � � vn.9.8.3 Semantics. ESTEREL has a complicated semantic model with three di�erentlevels:(1) Static Semantics. Used to establish temporal relations between processes and check forany temporal paradoxes.

9 STREAM PROCESSING LANGUAGES 32(2) Behavioural Semantics. Used to de�ne the temporal behaviour with respect to thestatic semantics.(3) Computational Semantics. Used to establish exactly what a program computes.Once the computational semantics has been established any concurrency is eliminated bycompiling into a sequential programme that is implemented as an automaton in C (for example)by a similar method used in parser generators (see for example [204]). The authors are con�dentthat this technique leads to an e�cient implementation.9.8.4 Language Development and Current Uses. ESTEREL has been used forHCI and for programming communication protocols and real-time controllers (see [57], [173]and [27] respectively). An ESTEREL environment exists (see [31]) that includes simulators,debugging tools and a compiler to hardware, based on the techniques discussed in [23]. Onecurrent research aim is to implement existing ESTEREL programmes directly in hardware.9.8.5 Syntax. The RS-Flip-Flop can be described in ESTEREL as follows:var L1,L2 : bool in ipop ;module ipop:input In1, In2 : bool ;output Out1, Out2 : bool ;L1 := true ;L2 := false ;emit Out1(L1) ;emit Out2(L2) ;loopL1 := In1 nor L2 ;L2 := In2 nor L1 ;emit Out1(L1) ;emit Out2(L2) ;end.9.9 ALAL is a typed equational language that provides a speci�cation formalism for (potentially)recursive stream operations. Implicit concurrency is expressed by the juxtaposition of equationalde�nitions within both programme and agent de�nitions.9.9.1 Constructs and Primitives. AL uses a block structure and includes constructssuch as if: : : then: : :else: : :�. It also includes the �nite choice operator �, and hence is AL isable to de�ne non-deterministic behaviour.AL has all of the basic stream processing primitives as described in Section 8.2 as builtin operators. In addition, functions mapping data to data and components mapping data andstreams of data to streams of data can be de�ned by the user.

9 STREAM PROCESSING LANGUAGES 339.9.2 The use of Streams. The declaration of input and output streams is explicitin AL and streams may occur at most once on the left-hand-side of an equation. In particularoutput streams must occur exactly once as a left-hand-side and input streams may not occur asa left-hand-side.9.9.3 Semantics. AL is restricted to second-order de�nitions and has a �xed-pointsemantics in the style of Kahn.9.9.4 Language Development and Current Uses. For an introduction to the use ofAL see Section 4.2.2 on the FOCUS project.A prototype of AL has been implemented on a SUN workstation (see [175]) and experimentsto implement AL on an INTEL hyper-cube are in progress (see [83]).9.9.5 Syntax. The RS-Flip-Flop can be represented in AL as follows:programme ipop � chan bool In1, In2 ! chan bool Out1, Out2:funct nor � bool b1, b2 ! bool:not(b1 or b2),agent streamnor � chan bool sb1, sb2 ! chan bool sbout:sbout � nor(ft.sb1, ft.sb2)end,agent leftbs � chan bool lbs1, rbs1 ! chan bool lbslbs � lbs1end,agent rightbs � chan bool lbs1, rbs1 ! chan bool rbsrbs � rbs1end,Out1 � true & streamnor(In1, rightbs.ipop(In1, In2)) & leftbs.rt.ipop(rt.In1, rt.In2)Out2 � false & streamnor(In2, leftbs.ipop(In1, In2)) & rightbs.rt.ipop(rt.In1, rt.In2)end ipop.9.10 PLPL is a imperative, parallel procedural language designed for stream programming.Constructs and Primitives. In some sense PL can be considered to be a classical lan-guage containing assignment statements and while loops. However, in addition PL also has thenon-terminating loop construct loop: : :pool. PL is syntactically very similar to AL and allows thede�nition of functions and components (see Section 9.9) and also has all the stream processingfunctions described in Section 8.2 as basic operations.9.10.1 The use of Streams. As with many stream programming languages variablesare used to represent input, but in addition as with AL variables are also used to explicitlyrepresent output. In contrast to AL there are two explicit operators in PL for `reading' and`writing' values to and from streams (channels) denoted `?' and `!' respectively that can be

9 STREAM PROCESSING LANGUAGES 34de�ned informally as follows.If c is a channel identi�er and x is a variable of appropriate type then the commandc?xis interpreted informally as `remove the �rst value from channel c and assign this value to variablex' If c is empty then execution of this command is delayed (possible in�nitely). Similarly if c isagain a channel identi�er and E is an expression of appropriate type then the commandc!Eis interpreted informally as `evaluate E and then write this value to channel c.' Again if Ecannot be evaluated, as it may depend on some input evaluation, then this command may alsobe delayed (possible in�nitely).The use of these two operations provides a model of asynchronous communication and it ispointed out in [45] that they should not be confused with the operators `?' and `!' in CSP (see[102]) that provide synchronous communication.In PL equations are further restricted in that channel identi�ers may only occur once (atmost) in the right hand side. Also, new channels may be introduced dynamically within PL viarecursion and hence dynamic networks may be modelled. For this reason the use of the wordchannel is less related to the concept of a stream in PL than it is in AL.9.10.2 Semantics. PL is based on an operational state transformer semantics derived fromwork in [47] and [62]. It is intended that this semantics can be related to an equivalent abstract(denotational) semantics as a ST and hence PL can be related formally to an AL speci�cation.9.10.3 Language Development and Current Use. For an introduction to the use ofPL see Section 4.2.2 on the FOCUS project.9.10.4 Syntax. The RS-Flip-Flop can be represented in PL as follows:programme ipop � chan bool In1, In2 ! chan bool Out1, Out2:var bool i1, i2, l1, l2;var bool o1 := true, o2 := false;var nat time := 0;loopif time > 0 thenIn1?i1;In2?i2;o1 := i1 nor l2;o2 := i2 nor l1;�Out1!o1;Out2!o2;l1 := o1;l2 := o2;time := time + 1;poolend ip-op.

9 STREAM PROCESSING LANGUAGES 359.11 DaisyDaisy (see for example [176], [114], [115], [118], [116] and [113]) is a lazy, higher-order, untypedlanguage based on a `suspending constructor' (see also [80] and [78]) that has been used ex-tensively for the stream-based programming and synthesis of hardware. In particular, Daisycontains higher-order mapping operators that are optimized for stream �ltering, and a demand-driven intermediate constructor that orders lists based on the convergence of suspensions. Thislatter feature provides a means to express and manage asynchronous concurrency.9.11.1 Constructs and Primitives. As Daisy is a general purpose functional language itis possible to de�ne all the stream processing functions described in Section 8.2. However, amongDaisy's speci�c primitives are unidirectional device instantiators for terminal screens, keyboards,pipes, sockets and virtual channels to window managers, and (un)scanners and (un)parsers thatcan be used to iteratively coerce between character streams, symbol streams and expressions.9.11.2 The Use of Streams. Daisy has a standard functional approach to the de�nitionof �rst-order streams.9.11.3 Semantics. As Daisy is a functional language it can be given a standardKahn style semantics. However, in additional it has a formal calculus for reasoning aboutand symbolically manipulating Daisy programmes (see for example [232]). Furthermore, theoperational interpretation of Daisy programmes may di�er from standard functional programmesdue to the suspending constructors.9.11.4 Language Development and Current Uses. Daisy is currently in its thirdimplementation stage (see for example [113]). Most of the current research is concerned with there�nement of the algebra for digital system derivation (see for example [231]). In particular, thedevelopment of formal laws for the manipulation of Daisy programmes for hardware synthesis.9.11.5 Daisy Syntax. The RS-Flip-Flop can be described in Daisy as follows:NOR = /Z. [not *]:[or *]:Zipop = /[S R]. [Qhi Qlo]whereQhi = [tt ! NOR:[S Qlo]]Qlo = [� ! NOR:[R Qhi]]9.12 PROLOG with streams[19] and [18] describe a modi�cation of PROLOG (see [136]) (that for convenience we will denotePROLOG) to provide an applicative language for the speci�cation of a class of ADU-SPSs.9.12.1 Constructs and Primitives. In PROLOG a network of agents is speci�ed bya set of Horn clauses wherein each clause corresponds to a particular agent. The structure of

9 STREAM PROCESSING LANGUAGES 36the language is essentially that of PROLOG and the stream processing primitives available arethose used in the functional approach (see Section 8.2).9.12.2 The use of Streams. The approach to streams in PROLOG is the same as that infunctional languages. In particular, in PROLOG uni-directional channels are modelled by sharedsyntactically distinguished input and output variables within each atomic clause and hence theexpressive power of PROLOG is limited compared to conventional PROLOG, as invertibility islimited. However, the authors claim that this is not a problem in practice.9.12.3 Semantics. PROLOG is formalized using a standard �xed-point semantics (see[217]) and makes a explicit distinction between data constructors and functions (see [144]) tomodify the semantic model to deal with in�nite terms.9.12.4 Language Development and Current Uses. It is intended that PROLOG isviewed as a proper extension of a term re-writing system, wherein each Horn clause is interpretedas an extended re-write rule. It is also the authors' intention that completion algorithms suchas Knuth-Bendix (see [128]) can be generalized to generate conuent systems from PROLOGnetwork descriptions. However, we are not aware of any subsequent work by the authors in this�eld.9.12.5 Syntax. The RS-Flip-Flop can be represented in PROLOG as follows:type BOOL is tt;� ;type STREAM-OF-BOOL is nil, cons(BOOL, STREAM-OF-BOOL) ;�op1 : STREAM-OF-BOOL � STREAM-OF-BOOL ! STREAM-OF-BOOL ;�op2 : STREAM-OF-BOOL � STREAM-OF-BOOL ! STREAM-OF-BOOL ;Nor : BOOL � STREAM-OF-BOOL ! BOOL ;not : BOOL ! BOOL ;�op1(cons(b1,sb1),cons(b2,sb2)) = cons(cons(tt,o1),o2) !o1 = Nor(b1,�op2(cons(b1,sb1),cons(b2,sb2))) ;o2 = �op1(sb1,sb2) ;�op2(cons(b1,sb1),cons(b2,sb2)) = cons(cons(�,o3),o4) !o3 = Nor(b2,�op1(cons(b1,sb1),cons(b2,sb2))) ;o4 = �op2(sb1,sb2) ;Nor(�,cons(b,sb)) = not(b) ! ;Nor(tt,cons(b,sb)) = � ! ;not(tt) = � ! ;not(�) = tt ! ;

9 STREAM PROCESSING LANGUAGES 379.13 STREAMSTREAM (see [65] and [66]) is a concurrent scheme language designed for formally specifying,reasoning about and transforming hardware designs at the conceptual, register and gate level.Furthermore, STREAM is intended to address description features associated with each levelin a single formalism. The approach is rather like a single programming language that includesformal, high-level and machine-code descriptions as primitives, and is referred to as almosthierarchical approach (see [205]).STREAM is an acronym for STandard REpresentation of Algorithms for Micro-electronics.However, the name STREAM is also intended to reect the stream processing nature of thelanguage. Indeed, in addition to its role as hardware description language STREAM can alsobe directly interpreted as a dataow language, resembling the language of [68]. However, theformal equivalence of STREAM and Dennis's language is not addressed.9.13.1 Constructs and Primitives. STREAM uses the following stream processingprimitives that are referred to as agents.(1) Append. For each s 2 S we de�ne the append agent&s : As � [T ! As]! [T ! As](ambiguously denoted &) by(8a 2 As) (8a0 2 [T ! As]) (8t 2 T) (a& a0)(t) = (a if t = 0, anda0(t� 1) otherwise.(2) Lifting. For each � 2 �w;s for each w 2 S+ and for each s 2 S we de�ne the lifting agent�w;s : (Aw ! As)! ([T ! Aw]! [T ! As])(ambiguously denoted �) by(8a 2 Aw) (8t 2 T) ��(a)(t) = �(a(t)):(3) Distribution. For each s 2 S we de�ne the distribution agentdistrs : [T ! B] � [T ! As] [T ! As]� [T ! As](ambiguously denoted distr) by(8b 2 [T ! B]) (8a 2 [T ! As]) (8t 2 T) distr(b; a)(t) = (x1; x2)wherein x1 = a(� k � t:�b(k) = tt�)and x2 = a(� k0 � t:�b(k0) = ��):

9 STREAM PROCESSING LANGUAGES 38(4) Selection. For each s 2 S we de�ne the selection agentselecs : [T ! B] � [T ! As]! [T ! As](ambiguously denoted selec) by(8b 2 [T ! B])(8a1 ; a2 2 [T ! As])(8t 2 T) selec(b; a1; a2)(t) = (a1(t) if b(t) = tt, anda2(t) otherwise.In addition STREAM also uses the following functional constructs for building SPSs from moreprimitive SPSs:(A) Parallel Composition. For each u; u0; v; v0 2 S+ we de�ne the parallel compositionconstructor ambiguously denoted + with functionality+ : ([T ! Au]! [T ! Av])� ([T ! Au0]! [T ! Av0])! ([T ! Au u0]! [T ! Av v0])by (8S2 [T ! Au]! [T ! Av]) (8S0 2 [T ! Au0]! [T ! Av0])(8a = (a1; : : : ; ajuu0j) 2 [T ! Au u0]) (8t 2 T)(S+ S0)(a)(t) = (x1; : : : ; xjv v0j)wherein xi = ((S(a1; : : : ; ajuj)(t))i if i � juj, and(S0(ajuj+1; : : : ; ajuu0j)(t))i otherwise.(B) Sequential Composition. For each u; v; w 2 S+ we de�ne the sequential compositionconstructor ambiguously denoted) with functionality) : ([T ! Au]! [T ! Av])� ([T ! Av]! [T ! Aw])! ([T ! Au]! [T ! Av])by(8S2 [[T ! Au]! [T ! Av]]) (8S0 2 [[T ! Av]! [T ! Aw]]) (8a 2 [T ! Au]) (8t 2 T)(S) S0)(a)(t) = S0(S(a))(t):(C) Feedback. For each s 2 S and for each u; v 2 S+ we de�ne the feedback constructorambiguously denoted C with functionalityC : ([T ! As u]! [T ! As v])! ([T ! Au]! [T ! Av])by(8S2 [T ! As u]! [T ! As v]) (8a 2 [T ! Au]) (8t 2 T) (Cs;u;vS)(a)(t) = S(x; a)(t)wherein x = (S(x; a))1:Notice here that as x is de�ned recursively in terms of itself whether C(S) is computablewill depend on the de�nition of S.

9 STREAM PROCESSING LANGUAGES 39(D) Forking. For each s 2 S we de�ne the fork constructor ambiguously denoted fork withfunctionality fork : [T ! As]! [T ! As]� [T ! As]by (8a 2 [T ! As]) (8t 2 T) forks(a)(t) = (a(t); a(t)):(E) Permuting. For each s 2 S we de�ne the permutation constructor ambiguously denotedperm with functionalityperm : [T ! As]� [T ! As]! [T ! As]� [T ! As]by (8a1; a2 2 [T ! As]) (8t 2 T) perms(a1; a2)(t) = (a2(t); a1(t)):(F) Sinks. For each s 2 S and for each u 2 S� we de�ne the sink constructor ambiguouslydenoted sink with functionalitysink : [T ! As u]! [T ! Au]by(8a = (a1; a2; : : : ; ajuj+1) 2 [T ! As u]) (8t 2 T) sinks u(a)(t) = (a2(t); : : : ; ajuj+1(t)):9.13.2 The use of streams. Again in common with the functional approach to streamprograming, STREAM adopts the generalized concept of stream as the union of �nite and in�nitesequences.9.13.3 Semantics. Both a denotational and algebraic semantics have been derivedfor STREAM (see [65] and [67] respectively). The denotational semantics is used in [65] todemonstrate the equivalence of STREAM with a procedural language for stream processing.9.13.4 Language Development and Current Uses. We are not aware of thedevelopment of the use of STREAM in hardware design.9.13.5 Syntax. SIGNAL uses two syntactic styles to reect the di�erent requirementsof hardware description at di�erent levels of abstraction: an applicative style and a functionalstyle. The RS-Flip-Flop can be represented in the two styles as follows:Applicative.agent RS-ipop =in r; s nit :� nor�(r; s0),r0 :� tt& t,u :� nor�(s; r0),s0 :� �& uout r0; s0 tou

9 STREAM PROCESSING LANGUAGES 40Functional.agent RS-ipop =C (C ((perm + Id� + Id�))(Id� + perm� + Id�))(nor + nor))(�& + tt&))(fork + fork))(Id� + perm + Id�)))9.14 ASTRALASTRAL Algebraic Stream Transfomer Language (see [200] { not related to [49]) is intendedto provide a formal, equational speci�cation language for STs based on ideas taken from SCAtheory (see Section 6.1). In particular, using the theory in [201], ASTRAL has been designed toreconcile the use of AFSTs as a speci�cation technique with the use of CFSTs as a formal seman-tics (see Section 6.1). This is desirable as by using a CFST semantics in [200] it is shown thatthe correctness of a broad and non-trivial class of ASTRAL programmes is decidable relative tothe use of equational logic augmented with induction and case analysis as a proof system.Based on these theoretical ideas an implementation of ASTRAL has been developed that inaddition to its use for hardware speci�cation is intended to be used as a high-level, declarative,general purpose programming language. (We note that the implementation of ASTRAL actu-ally restricts the user to using primitive recursive de�nitions to maintain the same theoreticalproperties as abstract ASTRAL. However, the authors claim [contenciously] that for practicalpurposes this restriction is not a limitation.) This implementation of ASTRAL is discussedbelow.9.14.1 Constructs and Primitives. Because the implementation of ASTRAL is in-tended to be a general purpose stream programming language it has no language speci�c streamprocessing primitives. In contrast, ASTRAL is able to specify (primitive recursive equationalforms of) all of the stream processing primitives mentioned in this survey. Indeed, each AS-TRAL programme is essentially nothing more than a collection of two types of AFST de�nition,although non-STs (�rst-order functions); user-de�ned data types; and abbreviations to reducethe size and syntactic complexity of programmes are also permitted. As such, we now discusssome of these classes of de�nitions. However, because ASTRAL's syntax is derived indirectly bycompilation into the language PREQ, in contrast with our other examples, it is not possible inthis survey to indicate the formal semantics of the ASTRAL constructs. The interested readercan consult [200].Evaluated and Un-Evaluated AFST De�nitions, and Function De�nitions. All ofthese classes of de�nitions have the following basic structure:Function name(var 1 : d type 1,: : : ,var n : d type n) r type 1,: : : ,r type m [(t)]=

9 STREAM PROCESSING LANGUAGES 41de�nition bodywherein `(t)' is only used to indicate an evaluated AFST de�nition.Evaluated AFST de�nitions are the concrete mechanism by which (primitive recursive) AF-STs are speci�ed. A such to insure primitive recursiveness Function name can only be used inthe de�nition body in evaluated form. Sort names in the range of an AFST de�nition must bestream sorts.Un-evaluated AFST de�nitions are the the concrete mechanism by which AFSTs (with aCartesain form semantics) can be composed. Hence, Function name cannot be used in the func-tion body. Again, sort names in the range of an AFST de�nition must be stream sorts.For �rst-order function de�nitions this syntax is nothing more than a standard functionalspeci�cation technique, although the form in which `function name' may appear in `de�ni-tion body' is controlled syntactically to preserve primitive recursiveness. Hence, as far as theuser is concerned the only syntactic distinction between un-evaluated AFST and function de�-nitions is the range type of the de�ned function.There are four basic types of compound expressions that can be used in the body of AFSTand function de�nitions: case statements, ifmatch statement, for : : : statements and for : : :while : : : statements that simply restrict the usual general purpose programming primitives totheir primitive recursive form. For example, a primitive recursive form of the Lucid primitiveWhenever can be expressed in ASTRAL as follows:whenever(s : sortStream, b : boolStream) u sortStream (t)= s(t) if b(t) = true;whenever(s,b)(n) for n = t' to MAX NATwhile not b(n);u.wherein `t0' is an abbreviation for `t+1', `;' is used as a shorthard for `or' or `otherwise' (`,' isused as an abbreviation for `and' { see below); and `MAX NAT' is some pre-de�ned maximumvalue that will vary from implementation to implementation.Pre-De�ned and User-De�ned Type De�nitions. In contrast with most formal algebraicspeci�cation languages it is not necessary to make an explicit de�nition of the underlying signa-ture and variables that are used in an ASTRAL programme. Rather, this information is derivedimplicitly from each individual ST and function de�nition. In particular, the standard constantsand operations associated with the following pre-de�ned data types are always available to theuser without the need for their explicit inclusion: bit, byte, bool, char, nat and int. In addition,for each of these data types (and also for each user-de�ned data type), the associated arraytype, set type, stream type, stream of array type, stream of set type and the data type extendedwith the unde�ned element u are also available to the user without their explicit de�nition.For example: bitArray, bitSet, bitStream, bitArrayStream, u bitArray, u bitSet, u bitStream andu bitArrayStream are always available to the user. For technical reasons associated with theautomated veri�cation of ASTRAL programmes, the `real numbers' are supported via a built inlibrary rather than a pre-de�ned type.User de�ned data types come in three basic forms: restrictions of pre-de�ned types, com-pound types and type unions.

10 CONCLUSIONS 429.14.2 Language Development and Current Use. A partial implementation ofa prototype ASTRAL speci�cation and veri�cation system is discussed in [200]. Work on thedevelopment of a full veri�cation system based on ideas taken from [200] is currently in progress.9.14.3 ASTRAL Syntax. Because of the limitiations in describing ASTRAL's constructsconcisely, in this section we show how both the Flip-Flop speci�cation and the full Flip-Flopimplementation can be speci�ed in ASTRAL including its pre- and post-processing scedules (seeSection 9.1). In so doing we note that RSFlipFlopSpec, FFlop, OutSch and InpSch are examplesof evaluated AFST de�nitions; and RSFlipFlopImp is an example of an un-evaluated AFSTde�nition de�ned by the composition of other AFSTs.RSFlipFlopSpec(s1,s2 : boolStream) boolStream (t)= true if t = 0;false if t > 0, s1(t) = true, s2(t) = false;true if t > 0, s1(t) = false, s2(t) = true;RSFlipFlopSpec(s1,s1)(t).andRSFlipFlopImp(s1,s2 : boolStream) boolStream boolStream= OutSch(FFlop(true,false,InpSch(s1,s2))).FFlop(b1,b2 : bool, s1,s2 : boolStream) boolStream boolStream (t)= (b1,b2) if t = 0;(FFlop1(b1,b2,s1,s2)(t) nor s2, s1 nor Fop2(b1,b2,s1,s2)(t)).OutSch(s1,s2 : boolStream) boolStream (t)= s1(t * 2).InpSch(s1,s2 : boolStream) boolStream boolStream (t)= (s1(t div 2), s2(t div 2)).10 ConclusionsWe have examined the topic of `stream processing' that we have classi�ed as the study of streamtransformers STs (second-order functionals) and stream processing systems SPSs (implemen-tations of STs typically visualized as directed graphs). We have shown the literature is richwith examples of stream processing research with many di�erent motivating interests, semanticmodels, and implementation techniques.However, despite the breadth of existing researach we have shown that in general the lit-erature has concentrated on the examination of the practical properties of SPSs, rather thanthe theoretical properties of more abstract STs. Therefore, we believe that the literature is still

10 CONCLUSIONS 43underdeveloped from certain theoretical perspectives. Indeed, it has been one of our motivationsin the writing of this survey to clarify this point, and show that at present no general theory ofstream processing exists in an accessible form.Research that has begun to address more general theoretical considerations is: [4] and [16]that discuss why streams can be a problem for the perspective of foundational mathematics;[213] and [214] that study the generalized computability of stream-based computation; [201] thatstudies the compositional properties of Cartesian form stream transformers; [200] that studiesthe speci�cation and formal veri�cation of STs; and [160], [161], [162], [163], [164] and [99] thatalgebraically study the speci�cation and veri�cation of higher-order systems including STs.

REFERENCES 44References[1] H Abelson and G Sussman. The Structure and Analysis of Computer Programs. MITPress, 1985.[2] S Abramsky, editor. Reasoning about concurrent systems. 1983.[3] W B Ackerman. Data ow languages. In R E Merwin, editor, AFIPS National ComputerConference, volume 48, pages 1087{1095, 1979.[4] P Aczel. Non-well-founded Sets. CLSI Lecture Notes. University of Chicago Press, 1988.[5] D Adams. A computation model with data ow sequencing. PhD thesis, Stanford Univer-sity, December 1969.[6] D Adams. A model for parallel computations. In L C Hobbs et al, editor, Parallel ProcessorSystems, Technologies, and Applications, pages 311{333. Spartan, 1970.[7] M Amamiya, R Hasegawa, and S Ono. VALID: A High Level Functional Language forDataow Machines. Rev ECL, 32(5):793{802, 1984.[8] P Amblard and H Charles. Music Synthesis Description with the Data Flow LanguageLUSTRE. Microprocessing and Microprogramming, 27:551{556, 1989.[9] Arvind and K P Gostelow. Some Relationships between Asychronous Interpreters of aDataow Language. In E J Neuhold, editor, Formal Description of Programming Concepts,pages 95{119. North-Holland, 1978.[10] Arvind, K P Gostelow, and W Plou�e. An asynchronous programming language andcomputing machine. Department of Information and Computer Science Technical Report114A, University of California, 1979.[11] E A Ashcroft, A A Faustini, R Jagannathan, and W W Wadge. Multidimensional Pro-gramming. Oxford University Press, 1995.[12] J Backus. Can programming be liberated from the von Neumann style? A functional styleand its algebra of programs. CACM, 21(8):613{641, August 1978.[13] J Backus. Is computer science based on the wrong fundamental concept of programme? InJ W de Bakker and J C van Vilet, editors, Algorithmic languages, pages 133{165. ElsevierNorth-Holland, Amsterdam, 1981.[14] M Bartha. An Algebraic Model of Synchronous Systems. Information and Computation,97:97{131, 1992.[15] M Bartha. Foundations of a theory of synchronous systems. Theoretical Computer Science,100:325{346, 1992.[16] J Barwise and L Moss. Hypersets. The Mathematical Inteligencer, 13(4):31{41, 1991.[17] R A Becker and J M Chambers. S: An Interactive Environment for Data Analysis andGraphics. Wadsworth Inc, Belmont CA, 1984.

REFERENCES 45[18] M Bellia, E Dameri, P Degano, G Levi, and M Martelli. A Formal Model For LazyImplementations of a Prolog-Compatible Functional Language. In J A Campbell, editor,Implementations of PROLOG, Arti�cial Intelligence, pages 309{340. Ellis Harwood, 1984.[19] M Bellia, E Dameri, and M Martelli. Applicative Communicating Processes In First OrderLogic. In G Goos and J Hartmanis, editors, International Symposium on Programming,volume 137, pages 1{14. Springer-Verlag, 1982.[20] M Bellia and G Levi. The Relation Between Logic and Functional Languages: A Survey.Journal of Logic Programming, 6(3):217{236, October 1986.[21] J Bergstra and J W Klop. Process Algebra for the Operational Semantics of Static DataFlow Networks. Mathematical Centre Technical Report IW 222/83, University of Ams-terdam, 1983.[22] J A Bergstra and J V Tucker. Equational Speci�cations, complete term rewriting systems,and computable and semicomputable algebras. University College of Swansea, ComputerScience Division, Technical Report CSR 20{92, University College of Swansea, 1992.[23] G Berry. A hardware implementation of pure Esterel. In International Workshop onFormal Methods in VLSI, Lecture Notes In Computer Science, 1991.[24] G Berry and L Cosserat. The ESTEREL Synchronous Programming Language and itsMathematical Semantics. In S D Brookes A W Roscoe and G Winkel, editors, Seminaron Concurrency, number 197 in LNCS, pages 389{448. Springer-Verlag, 1984.[25] G Berry, P Couronne, and G Gonthier. Synchronous Programming of Reactive Systems: anIntroduction to ESTEREL, pages 35{56. Elsevier Science Publishers BV (North Holland),1988.[26] G Berry and G Gonthier. The Esterel synchronous programming language: design, se-mantics, implementation. The Science of Computer Programming, 842, 1988.[27] G Berry and G Gonthier. Incremental Development of an HDLC entity in Esterel. Com-puter Networks, 22:35{49, 1991.[28] A Beveniste and G Berry. The Synchronous approach to reactive and real-time systems.Proceedings IEEE, 79:1270{1282, 1991.[29] J Blom. Tools for the Speci�cation and Analysis of Coupled Map Lattices. Final YearDissertation, Department of Computer Science, University College of Swansea, 1992.[30] J Blom, A V Holden, M J Poole, J V Tucker, and H Zhang. Caress II: a general purposetool for parallel deterministic systems, with applications to simulating cellular systems.Journal of Physiology (London), 467:145, 1993. Leeds Meeting 14-15 Jan.[31] G Boudol, V Roy, R de Simone, and D Vergamini. Process calculi, from theory to practice:veri�cation tools. In Automatic veri�cation methods for �nite state systems, number 407in Lecture Notes In Computer Science, pages 1{10. Springer-Verlag, 1990.[32] F Boussinot and R de Simone. The Esterel language. In Another look at real time lan-guages, number 79 in Proceedings of the IEEE, pages 1293{1304, 1991.

REFERENCES 46[33] J D Brock. Operational Semantics of a Data Flow Language. MIT Lab for ComputerScience Technical Memo 120, MIT, 1987.[34] J D Brock and W B Ackerman. Scenarios: A model of non-determinate computation.In Formalization of Programming Concepts, number 107 in Lecture Notes in ComputerScience. Springer-Verlag, 1981.[35] M Broy. Applicative real time programming. In Information Processing 83, IFIP WorldCongress, Paris, pages 259{264. North Holland, 1983.[36] M Broy. A theory for nondeterminism, parallelism, communication and concurrency.Theoretical Computer Science, pages 1{61, 1986.[37] M Broy. Predicative speci�cation for functional programs describing communicating net-works. Information Processing Letters, 25:93{101, 1987.[38] M Broy. Semantics of �nite or in�nite networks of communicating agents. DistributedComputing, 2:13{31, 1987.[39] M Broy. An example for the design of a distributed system in a formal setting - the liftproblem. Technical Report MIP 8802, Universit�at Passau, February 1988.[40] M Broy. Non-deterministic data ow programs: How to avoid the merge anomaly. Scienceof Computer Programming, 10:65{85, 1988.[41] M Broy. Towards a Design Methodology for Distributed System. In M Broy, editor,Constructive Methods In Computer Science, volume 55 of NATO ASI Series F: Computerand System Sciences, pages 311{364. Springer-Verlag, 1989.[42] M Broy. Functional Speci�cation of Time Sensitive Communicating Systems. In G Rozen-burg, J W de Bakker, and W P de Roever, editors, Stepwise Re�nement of DistributedSystems, volume 420 of Lecture Notes in Computer Science. Springer-Verlag, 1990.[43] M Broy. Compositional re�nement of interactive systems. Working Material for theInternational Summer School on Program Design Calculi, 1992.[44] M Broy. (Inter-)action re�nement. Working material for the International Summer Schoolon Program Design Calculi, 1992.[45] M Broy, F Dederichs, C Dendorfer, M Fuchs, F Gritzer, and W Weber. The Designof Distributed Systems: An Introduction to FOCUS. Technical Report TUM-19292-2,Technische Universit�at M�uchen, January 1993.[46] M Broy and C Dendorfer. Modelling operating system structures by timed stream pro-cessing functions. Journal of Functional Programming, 2(1):1{21, January 1992.[47] M Broy and C Lengauer. On Denotational verses Predicative Semantics. Journal ofComputer and System Sciences, 42(1):1{29, 1991.[48] R E Bryant. A Switch-Level Model and Simulator for MOS Digital Systems. IEEETransactions on Computers, C-33(2):160{177, 1984.

REFERENCES 47[49] G Buonanno, A Coen-Porisini, and W Fornaciari. Hardware speci�cation using the asser-tion language ASTRAL. In P Prinetto and P Camurati, editors, Correct Hardware DesignMethodologies, pages 335{358. North-Holland, 1992.[50] W H Burge. Stream Processing Functions. IBM Journal of Research and Development,pages 12{25, 1975.[51] R M Burstall, J S Collins, and R J Popplestone. Programming in POP-2. EdinburghUniversity Press, 1971.[52] R M Burstall, D B MacQueen, and D T Sanella. HOPE: an Experimental ApplicativeLanguage. In Lisp Conference, Stanford, 1980.[53] P Caspi, D Pilaud, N Halbwachs, and J A Plaice. LUSTRE: A Declarative Language forProgramming Synchronous Systems. 14th ACM Symposium on Principles of ProgrammingLanguages, Munich, pages 178{188, January 1987.[54] K Clark and S Gregory. Notes on the Implementation of PARLOG. Journal of LogicProgramming, 2(1):17{42, 1985.[55] K L Clark and S Gregory. PARLOG: A Parallel Logic Programming Language. ResearchReport 83/5, Imperial College, May 1983.[56] K L Clark and S A Gregory. A Relational Language for Parallel Programming. In ACMConference on Functional Programming and Computer Architecture, pages 171{178, 1981.[57] D Clement and J Incerpi. Programming the behaviour of graphical objects using Esterel.In Proceedings TAPSOFT, number 352 in Lecture Notes In Computer Science. Springer-Verlag, 1989.[58] A Cohn and M Gordon. A Mechanized Proof of Correctness of a Simple Counter. InK McEvoy and J V Tucker, editors, Theoretical Foundations for VLSI Design, volume 10of Tract in Theoretical Computer Science, pages 65{96. Cambridge University Press, 1990.[59] N J Cutland. Computability : an Introduction to Recursive Function Theory. CambridgeUniversity Press, 1980.[60] R B Dannenberg. Artic: A Functional Language for Real-Time Control. In Symposiumon Lisp and Functional Programming, 1984.[61] W P de Roever. On backtracking and greatest �xed points. In E J Neuhold, editor, FormalDescriptions of Programming Concepts, pages 621{639. North-Holland, 1978.[62] F Dederichs. Transformation verteiler Systeme: Von applikativen zu prozeduralen Darstel-lungen. Technical Report SFB 342/17/92, Technische Universit�at M�unchen, 1992.[63] D DeGroot and G Lindstrom. Logic Programming: Functions, Equations, and Relations.Prentice Hall, 1986.[64] C Delgado Kloos. Towards a Formalism of Digital Circuit Design. PhD thesis, TechnischeUniversit�at M�unchen, 1986.

REFERENCES 48[65] C Delgado Kloos. Semantics of Digital Circuits. In G Goos and J Hartmanis, editors,Semantics of Digital Circuits, volume 285 of Lecture Notes in Computer Science. Springer-Verlag, 1987.[66] C Delgado Kloos. STREAM: A Scheme Language for Formally Describing Digital Circuits.In G Goos and J Hartmanis, editors, PARLE Parallel Architecture and Languages Europe,volume 2 of Lecture Notes in Computer Science, pages 333{350. Springer-Verlag, 1987.[67] C Delgado Kloos, W Dosch, and B M�oller. On the Algebraic Speci�cation of a Languagefor Describing Communicating Agents. In �OGI/ �OCG Conference, Passau, pages 53{73,February 1986.[68] J B Dennis. First Version of a Data Flow Procedure Language. In B Robinet, editor,Programming Symposium, volume 19 of Lecture Notes in Computer Science. Springer-Verlag, April 1974.[69] J Derrick, G Lajos, and J V Tucker. Speci�cation and veri�cation of synchronous concur-rent algorithms using the Nuprl proof development system. Centre for theoretical computerscience report, University of Leeds, 1989.[70] C Dezan, H Le Verge, P Quinton, and Y Saouter. The Alpha du Centaur Experiment. InP Quinton and Y Robert, editors, Algorithms and Parallel VLSI Architectures II, pages325{334. Elsevier Science Publishers, 1992.[71] P Dyber. Program veri�cation in a logical theory of constructions. In J Jouannaud,editor, Functional Programming Languages and Computer Architecture, number 201 inLNCS, pages 334{349. Springer-Verlag, 1985.[72] P Dyber and H Sander. A functional programming approach to the speci�cation andveri�cation of concurrent systems. Technical report, Chalmers University of Technologyand University of G�oteborg, Department of Computer Sciences, 1988.[73] S M Eker, V Stavridou, and J V Tucker. Veri�cation of synchronous concurrent algorithmsusing OBJ3. A case study of the Pixel Planes architecture. In Proceedings of Workshopon Designing Correct Circuits, Oxford, 1990. Springer-Verlag.[74] S M Eker and J V Tucker. Speci�cation and veri�cation of synchronous concurrent algo-rithms: a case study of the Pixel Planes architecture. In R A Earnshaw P M Dew andT R Heywood, editors, Parallel processing for computer vision and display, pages 16{49.Addison Wesley, 1989.[75] M Farah. Correct Compilation of a Useful Subset of Lucid. PhD thesis, University ofWaterloo, Ontario, Canada, 1977.[76] A Faustini. The Equivalence of a denotational and an operational semantics for puredataow. PhD thesis, University of Warwick, Computer Science Department, Coventry,United Kingdom, 1982.[77] R B France. Semantically Extended Data Flow Diagrams - A Formal Speci�cation. IEEETransactions on Software Engineering, 18(4):329{346, 1992.

REFERENCES 49[78] D P Friedman and D S Wise. Cons should not evaluate its arguments. In Proceedings ofthe 3rd Colloquium on Automata, Languages and Programming, pages 257{284. EdinburghPress, 1976.[79] D P Friedman and D S Wise. Aspects of applicative programming for �le systems. InProceedings of an ACM Conference on Language Design for Reliable Software, pages 41{55. ACM SIGPLAN, 1977.[80] D P Friedman and D S Wise. Unbounded computational structures. Software-Practiceand Experience, 8(4):407{416, 1977.[81] J A Goguen. OBJ as a Theorem Prover with Applications to Hardware Veri�cation. In2nd Ban� Workshop on Hardware Veri�cation, Ban� Canada, June 1987.[82] M Gordon, R Milner, and C Wadsworth. Edinburgh LCF. In Semantics of ConcurrentComputation, number 70 in LNCS. Springer-Verlag, 1979.[83] S Gorlatch. Parallel Program Development for a recursive numerical algorithm: a casestudy. Technical Report SFB 342/7/92, Technische Universit�at M�unchen, March 1992.[84] T Guatier, P Le Guernia, and L Besnard. Signal: A Declarative Language For Syn-chronous Programming Of Real-Time Systems. Technical report, IRISA/INRIA, Campusde Beaulieu, 35042 Rennes C�edex, FRANCE, 1987.[85] P Le Guernic, T Gautier, M LeBorgne, and C LeMaire. Programming real time applica-tions with Signal. Proceedings IEEE, pages 1321{1336, 1991.[86] J R Gurd, J R W Glauert, and C C Kirkham. Generation of dataow graphical objectcode for the Lapse programming language. In W H�andler, editor, CONPAR 81, number111 in Lecture Notes In Computer Science, pages 155{168. Springer-Verlag, June 1981.[87] H Halbwachs, F Lagnier, and C Ratel. Programming and Verifying Real-Time Systems byMeans of the Synchronous Data-Flow Language LUSTRE. IEEE Transactions on SoftwareEngineering, 18(9):785{793, 1992.[88] N Halbwachs, P Caspi, P Raymond, and D Pilaud. The synchronous dataow program-ming language LUSTRE. Proceedings IEEE, 79:1305{1320, September 1991.[89] K Hanna and N Daeche. Strongly-Typed Theory of Structures and Behaviours. In G Milneand L Pierre, editors, Correct Hardware Design and Veri�cation Methods, Lecture NotesIn Computer Science, pages 39{54. Springer-Verlag, 1993.[90] C H Hansson. Case studies in the speci�cation and correctness of neural networks. Finalyear dissertation, University College Swansea, 1993.[91] D Harel and A Pnueli. On the Development of Reactive Systems. Weizmann Institute ofScience, Rehovot, Israel, 1985.[92] N A Harman. Formal Speci�cations for Digital Systems. PhD thesis, School of ComputerStudies, University of Leeds, 1989.

REFERENCES 50[93] N A Harman and J V Tucker. In Formal Speci�cation and the Design of Veri�able Com-puters, Proceedings of the 1988 UK IT Conference, pages 500{503, University College ofSwansea, 1988. IEE.[94] N A Harman and J V Tucker. Clocks, Retimings, and the Formal Speci�cation of a UART.In G J Milne, editor, The Fusion of Hardware Design and Veri�cation. North-Holland,1988.[95] N A Harman and J V Tucker. Formal speci�cations and the design of veri�able computers.In Proceedings of 1988 UK IT Conference, pages 500{503. Institute of Electrical Engineers(IEE), 1988. Held under the auspices of the Information Engineering Directorate of theDepartment of Trade and Industry (DTI).[96] N A Harman and J V Tucker. The Formal Speci�cation of a Digital Correlator I: AbstractUser Speci�cation. In K McEvoy and J V Tucker, editors, Theoretical Foundations forVLSI Design, volume 10 of Tracts in Theoretical Computer Science. Cambridge UniversityPress, 1990.[97] N A Harman and J V Tucker. Consistent Re�nements of Speci�cations for Digital Systems.In P Prinetto and P Camurati, editors, Correct Hardware Design Methodologies, pages273{295. North-Holland, 1992.[98] D Harrison. RUTH: A Functional Language For Real-Time Programming. In G Goos andJ Hartmanis, editors, PARLE Parallel Architectures and Languages Europe, number 259in LNCS, pages 297{314. Springer-Verlag, 1987.[99] B M Hearn and K Meinke. ATLAS: A Typed Language for Algebraic Speci�cation. InJ Heering K Meinke, B M�oller, and T Nipkow, editors, Higher-Order Algebra, Logic, andTerm Rewriting: First International Workshop, HOA '93, Amsterdam, The Netherlands,Lecture Notes in Computer Science, 816, pages 146{168. Springer Verlag, Berlin, 1994.[100] P Henderson and J H Morris. A lazy evaluator. In 3rd Conference on the Principles ofProgramming Languages, pages 95{103. ACM, 1976.[101] J Herath, N Saito, K Toda, Y Yamaguchi, and T Yuba. Data-ow computing base languagewith n-value logic. In Fall Joint Comp Conf, 1986.[102] C A R Hoare. Communicating Sequential Processes. Prentice Hall, 1985.[103] K M Hobley. The Speci�cation and Veri�cation of Synchronous Concurrent Algorithms.PhD thesis, School of Computer Studies, University of Leeds, 1990.[104] K MHobley, B C Thompson, and J V Tucker. Speci�cation and veri�cation of synchronousconcurrent algorithms: a case study of a convolution algorithm. In G Milne, editor, The fu-sion of hardware design and veri�cation, pages 347{374. North-Holland, 1988. Proceedingsof IFIP Working Group 10.2 Working Conference.[105] M Holcombe. X-Machines as a Basis for System Speci�cation. Software Engineering,3(2):69{76, 1988.[106] M Holcombe and F Ipate. X-machines with stacks and recursive enumerable functions.Technical report, Department of Computer Science, University of She�eld, England, 1994.

REFERENCES 51[107] A V Holden, M J Poole, J V Tucker, and H Zhang. Coupling CMLs and the Synchroniza-tion of a Multilayer Neural Computing System. Chaos, Solitons and Fractals, 1993. Toappear.[108] A V Holden, J V Tucker, and B C Thompson. Can excitable media be considered ascomputational systems? Physica D, 49:240{246, 1991.[109] A V Holden, J V Tucker, and B C Thompson. The computational structure of neuralsystems. In A V Holden and V I Kryukov, editors, Neurocomputers and Attention I:Neurobiology, Synchronisation and Chaos, pages 223{240. Manchester University Press,1991.[110] A V Holden, J V Tucker, H Zhang, and M J Poole. Coupled Map Lattices as ComputationalSystems. Chaos, 2:367{376, 1992.[111] AV Holden, B C Thompson, J V Tucker, D Withington, and H Zhang. A TheoreticalFramework for Synchronization, Coherence and Chaos in Real and Simulated Neural Net-works. In J Taylor, editor, Workshop on Complex Dynamics in Neural Networks, pages223{240. Springer-Verlag, 1992.[112] R Jagannathan. A Descriptive and Prescriptive Model for Dataow Semantics. PhDthesis, Department of Computer Science, University of Waterloo, 1988.[113] E Jeschke. An Architecture for Parallel Symbolic Processing based on Suspending Con-struction. PhD thesis, Department of Computer Science, Indiana University, 1995.[114] S D Johnson. Synthesis of Digital Designs from Recursion Equations. MIT Press, 1983.[115] S D Johnson. Synthesis of Digital Designs from Recursion Equations. MIT Press, 1984.[116] S D Johnson. Manipulating Logical Organization with System Factorizations. In Leeserand Brown, editors, Hardware Speci�cation, Veri�cation and Synthesis: MathematicalAspects, volume 408 of LNCS. Springer-Verlag, 1990.[117] S D Johnson and Z Zhu. An Algebraic Approach to Hardware Speci�cation and Derivation.In L Claeson, editor, Proceedings of the IFIP International Workshop on Applied FormalMethods for Correct VLSI Design. Elsevier, 1991.[118] C B Jones. Systematic Software Development Using VDM. Prentice Hall InternationalSeries in Computer Science. Prentice Hall, 1986.[119] S B Jones and A F Sinclair. Functional programming and Operating Systems. TheComputer Journal, 32, 1989.[120] B Jonsson. A fully abstract trace model for dataow networks. Technical Report 88016,Swedish Institute of Computer Science, 1988.[121] G Kahn. The semantics of a simple language for parallel processing. Proceedings IFIPCongress, pages 471{475, 1974.[122] G Kahn. A Primitive for the Control of Logic Programs. In Proceedings of the Symposiumon Logic Programing, pages 242{251, Atlantic City, 1984. IEEE Computer Society.

REFERENCES 52[123] G Kahn and D B MacQueen. Coroutines and networks of parallel processes. IFIP Congress,pages 993{998. Elsevier North-Holland, Amsterdam, 1977.[124] Y Kamp and M Hasler. Recursive Neural Networks for Associative Memory. Wiley, 1990.[125] P Kearney and J Staples. An Extensional Fixed-Point Semantics For Non-DeterministicData Flow. Theoretical Computer Science, 91(2):129{179, 1991.[126] R M Keller. Denotational models for parallel programs with ideterminate operators, pages249{312. North Holland, 1978.[127] C Kiliminster. Lecture: History of Computation Colloquium, Oxford University, 1993.[128] D Knuth and P Bendix. Simple Word Problems in Universal Algebra. In J Leech, editor,Computational Problems in Abstract Algebra, pages 263{297. Pergamon Press, 1970.[129] T Kohonen. Correlation matrix memories. In J A Anderson and E Rosenfeld, editors,Neurocomputing: Foundations of Research, pages 174{180. MIT Press, 1972.[130] T Kohonen. Associative Memory: A System Theoretical Approach. Springer Verlag, 1978.[131] J N Kok. A Fully Abstract Semantics for Data Flow Nets. In G Goos and J Hartmanis,editors, PARLE Parallel Languages and Architectures Europe, volume 2, pages 351{368.Springer-Verlag, 1987.[132] J N Kok. A Fully Abstract Semantics for Data Flow Nets. In G Goos and J Hartmanis,editors, PARLE Parallel Languages and Architectures Europe, volume 2, pages 351{368.Springer-Verlag, 1987.[133] W H F J K�orver. A Discrete Switch-Level Circuit Model that uses 4-valued node states.PhD thesis, Technische Universiteit Eindhoven, 1993.[134] W H F J K�orver. A Discrete Formalization of Switch-Level Circuit Behavior. Integration,the VLSI Journal, 1995. (to appear).[135] P R Kosiniski. A data ow programming language for operating systems. ProceedingsACM, Sigplan-Sigops Interface Meeting, Sigplan Notices, 8(9):89{94, September 1973.[136] R A Kowalski. Predicate Logic as a Programming Language, pages 569{574. North-Holland, 1974.[137] H T Kung. Why systolic architectures. Computer, pages 37{46, January 1982.[138] P J Landin. The Correspondence Between ALGOL 60 and Church's Lambda Calculus:Part 2. Communications of the ACM, 8:158{165, 1965.[139] P J Landin. The Correspondence Between ALGOL 60 and Church's Lambda Notation:Part 1. Communications of the ACM, 8:89{101, 1965.[140] P J Landin. The next 700 programming languages. Communications of the Associationfor Computing Machinery, 9:157{166, 1966.[141] P T Lee and K P Tan. Modeling of Visualized Data-Flow Diagrams Using Petri NetModel. Software Engineering, 7(1):4{12, 1992.

REFERENCES 53[142] C E Leiserson and J B Saxe. Optimizing Synchronous Systems. VLSI Computing Systems,1:41{67, 1983.[143] G Levi and C Palamidessi. Contributions to the Semantics of Logic Perpetual Processes.Acta Informatica, 25:691{711, 1988.[144] G Levi and A Pegna. Top-DownMathematical Semantics and Symbolic Execution. RAIROInform. Th�eor, 17:55{70, 1983.[145] P-Y P Li and A J Martin. The Sync Model: A parallel Execution Method for LogicProgramming. In Symposium on Logic Programming, pages 223{234, Salt Lake City,1986. IEEE Computer Society.[146] G Lindstrom and P Panangaden. Stream-Based Execution of Logic Programe. In Proceed-ings of the Symposium on Logic Programming, pages 168{176, Atlantic City, 1984. IEEEComputer Society.[147] J W Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.[148] Z Manna, S Ness, and J Vuillemin. Inductive methods for proving properties of pro-grams. Communications of the Association for Computing Machinery, 16(8):491{502,August 1973.[149] D Marshall. CADISP: Cellular Automata Design Implementation and Speci�cation. FinalYear Dissertation, Department of Computer Science, University College of Swansea, 1991.[150] A R Martin. The Speci�cation and Simulation of Synchronous Concurrent Algorithms.PhD thesis, School of Computer Studies, University of Leeds, 1989.[151] A R Martin and J V Tucker. The concurrent assignment representation of synchronoussystems. Parallel Computing, 9:227{256, 1988.[152] B McConnell. In�nite Synchronous Concurrent Algorithms. PhD thesis, Computer ScienceDepartment, University College of Swansea, 1993.[153] B McConnell and J V Tucker. In�nite Synchronous Concurrent Algorithms: The Alge-braic Speci�cation and Veri�cation of a Hardware Stack. In F L Bauer, W Brauer, andH Schwichtenberg, editors, Logic and Algebra of Speci�cation, pages 321{375. Springer-Verlag, 1993.[154] W S McCulloch and W Pitts. A logical calculus of the ideas immanent in nervous activity.In J A Anderson and E Rosenfeld, editors, Neurocomputing: Foundations of Research,pages 18{27. MIT Press, 1943.[155] K McEvoy and J V Tucker. Theoretical foundations of hardware design. In K McEvoyand J V Tucker, editors, Theoretical foundations of VLSI design. Cambridge UniversityPress, 1990.[156] J McGraw, S Skedzielewski, S Allan, R Oldhoeft, J Glauert, C C Kirkham, B Noyce, andR Thomas. SISAL: Streams and Iteration in a Single Assignment Language. Language Ref-erence Manual, Version 1.2, Lawrence Livermore National Laboratory, California, March1985.

REFERENCES 54[157] M C McIlroy. `Coroutines'. Internal report, Bell Telephone Laboratories, Murray Hill,New Jersey, 1968.[158] C Mead and J Conway. Introduction to VLSI systems. Addison-Wesley, 1980.[159] K Meinke. A Graph Theoretic Model of Synchronous Concurrent Algorithms. PhD thesis,School of Computer Studies, University of Leeds, 1988.[160] K Meinke. Equational Speci�cation of Abstract Types and Combinators. In G J�ager,editor, Computer Science Logic '91, Lecture Notes in Computer Science, 626. SpringerVerlag, Berlin, 1991.[161] K Meinke. Algebraic semantics of rewriting terms and types. In M Rusinowitch and J-LRemy, editors, Third International Conference on Conditional Term Rewriting Systems,Lecture Notes in Computer Science, 656. Springer Verlag, Berlin, 1992.[162] K Meinke. Universal algebra in higher types. Theoretical Computer Science, 100:385{417,1992.[163] K Meinke. A second order initial algebra speci�cation of primitive recursion. Acta Infor-matica, 31:329{340, 1994.[164] K Meinke and L J Steggles. Speci�cation and Veri�cation in Higher Order Algebra: ACase Study of Convolution. In J Heering, K Meinke, B M�oller, and T Nipkow, editors,Higher-Order Algebra, Logic, and Term Rewriting: First International Workshop, HOA'93, Amsterdam, The Netherlands, Lecture Notes in Computer Science, 816, pages 189{122. Springer Verlag, Berlin, 1994.[165] K Meinke and J V Tucker. Speci�cation and representation of synchronous concurrent al-gorithms. In F H Vogt, editor, Concurrency '88, number 335 in Lecture Notes in ComputerScience, pages 163{180. Springer-Verlag, 1988.[166] G K Milne. Timing Constraints: Formalizing their Description and Veri�cation. In Pro-ceedings of Computer Hardware Description Languages and their Applications. North-Holland, 1989.[167] R Milner. Model of LCF. Technical report, Computer Science Department, StanfordUniversity, 1973.[168] R Milner. A Calculi for Synchrony and Asynchrony. Theoretical Computer Science,25(3):267{310, 1983.[169] R Milner. A Proposal for Standard ML. In ACM Symposium on LISP and FunctionalProgramming, pages 184{197, Austin, Texas, 1984.[170] R Milner. Communication and Concurrency. Prentice-Hall, 1989.[171] M Minsky and S Papert. Perceptrons. MIT Press, 1969.[172] D P Misunas. Deadlock Avoidance in Data Flow Architecture. In Proc. Symp. Automat.Computation and Contr., pages 337{343, April 1975.

REFERENCES 55[173] G Murakami and R Sethi. Terminal call processing in Esterel. Technical Report 150, ATand T Bell Laboratories, 1990.[174] L Naish. All Solutions Predicates in Prolog. In Proceedings of the Symposium on LogicProgramming, pages 73{77, Boston, 1985. IEEE Computer Society.[175] H Nueckel. Eine Zeigerimplementierung von Graphreduktion f�ur eine Datenu�prache.Diploma thesis, Universit�at Passau, 1988.[176] M J O'Donnell. Circuits and Systems: Implementing Communication with Streams. InM Ruschitzka, editor, IMACS Transactions on Scienti�c Computation, volume 2, pages311{319. 1983.[177] M J O'Donnell. Hydra: Hardware description in a functional language using recursionequations and high order combining forms. In G J Milne, editor, The Fusion of HardwareDesign and Veri�cation. North-Holland, 1988.[178] A C Parker. Automated Synthesis of Digital Systems. IEEE Design and Test of Computers,pages 75{81, November 1984.[179] D S Parker. Stream Data Ananlysis in Prolog, chapter 8, pages 249{312. MIT Press, 1990.[180] G D Plotkin. A Structural Approach to Operational Semantics. Technical Report DAIMIFN-19, �Arhus University, �Arhus, Denmark, September 1981.[181] A Pnueli. Applications of temporal logic to the speci�cation and veri�cation of reactivesystems: a survey of current trends. In J W de Bakker, W P de Roever, and G Rozenberg,editors, Current Trends in Concurrency, number 224 in Lecture Notes in computer Science,pages 510{584. Springer-Verlag, 1986.[182] M J Poole. Synchronous Concurrect Algorithms and Dynamical Systems. PhD thesis,Computer Science Department, University College of Swansea, October 1994.[183] A Rabinovich. On the Schematological Equivalence of Dataow Networks. In ComputerScience and Logic, 1993.[184] C Ratel, N Halbwachs, and P Raymond. Programming and verifying critical systems bymeans of the synchronous data-ow programming language lustre. In Conference Softwarefor Critical Systems, ACM-SIGSOFT, 1991.[185] D E Rumelhart, G E Hinton, and R J Williams. Learning internal representation byerror propagation. In D E Rumelhart and J L McClelland, editors, Parallel DistributedProcessing. Explorations in the Microstructure of Cognition. Volume 1: Foundations, pages318{362. MIT Press, 1986.[186] D E Rumelhart and J L McClelland, editors. Parallel Distributed Processing. Explorationsin the Microstructure of Cognition. Volume 2: Psychological and Biological Models. MITPress, 1986.[187] D E Rumelhart and J L McClelland, editors. Parallel Distributed Processing. Explorationsin the Microstructure of Cognition. Volume 1: Foundations. MIT Press, 1986.

REFERENCES 56[188] J Sargeant. Implementation of Structured Lucid on a Dataow Computer. Master's thesis,University of Manchester, 1982.[189] E Y Shapiro. A Subset of Concurrent Prolog and it Interpretor. Technical Report TR-003,ICOT, 1983.[190] J A Sharp, editor. Data Flow Computing. Ablex Publishing Corporation, 1991.[191] R Sharp and O Rasmussen. Transformational rewriting with ruby. IFIP TransactionsA-Computer Science and Technology, 32:243{260, 1993.[192] M Sheeran. �FP, an Algebraic VLSI Design Language. D. phil., St. Cross College, Novem-ber 1983.[193] M Sheeran. RUBY - a Language of Relations and Higher Order Functions. Technicalreport, Glasgow University, 1986.[194] M Sheeran. Retiming and slowdown in Ruby. In G J Milne, editor, The Fusion of HardwareDesign and Veri�cation. North-Holland, 1988.[195] M Sheeran. Categories for the working hardware designer. In Leeser and Brown, editors,Hardware Speci�cation, Veri�cation and Synthesis: Mathematical Aspects, volume 408 ofLNCS. Springer-Verlag, 1990.[196] F S K Silbermann and B Jayaraman. A domain-theoretic approach to functional and logicprogramming. Journal of Functional Programming, 2(3):273{321, July 1992.[197] J Staples and V L Nguyen. A Fixed-point Semantics For Nondeterministic Data Flow.Journal For The Association For Computing Machinery, 32(2):411{444, 1985.[198] G Stefanescu. On Flowchart Theories: Part I. The Deterministic Case. Journal of Com-puter and System Sciences, 35:163{191, 1987.[199] G Stefanescu. On Flowchart Theories: Part II. The Nondeterministic Case. TheoreticalComputer Science, 52:307{340, 1987.[200] R Stephens. Algebraic Stream Processing. PhD thesis, University College of Swansea,1994.[201] R Stephens and B C Thompson. Cartesian Stream Transformer Composition. Univer-sity College of Swansea, Department of Computer Science Report CSR 21-92, UniversityCollege of Swansea, 1992. To appear in Fundamenta Informaticae.[202] V Stoltenberg-Hansen, E Gri�or, and I Lindestr�om. Mathematical Theory of Domains.Cambridge Tracts in Theoretical Computer Science, 1994.[203] P A Subrahmanyam and J H You. FUNLOG = Functions + Logic: A ComputationalModel Integrating Functional and Logic Programming. In International Symposium onLogic Programming, pages 144{153. IEEE Computer Soc. Press, 1984.[204] Sun Microsystems Incorporated. YACC, 1988.

REFERENCES 57[205] G J Sussman and G L Steele. CONSTRAINTS - A Language for Expressing AlmostHierarchical Descriptions. Arti�cial Intelligence, 14:1{39, 1980.[206] B C Thompson. A Mathematical Theory of Synchronous Concurrent Algorithms. PhDthesis, School of Computer Studies, University of Leeds, 1987.[207] B C Thompson and J V Tucker. Theoretical Considerations in Algorithm Design.In R.A.Earnshaw, editor, NATO ASI Fundamental Algorithms for Computer Graphics.Springer-Verlag, 1985.[208] B C Thompson and J V Tucker. Equational speci�cation of synchronous concurrentalgorithms and architectures. Computer Science Division, Technical Report CSR 9.91,University College of Swansea, 1991.[209] B C Thompson and J V Tucker. Equational speci�cations of synchonous concurrentalgorithms and architectures (second edition). Technical Report CSR 9.91, ComputerScience Department, University of Wales, Swansea, 1994.[210] B C Thompson, J V Tucker, and W B Yates. Arti�cial Neural Networks as SynchronousConcurrent Algorithms: Algebraic Speci�cation of a FeedForward Backpropogation Net-work. Technical report, University College of Swansea Computer Science Division ResearchReport, 1992.[211] C M N Tofts. The Relationship Between Synchronous Concurrent Algorithms and SCCS.Technical report, Department of Computer Science, University College of Swansea, 1993.[212] J V Tucker and J I Zucker. Program Correctness over Abstract Data Types, with Error-State Semantics. North Holland, 1988.[213] J V Tucker and J I Zucker. Theory of Computation over Stream Algebras and its Applica-tions. In I M Havel and V Koubek, editors,Mathematical Foundations of Computer Science1992: 17th International Symposium, Prague, LNCS, pages 62{80. Springer-Verlag, 1992.[214] J V Tucker and J I Zucker. Computable Functions on Stream Algebras. In H Schwicht-enburg, editor, International Summer School on Proof and Computation, Marktoberdorf,1993, NATO Advanced Study Institute, pages 341{382. Springer-Verlag, 1994.[215] D A Turner. Miranda: a non-strict functional language with polymorphic types. In Func-tional Programming Language and Computer Architetcures, Lecture Notes in ComputerScience, 201. Springer-Verlag, 1985.[216] M H van Emden and G T de Lucena Filho. Predicate Logic as a Language for ParallelProgramming. In K L Clark and S A Tarnlund, editors, Logic Programming, pages 189{198. Academic Press, 1982.[217] M H van Emden and R A Kowalski. The Semantics of Predicate Logic as a ProgrammingLanguage. Journal of the ACM, 23:733{742, 1976.[218] H Le Verge, C Mauras, and P Quinton. The ALPHA Language and its Use for the Designof Systolic Arrays. Journal of VLSI Signal Processing, 3:173{182, 1991.[219] J von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press, 1966.

REFERENCES 58[220] J Vuillemin. Proof techniques for recursive programs. PhD thesis, Stanford University,1973.[221] W Wadge. Viscid, a vi-like Screen Editor written in pLucid. Technical Report DCS-40-IR,University of Victoria, Computer Science Department, 1984.[222] W W Wadge. An extensional treatment of dataow deadlock. Theoretical ComputerScience, 13:3{15, 1981.[223] W W Wadge and E A Ashcroft. Lucid, the Dataow Programming Language. AcademicPress, 1985.[224] W P Weijland. Veri�cation of a Systolic Algorithm in Process Algebra. In K McEvoyand J V Tucker, editors, Theoretical Foundations of VLSI Design, volume 10 of Tracts inTheoretical Computer Science. Cambridge University Press, 1990.[225] P H Welch. Parallel Assignment Revisited. Software - Practice and Experience, 13:1175{1180, 1983.[226] K S Weng. Stream orientated computation in recursive data ow schemas. Project MACTechnical Memo 69, MIT, 1975.[227] B Widrow and M E Ho�. Adaptive switching circuits. In J A Anderson and E Rosenfeld,editors, Neurocomputing: Foundations of Research, pages 126{134. MIT Press, 1960.[228] D Winkel and F Prosser. The Art of Digital Design. Prentice-Hall, 1987.[229] S Wolfram. Theory and applications of cellular automata. World Scienti�c, 1986.[230] W B Yates. Algebraic Speci�cation and Correctness of Arti�cial Neural Networks andSupervised Learning Algorithms. PhD thesis, University College of Swansea, 1993.[231] Z Zhu and S D Johnson. An Algebraic Framework for Data Abstraction in Hardware De-scription. In Sheeran and Jones, editors, Proceedings of the Oxford Workshop on DesigningCorrect Circuits. Springer-Verlag, 1990.[232] Z Zhu and S D Johnson. An Example of Interactive Hardware Transformation. In Sub-ramanyam, editor, Proceedings of ACM International Workshop on Formal Methods inVLSI Design, 1991.

