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Abstract

Stream processing 1s a term that is used widely in the literature to describe a variety
of systems. We present an overview of the historical development of stream processing
and a detailed discussion of the different languages and techniques for programming with
streams that can be found in the literature. This includes an analysis of dataflow, specialized
functional and logic programming with streams, reactive systems, signal processing systems,
and the use of streams in the design and verification of hardware.

The aim of this survey is an analysis of the development of each of these specialized
topics to determine if a general theory of stream processing has emerged. As such, we discuss
and classify the different classes of stream processing systems found in the literature from
the perspective of programming primitives, implementation techniques, and computability
issues, including a comparison of the semantic models that are used to formalize stream
based computation.

*To appear in Acta Informatica. This report is a revised version of Reports CSRG95-03 and CSRG95-04.
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1 Introduction

Within computer science the term stream processing is used generically to refer to the study of
a number of disparate systems. For example, dataflow systems, reactive systems, synchronous
concurrent algorithms, signal processing systems, and certain classes of real-time systems are all
examples of stream processing research.

At the conceptual level the mathematical analysis of each of these systems is usually based on
the study of a particular type of stream processing system (SPS); that is, it is based on the study
of a system comprised of a collection of modules that compute in parallel, and that communicate
data via channels. In particular, in a typical SPS modules are usually divided into three classes:
sources that pass data into the systems; filters (also called agents) that perform some atomic
computation; and sinks that pass data from the system. SPSs are often visualized as directed
graphs, for example, a three-source, two-sink SPSs with five filters is shown in Figure 1.

SPSs take their name from the communication performed by their channels that pass infor-
mation between modules as infinite sequences of data that are referred to as streams. A stream,
is essentially an infinite list of elements ag, a1, as, ... taken from some data set of interest A, and
is usually formalized mathematically as a function @ : T" — A, wherein T'= N = {0,1,2,...}
represents discrete time.

CNym AN
PO
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Stream processing research, in particular the study of SPSs, can be traced back at least as
far as the 1960s, although not always in a form that is immediately recognizable as such today.
Indeed, stream processing has been a particularly active area of research as the visualization
of systems as SPSs is appropriate to formalize many types of computational models that arise
quite naturally in computer science including: artificial neural networks, coupled map lattice

Figure 1: A Typical SPSs
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dynamical systems, cellular automata and also operating systems and many types of safety crit-
ical systems. Moreover, stream based computation is also appropriate to formalize hardware at
several levels of abstraction including the conceptual level and the register transfer level.

1.1 A Theory of Stream Processing

Despite the usefulness of stream based computation as a conceptual tool, in our opinion the pre-
occupation of stream processing with SPSs has from some perspectives hindered the development
of a clear, concise and mathematically neutral theory of systems that compute over streams. We
believe this observation is supported by the large variety of different implementation techniques
and semantic models that can be found in the literature to model SPSs, whose advantages over
other techniques are often justified using qualitative rather than quantitative arguments. In-
deed, we believe it is fair to observe that with a few exceptions stream processing systems have
been used as a convenient tool in research that has been concerned with other issues, rather
than the development of a general theory of stream processing encompassing topics such as: the
analysis of the computability of stream processing primitives and stream based computation; a
study of the languages and logics needed to specify and reason about systems that compute over
streams; and the theory of the verification of different classes of stream processing systems.

For example, dataflow is considered to be a canonical example of stream processing research,
but dataflow is predominately concerned with the development of parallel processing techniques.
In particular, this is highlighted by the fact that dataflow is often considered to be a specialized
implementation method for functional programming rather than a separate area of research.

As another example, M Broy has carefully developed an extensive theory of parallel, dis-
tributed, asynchronous SPSs using functional techniques (see Section 4.2.2). However, this work
is by definition also specialized and hence does not provide a general theory of stream processing
in the sense defined above (see [45]).

1.2 Overview

To clarify some of the issues that we believe are important in the development of a general
theory of stream processing, in this paper we present a survey of the literature. It is our aim to
highlight some important theoretical as well as practical considerations and so our discussions
are based on the analysis of stream transformers (STs) of which SPSs can be considered as a
special case. Specifically, a ST is an abstract system that takes n streams as input and produces
m streams as output for some n,m > 1, and can be characterized as a functional

O[T — A" — [T — A]™".

In contrast, a SPS is a system composed of a collection of separate, but communicating processes
that receive stream data as input and produce stream data as output. Thus, a SPS can be
viewed as a (parallel) implementation of an abstract ST specification, and stream processing can

be defined as the study of both STs and SPSs.

1.2.1 Summary. In Section 2 we have a brief historical perspective of the development
of stream processing from the early 1960s to the present day.

The three sections following this historical overview are devoted to a more detailed analysis
of some of the different approaches to visualizing and representing SPSs: dataflow (Section 3);
specialized functional and logic programming (Section 4); reactive systems and signal processing
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(Section 5); and stream processing in the design of hardware (Section 6). In each case we discuss
the basic motivations and ideas underlying each paradigm. However, for convenience in order
to clarify certain issues relating to computability theory and language design we have deferred
the topic of stream processing primitives and languages arising in this research until Sections 8
and 9. Our literature survey is concluded in Section 7 wherein we briefly mention some topics
related to stream processing.

In Section 10 we make some concluding remarks.

1.3 Acknowledgements

I would like to thank the following colleagues for their comments and suggestions during the
preparation of this survey: B C Thompson, B R MConnell, M J Poole (Swansea) and L J
Steggles (Newcastle). In addition, I would also like to thank the (anonymous) referees for their
comments that have improved the presentation of this paper. In particular, I thank S D Johnson
(Indiana) for his very detailed and constructive comments.

2 A Brief History of Stream Processing

In this section we present a brief historical perspective of the development of stream processing
over the last four decades. We note that we only mention either well-known research or research
that we believe is representative of a particular topic within stream processing, and that provides
a useful starting point for any further reading the reader may wish to undertake. Some of the
topics covered in our overview are analysed in more depth in the following sections.

2.1 The 1960s

Within computer science the term stream has been attributed to P J Landin (see [50]) formu-
lated during the development of operational constructs presented as part of his work on the
correspondence between ALGOL 60 and the A-calculus (see [138] and [139]). Indeed, we note
that P J Landin’s original use for streams was to model the histories of loop variables, but he
also observed that streams could have been used as a model for I/O in ALGOL 60.

The first type of SPSs that can be identified within the literature are dataflow systems that
have certainly existed, although not always under the name ‘dataflow’, as early as the late 1960s
(see for example [157] and [5]). The term dataflow originates from the term data flow analysis
(see [3]) used to evaluate potential concurrency in computations.

2.2 The 1970s

The first dataflow language, and probably still the most famous, is Lucid (see [223]) that was
conceived in 1974. Lucid is based in part on the language POP-2 (see [51]), that allowed a
limited use of streams. Other relevant dataflow references from the 1970s are [6], [135], [68],
[226] and [10]).

In 1974 G Kahn published his well-known work (see [121]) outlining a simple parallel pro-
gramming language designed for representing SPSs using a fixed-point semantics. The use of a
fixed-point semantics for SPSs in the style of Kahn’s work is common, and for this reason SPSs
are sometimes referred to as Kahn networks.
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In 1975 W Burge (see [50]) discussed the use of streams as a method for structured program-
ming and introduced a set of functional stream primitives for this purpose.

In 1976 P Henderson and J H Morris (see [100]) and D P Friedman and D S Wise (see [78])
published their work on lazy evaluation techniques that are useful for computing with infinite
data types of which streams are an example. The work presented in [78] was the first in the
research project ‘applicative programming for streams’ examining the issue of concurrency using
stream programming. This work is continued in [79] that presents a file system and text editor,
and [79] that explores the use of streams in programming problems such as approximations to
real arithmetic, the Sieve of Eratosthenes and 2-3-5 composites.

In 1977 G Kahn made another contribution to the field with his joint paper with D Mac-
Queen (see [123]) wherein they introduced a language designed to model distributed process
interaction using ideas from [121].

2.3 The 1980s

Dataflow continued to be an area of widespread research during the 1980s and several additional
semantic models for dataflow were introduced, for example, [76], [21], [197], [198], [199], [131]
and [120].

Logic programming languages also began to be used to model SPSs. A modification of
PROLOG used to model what have become termed perpetual processes (see [147]) within logic
programming was introduced in [19].

Functional programming languages were also used widely to model SPSs. Notable in this
area is the work of M Broy and his use of functional languages to study stream based distributed
processing (see for example [35], [36], [37], and [38]).

In 1985 the first paper on the subject of synchronous concurrent algorithms (SCAs) was
released. Conceived by B C Thompson and J V Tucker, SCAs (see [209]) have been the stimu-
lation for much of our own work into stream processing.

The year 1985 also saw the publication of a paper by D Harel and A Pneuli (see [91]) on
the subject of reactive systems. Reactive systems, together with signal processing networks and
synchronous dataflow networks — that can be considered as special cases of reactive systems —
have been the stimulation for a large body of stream processing research (see for example [84],
[53] and [25]).

During the 1980s streams and STs have also been used extensively for hardware description,
for example, [192], [193], [194], [65], [66], [95], [177] and [92]. We note that the work of M
Sheeran on Ruby, as discussed in [192], [193] and [194] above, includes a generalization of the
representation of streams to the function space [Z — A] (wherein Z represents the integers) to
avoid dealing with initial conditions in hardware specifications. (References on the incorporation
of streams into foundational mathematics can be found in Section 10.)

Two surveys of the use of stream processing in hardware design during the 1980s can be
found in [176] and [64]. Indeed, the work presented in [176] is based in part on the work of D P
Friedman and D S Wise and is the first in a large body of research concerned with the use of
applicative stream processing for the design and synthesis of hardware based on the language
Daisy.
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2.4 The 1990s

As with the 1980s, semantic models for dataflow are still being developed, for example, [125],
[14], [15], [77], and [141], although the work in [14], [15] is concerned with flowchart schemes (see
[142]) that has applications to the study of dataflow schemes. A useful overview of the concept
of dataflow with an extensive bibliography can be found in [190].

Developments of Ruby have continued including formalizations of the Ruby algebra (see for
example [195] and [191].)

SCAs continue to be an intensive area of research (see Section 6.1 for references) as does
research into reactive systems (see for example [28], [88], [85], [184] and [87]).

The 1990s have also produced a body of work concerned with the theoretical foundations of
stream processing. In 1992 J V Tucker and J I Zucker (see [213]) released the first in a series
of generalizations of computability theoretic results from the natural numbers to algebras with
streams. This work is continued in [214]. In addition, [201] presents a theoretical study of the
compositional properties of STs in Cartesian form.

The theoretical work of K Meinke has applications to the specification, verification and
parameterization of STs (see [160], [161], [162], [163]) as does the work of K Meinke with L J
Steggles and B M Hearn (see [164] and [99] respectively).

Finally, M Broy continues his functional study of distributed processing over streams (see
for example [42], [46], and in particular [45]).

3 Dataflow

As dataflow networks were the first type of SPSs to appear in the literature we begin our more
detailed survey with an examination of the research aims of dataflow and an analysis of the
semantic models and implementation techniques that have been developed. A more detailed
introduction to the concept of dataflow can be found in [190].

To aid in this discussion, because so much of the stream processing research in the literature
is concerned with SPSs, in the sequel it is useful to be able to identify different types of SPSs
concisely. Therefore, we will classify SPSs by the following three main characteristics:

(1) Either synchronous or asynchronous filters — that is, filters that either compute in a syn-
chronized manner with respect to other filters (as for example in Section 6.1) or filters
that compute with no synchronization with respect to other filters.

(2) Either deterministic or non-deterministic filters — that is, filters that either do or do not
compute a function.

(3) Either uni-directional or bi-directional channels.

Notice that in our definitions each of these three classifying features only reflect the behaviour
of individual filters and not the whole SPS of which they are a part. Thus, from the perspective
of our classification synchrony and asynchrony are independent from determinism and non-
determinism, whereas from the perspective of the whole network behaviour this may not be the
case.
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We will use the following shorthand notation to denote SPSs that are designed to model
networks with specific combinations of the above three properties: ¢év-SPS, wherein ¢ € {5, A},
6€{D,N},and v € {U, B}. For example, using this classification a synchronous, deterministic
SPS with unidirectional channels is denoted SDU-SPS, and an asynchronous, non-deterministic
SPS with bidirectional channels is denoted ANB-SPS.

3.1 Origins

As we have mentioned dataflow research began as far back as the 1960s and continues to be
an area of widespread research. One of the continuing aims of the dataflow approach has been
to avoid the so-called ‘von Neumann bottleneck’ (see [12] and [13]) and exploit the parallelism
offered by VLSI technology. As part of this research many experiments with specialized archi-
tectures have been undertaken (the interested reader can consult the bibliography of [190] for a
list of references).

We note in passing at this point that it has been observed that the link between J von Neu-
mann and sequential computing methods is historically inaccurate, as he was one of the early
advocates of parallel computing methodologies ([127]). However, we use this phrase as it can be
found in the dataflow literature.

3.2 Dataflow Networks

A classical dataflow network is an ADU-SPS, although dataflow computation based on ANU-
SPSs has also been studied, and more recently dataflow computation based on SDU-SPSs has
been of interest. The filters within a dataflow network (sometimes referred to as coroutines — see
[157]- and also agents) compute over streams — that is, A* (see below) wherein the data type A
is usually restricted to int, bool, real and lists of these types.

3.3 Dataflow Computation and Semantics

From an operational perspective the dataflow model of computation is typically divided into two
basic forms: data driven (eager evaluation) wherein filters compute depending upon the avail-
ability of data at their inputs; and demand driven (lazy evaluation) wherein filters request data
on the input lines when they wish to compute. However, in [112] it is argued that neither of these
informal implementation ideas embody a semantics that is suitable for dataflow computers. In
contrast, [112] suggests four operational semantic models for dataflow: piped eager, tagged eager,
piped lazy and tagged lazy based on a graphical language called flat operator nets. Furthermore,
[112] shows that using such a model it is possible to determine whether the operational semantics
of a dataflow network is equivalent to its intended denotational semantics.

3.3.1 Kahn’s Work. The most common approach to a denotational model for dataflow
is a domain-theoretic semantics based on the influential work of G Kahn (see [121]), wherein
he introduced a simple parallel language for representing ADU-SPSs in an ALGOL like style.
However, the generality of the method Kahn introduced to provide a semantics for this language
means that his techniques can also provide a language independent semantic model for both
SDU-SPSs and some ADU-SPSs (see Section 3.3).

Kahn’s interest in such a language was not motivated by the development of a user-friendly
programming methodology for describing ADU-SPSs, rather Kahn was interested in how to
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prove formally properties of programmes written in such a language. In particular, properties
relating to the networks they described including termination, non-termination and properties
of their output.

Kahn observed that the (possible infinite) sequences of data from some data type D passing
along arcs (what he referred to as histories) that connect modules in a SPS can be formalized
mathematically as the set D* = [T" — D]|JD* (see Section 8.2). As such by associating the
usual partial ordering with D* he observed that D¥ is a complete partial order. Therefore, it
is possible to view a SPS N with n € N input arcs and m € N output arcs as computing a
functional

FN o (D¥)" — (D*)™.

Hence, with the assumption that each module in N computes a continuous function (not an
unreasonable assumption) the functional F' is itself continuous and so it is possible to apply
the First Recursion Theorem (see for example [167], [59] and [202]) to derive a semantics for
N. More specifically, Kahn observed that the least fized point of the functional FV is the
required semantics of the network N. Moreover, Kahn showed that using this method the
step from formalizing the semantics of SPSs to formalizing the semantics of the language he
introduced for describing such networks (or indeed any well-typed language for describing SPSs)
is straightforward.

As such, in line with Kahn’s motivations he observed that by adopting a fixed-point semantic
approach that Scott’s Induction Rule (Kahn cited [148]) and several techniques for proving
properties of recursive programs found in [220] are now available to the programmer, including
structural induction and recursion induction.

3.3.2 Other Dataflow Semantical Models. Despite the generality of Kahn’s method
it is not appropriate for some more general classes of dataflow network (see [132]). For example,
non-deterministic models of dataflow computation. Furthermore, ‘straightforward’ extensions
to the Kahn semantic model to cope with non-determinism can fail to be compositional (see
[34] and also [183]). Consequently for this and other reasons many other semantic models have
been formulated for dataflow. For example, some recent references include [76], [21], [197], [131],
[112], [125], [141], and [77].

Despite the many semantic models for dataflow none seems to have been widely adopted.
In addition, while the equivalence of certain operational and denotational semantic models for
dataflow is addressed (see for example [76], [112], [126], [36] and [40]) the formal relationship
between the many different approaches to dataflow is poorly addressed in the literature, as is
the correspondence between the model of computation provided by dataflow and formal models
of computation. For example, it is interesting that despite the fact that the dataflow approach
is in many senses closely related to CCS (see [170]) that (as far as we are aware) dataflow has
not been formalized using this well-developed formalism. It has been suggested that this is due
to the ‘value’ passing nature of dataflow networks that CCS does not handle concisely; and
that the modelling of dataflow creates too much overhead to make its mathematical formulation
using CCS worthwhile.

3.4 The Uptake of Dataflow

Despite the extensive body of dataflow research the dataflow approach appears to have had
little impact on the traditional approach to ‘von Neumann computing’. Indeed, even the most
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well-known dataflow language Lucid (see Section 9.4) has been described as ‘a language looking
for an application’.

The reasons for the poor uptake of the dataflow approach may stem from two different areas:
on the practical side, implementation of the dataflow approach on conventional architecture leads
to inefficiencies, including large and wasteful memory usage, that has required the development
of specialized architectures; and on the theoretical side, as we have already mentioned, the lack
of a generally accepted clear and straightforward semantics.

3.5 Synchronous Dataflow

The asynchronous nature of dataflow can lead to problems with non-determinism and associated
anomalous behaviour (see [42]); and cyclic networks can suffer from deadlock (see [222] and
[172]). Synchronous dataflow has been developed to avoid these problems. While each filter in
a synchronous dataflow network still has its own clock, rather than a global clock as the name
might suggest, the interplay between these clocks is restricted and ensures synchronous (and
hence deterministic) behaviour.

We discuss synchronous dataflow more fully in Section 9.5 when we examine the language
LUSTRE that is used to describe synchronous dataflow networks.

4 Specialized Functional and Logic Programming

The theoretical approaches used to incorporate streams into functional and logic programming
languages are in many cases closely related, and are essentially that of a domain-theoretic
approach. For this reason we have grouped these two areas of research together into a separate
section of our literature survey. A detailed discussion of the domain-theoretic relationship
between functional and logic programming languages can be found in [196].

4.1 Overview

In Section 4.2 we examine the functional approach to stream processing and in particular the
work of M Broy.

In Section 4.3 we look and logic programming with streams, and in detail at a modification
of PROLOG that can be used for stream processing.

4.2 Functional Approaches to Stream Processing

The use of the function abstraction operator (A-abstraction) provides a mechanism for the rep-
resentation of STs in functional languages in both second-order and higher-order forms. Indeed,
most dataflow languages are functional languages, and some researchers regard dataflow as a
particular implementation technique for the functional paradigm (see the bibliography of [190]
for a list of references on this subject). In particular, within functional programming STs are
often referred to as being in data passing form and higher-order STs (third-order or above) are
referred to as being in agent passing form.

As dataflow languages and functional languages are closely related, in some sense any func-
tional programming language can be considered suitable for general purpose stream program-
ming. For example, the well-known functional languages LISP, ML and MIRANDA (see [169]
and [215]) can all be used to represent STs. However, whether such languages provide a natural
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and straightforward mechanism for the specification of STs is less clear and for this reason sev-
eral specialized stream orientated functional languages have been developed including ARTIC
(see [60]), HOPE (see [52]) and RUTH (see [98]) designed to meet more specific needs such as
real-time programming over streams.

4.2.1 Functional SPSs and Semantics. Typically ADU-SPS and ANU-SPS are
studied using the functional paradigm and as with dataflow languages the work of G Kahn has
been widely adopted as a semantic approach for functional stream processing. However, other
(sometimes related) approaches are also used including greatest fized points (see [61] and [82])
and Aczel’s logical theory of constructions (see [2], [71] and [72]). In addition, the work of [78]
and [100] on lazy evaluation has provided an implementation technique for functional stream
processing that has been widely adopted.

4.2.2 Applications. The verification of functionally specified STs has been explored in
the literature. In particular, operating systems have been an area of quite extensive research
(see [119] for an overview) as the swapping of processes can be modelled using agent passing
stream transformers. An example of operating system specification can be found in [46] and
in addition this paper provides an example of how ANU-SPS can be specified using classes of
functions.

As a more detailed example of functional stream processing research we now discuss the
work of M Broy who has made a significant contribution to the development of techniques
for functionally based stream processing. In particular, we discuss the FOCUS project that
provides a functional framework for the specification of distributed systems based on stream
communication.

The FOCUS Project. FOCUS (see [45]) is based on the work developed in [36], [39], [40],
[41], [42], [47], [43], and [44].

FOCUS is not a language, but rather a collection of tools and modelling concepts that pro-
vide a framework for the description of parallel distributed systems as concurrent asynchronous
processing elements. Within such networks data is exchanged via unbounded FIFO channels
that are modelled as streams.

FOCUS aims to provide a theory of stepwise refinement and modular development of parallel
systems and includes verification calculi that are intended to provide a formal system to reason
about the correctness of system implementations at various level of abstraction. However, it
is not the intention of FOCUS to provide a theory of stream based distributed processing (see
45]).

Despite the fact that FOCUS is a paradigm and not a language it does provide two con-
crete representations for expressing STs (as SPS). The first (and most abstract in the sense of
specification) is the language AL based on AMPL (see [36]) and the second is the language PL
based on the work in [47] and [62]. We discuss the languages AL and PL in Sections 9.9 and
9.10 respectively.

Given the specification of an ST in AL the FOCUS paradigm provides transformational
rules (refinements) towards more concrete representations (in the sense of specification). Indeed,
within FOCUS a representation is considered to be in its most concrete form (an implementa-
tion) if no further refinements and no further re-writings to another formalism (representation)
are possible. Given this definition the implementation language of FOCUS can be consider to be
PL, although one can imagine that these techniques could be extended to additional languages.
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4.3 Logic Programming Languages with Streams

As logic programming provides a high-level and useful method of specification for some classes of
systems it is natural that some researchers have explored the use of logic programming languages
for the specification of SPSs. Indeed, there are several examples of modifications of relational
languages for stream processing that can be found in the literature. In [179] these languages are
divided into three groups:

(1) Committed choice parallel programming systems, for example, PARLOG (see [54]).

(2) Extension of PROLOG to include either the parallel and or parallel or operators (see for
example [145]).

(3) Extension to PROLOG to include functional constructs, for example, [122], [146], [203],
[174], [20], and [63].

However, a different classification can be found in [20] wherein logical languages for programming
with streams are divided into two groups:

(A) Languages based on static input-output mode variable declarations for example the lan-
guages of [56] and [216].

(B) Languages based on dynamic variable annotations for example [55], [189] and [203].

While we are not aware of any work in the literature that describes the relationship between
these two classifications, it is possible to make the following general comments on the methods
used to incorporate the use of streams in logic programming.

4.3.1 Describing SPSs as Relations. The use of the term ‘coroutine’ in relational
languages does not directly imply the use of streams (see [179]). However, typically logic pro-
gramming languages modified for stream programming are designed to represent ADU-SPSs,
although the particular description of ANU-SPSs will of course depend on the stream process-
ing operations and types of concurrency allowed in the particular language.

4.3.2 The Use of Streams. As with the functional approach, streams are treated as the
union of finite and infinite sequences. In particular, streams are typically implemented as finite
lists, although the declaration and manipulation of infinite lists (and hence streams) may be per-
mitted. However, the use of infinite lists in some relational languages may be non-terminating
as they tend to use eager evaluation.

Specialized logic programming languages extended with non-strict processes and lazy evalua-
tion to cope with stream programming are sometimes termed perpetual processes (see [147]) and
have many similarities with functional languages. (A survey of the relationship between logical
and functional languages can be found in [63] and [20].) Alternatively, relational languages can
be modified to cope with streams by eliminating the occurs check, although this can lead to
‘unsound inferences’ (see [179]).

4.3.3 Semantics. Several semantic approaches have been adopted for dealing with
perpetual processes including a fixed-point semantics in the style of Kahn. A discussion and
comparison of these approaches can be found in [143].
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4.3.4 Languages. In addition to the specialized logic programming languages we have
already mentioned in Section 4.3 we look in detail at a modification of PROLOG to cope with
the use of streams.

5 Reactive Systems and Signal Processing Networks

The reactive system paradigm (see [91]) and signal processing paradigm are conceptually closely
related. The essential difference between the two approaches is that reactive system research is
concerned with SDB-SPSs and signal processing is concerned with SDU-SPSs; that is, in reactive
systems channels are bidirectional. Consequently, from this point we will use the term ‘reactive
systems’ to mean both reactive systems and signal processing networks.

Reactive systems are designed to model real-time systems such as operating systems and
process control programs that ‘repeatedly respond to inputs from their environment by producing
outputs’. Stream communication provides a natural method for the specification of real-time
systems. However, real-time system specification is not limited to this technique and is the reason
that in general real-time system theory is less related to stream processing than the specialized
real-time system research explored in reactive system theory. Therefore in this section we discuss
reactive systems as a separate topic.

5.1 Streams, Signals and Sensors

Reactive systems and signal processing systems communicate via signals that are related to our
concept of streams. Signals are divided into two types: pure signals that are un-typed and
simply communicate an ‘event’ that can be used for synchronization; and typed signals that
communicate data. Within the reactive system paradigm signals may be used for both input
and output, but we note that typed signals are only used for input and are referred to as sensors.
Given this informal definition signals in signal processing networks are all sensors. A comparison
of typed signals and streams can be found in Section 9.7.

5.2 The Strong Synchrony Hypothesis and Multiform Time

The reactive system paradigm is based on what is referred to as either the strong or perfect
synchrony hypothesis (see [26]) that requires all filters within a network to react instantly to
input producing a corresponding output in zero time. As a consequence the whole computation
performed by a reactive system is ‘instantaneous’. In addition, reactive systems use what is
referred to as a multiform notion of time (see [26]) wherein signals (streams) may be used as a
time unit. As such, co-operation of sub-tasks (processes) defines new temporal relations that
are used to define the global ordering of the data (compare [92]).

5.2.1 Semantics. The semantics of reactive systems have been formalized using temporal
logic (see [181]). In addition, [181] also includes a comparison of several different semantic
approaches to general concurrent systems and how these approaches can be applied to reactive
systems.

5.2.2 Languages. In Sections 9.5, 9.7, and 9.8 we describe three languages for pro-
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gramming reactive systems, respectively LUSTRE, SIGNAL, and ESTEREL, and contrast the
different approaches that they take.

6 Stream Processing in the Design and Verification of Hardware

At many levels of abstractions of hardware description the role of clocks is an important one.
The so-called state transformer formalization of hardware (see [94]) relies on the use of an ab-
stract clock 7' = {0,1,2,...} to provide a discrete measure of the evolution within a device of
the values of (for example) the registers and memory from some initial values to the values at
some time ¢t € T — referred to as the evolution of the device’s state.

As the state transformer model of hardware can be naturally viewed as a special case of a
stream transformer model of hardware, the use of streams is common in the hardware specifi-
cation and hardware verification literature. Indeed, many of the stream processing techniques
and languages that are discussed elsewhere in this survey are used for the study of hardware.

As such, most of the remaining literature on the subject of hardware specification and verifi-
cation lies outside the scope of this paper as the use of streams is incidental rather than the main
thrust of the research. (Although, the interested reader may still like to consult [81], [166], [58],
[155], [224], [117], [232] and [89].) Therefore, in this section we discuss the topic of synchronous
concurrent algorithms, a stream based computational model that has been used extensively for
the study of hardware, but for technical and other reasons contrasts with many other approaches
in this subject.

6.1 SCAs

The concept of a synchronous concurrent algorithm (SCA) was developed by B C Thompson and
J V Tucker in the early 1980s (see [207], [206] and [208]), and was motivated originally by the
need for an algebraic formalism for the specification and verification of general purpose hardware
(see [94], [93], [92], [74], [96], [73] and [97] for case studies.) However, SCAs are also appropriate
for the study of specialized hardware devices and specialized models of computation including:
systolic arrays (see [207], [206], [104], [69] and [103]); neural networks (see [108], [109], [111],
[230] and [210]); and cellular automata and coupled map lattice dynamical systems (see [149], [29],
[110], [107] and [30]). (For general introductions to the topics of systolic architectures; neural
networks; and cellular automata and coupled map lattice dynamical systems see respectively:
[158], [137]; [154], [227], [171], [129], [130], [185], [186], [187]; [124] and [90]; and [219] and
[229].)

Informally, an SCA can be visualized as a particular class of dataflow SDU-SPS; that is, a
SCA is as a fixed, synchronous, deterministic dataflow network wherein modules compute and
communicate in parallel via channels synchronized by a discrete global clock T'. As such, all
modules receive and produce data deterministically and hence the SCA as a whole also computes
a total function. This is in contrast with all the other stream processing formalisms we have
discussed that allow the specification of partial functions.

6.1.1 Streams. Within SCA theory streams are represented using the function space
[T — A] for some A of interest. However, again in contrast to the other approaches discussed,
the overall functionality of a SCA is modelled using a Cartesian form stream transformer CFST
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of the form

FroT x [T — A" — A”
rather than the more classical

F [T — A" = [T — A]".

While the use of CFST seems an apparently unimportant difference in specification technique
(as I is essentially only the un-Curried form of F'), Cartesian form specification is subtle in its
implications. Specifically: from the perspective of computability the reconciliation of these two
techniques is by no means straightforward (see [201]); and from the perspective of automated
verification the use of Cartesian forms has significant advantages, in that it permits the use of
essentially first-order techniques to establish the correctness of stream transformers (see [200]).

6.1.2 Semantics. A denotational semantics for SCAs is provided using value functionsthat
are a special case of primitive recursive functions (see [209]). As such, SCAs have a rich theory
founded in (generalized) computability theory, equational specification and term re-writing (see
for example [22] and [200]) that addresses many theoretical issues that are neglected elsewhere
in the stream processing literature.

The SCA computational model has also been generalized and formalized in several ways:
graph theoretical models (see [159] and [165]); process theoretic models (see [211]); operational
semantic models (see [206], [151], [150] and [182]); and infinite SCAs (see [153] and [152]).

6.1.3 Languages. Several formally equivalent languages have been developed for spec-
ifying, simulating and reasoning about SCAs: PR (see [206]); FPIT (see [206]), CARESS (see
[150] and [182]) — both based on the concurrent assignment statement (see [225]); ASTRAL;
and PREQ (see [200]). The language ASTRAL is discussed in Section 9.14.

7 Other Stream Processing Formalisms

7.1 ALPHA

While the language ALPHA (see [70]) is not specifically a stream processing language we mention
ALPHA here as it is described by its authors as ‘...a grandson of Lucid. ..’ and is used for the
design and synthesis of systolic VLSI (see [218]). In particular, ALPHA is an equational language
that involves a generalization of stream variables that can be used to represent a ‘spatial domain’;
that is, a (possibly infinite) matrix indexed by a sub-set of Z". For example, if variable X is
declared on the domain D defined by

D={(7)]i>0,1<5<2}

[ Ty 1, %12, L1350 ] ‘

T215L22,L23,..-

Using this methodology if variable ¥ was declared over domain D’ defined by
D' ={i]i>0}

then Y would essentially be a stream wq, 1, %2, ¥z, . - - .

To compute over spatial domains ALPHA uses a generalization of point-wise extensions
called ‘motionless operators’ whose semantics is formalized denotationally in the style of Kahn.

then X represents a matrix
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7.2 Stream X-Machines

Stream X-machines (see [106]) are based on the X-machine model of computation (a generaliza-
tion of the Turing Machine — see [105]) that allow streams as both input and output. Stream
X-machines have been used in the study of system testing and verification for which the authors
claim they offer significant advantages.

8 Stream Processing Primitives and Constructs

8.1 Introduction

In this section, in order to clarify basic issues relating to computability we analyse in some detail
the abstract stream processing primitives and constructs that can be found in the literature. In
the following section we look at specific languages that are used to specify the particular classes
of stream processing systems that we discussed in Sections 3, 4, 5 and 6.1.

8.2 Common Functional Stream Processing Operations

In this section we describe informally the typical functional stream processing primitives that
can be found in the literature defined using a generalized concept of a stream. (However, we
note in passing that these primitives are used in other formalisms as well, sometimes under a
different name.) This formalization is based on the description given in [46].

In the sequel we use A to denote any data type (algebra), with sort names taken from the
set S O {n,b}; that is, we assume that A includes as two of its carriers the natural numbers N
(also denoted T" when it is being used to represent discrete time) and the Booleans B. A typical
carrier of A is denoted A,, for some s € 5, and A" for some w € 5* is used to denote a Cartesian
product A, x A,, X ---A, . For example, A, = N=T and A, = B.

We denote a stream algebra by A with sort names taken from the set S = SU{s|s € 5}
with the convention that for each s € § that A, is the stream [1T" — A;].

In the following section we also assume that A is a continuous algebra with an appropriate
partial ordering for each carrier. We use AY = [T — A]|JA" to denote the set of all finite
and infinite sequences (generalized streams) wherein <> € A* denotes the empty sequence. A
continuous mapping is denoted —.

8.2.1 Functional Stream Processing Primitives.

(1) Stream construction operator. We define the stream construction operator, denoted :,
with functionality : : A — A* — A¥ by (in infix notation)

(Va€e A)(Vs € A”) ais=¢

wherein if |a| < |N| then

(Vte{0,....]s|+1}) )

a if t =0;
s(t —1) otherwise

and if |a| = |N| then s’ = a.
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(2) Concatenation. We define the concatenation operator, denoted e, with functionality
o: AY — AY — AY by (in infix notation)

(Vae AY) <>ea=ua

and

(V(azs),s" € AY)  (a:s) e s = a:x(ses).

(3) First element selection. We define the head operator, denoted hd (and also first),
with functionality hd : A — A+ by

hd. <> = —

and

(V(a:s) € AY)  hd.(a:s) = a.

(4) First element elimination. We define the tail operator, denoted ¢l (and also rest), with
functionality ¢l : A — A% by
. <>=<>

and

(V(azs) € AY)  tl.(a:s) = s.

(6) Last element selection. We define the last operator, denoted last, with functionality
last : AY — At by

— if s =<> or|s| = |N|;
(Vs € AY) last.s=<a if s =< a > for some a € A;

last.(tail.s) otherwise.

(7) Filtering. We define the filter operator, denoted (¢), with functionality © : p(A4) — AY —
A“ by (in infix notation)
(VS e p(d)) SO <>=<>
and
S©s ifags;
a:5(©s otherwise.

(VS € p(A)) (V(azs) € AY)  S©O(azs) = {
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(8) Pointwise change. We define the pointwise change operator, denoted .[. — .], with
functionality .[. — .]: AY — T — A — A“ by (in infix notation)

sty ift £t

a otherwise.

(Vs € A) (V1,8 € T) (Va € A) st — a](t') = {

It is also common in functional stream processing to use the following two higher-order primitives
that act directly on STs themselves.

(A) After. We define the after operation, denoted <, with functionality < : (4% — B¥) —
A — (AY - B¥) by (in infix notation)

(Vfe(AY - BY))(Vae A) (Vs € AY) (f<a).s= f.(as).

(B) Then. We define the then operation, ambiguously denoted <, with functionality <: B —
(AY - B¥) — (A“ - B") by (in infix notation)

(Vbe B) (Vf e (AY - BY)) (Vs€ AY) (b< f).s =b:f.s.

8.3 Stream Processing Primitives in Logic Programming

In this section we identify four generic stream processing primitives that can be found in the
logic programming literature. We conclude the section with some concrete examples of these
types of stream processing primitives based on the list given in [17].

8.3.1 Generic Relational Stream Processing Primitives.  In [179] stream processing
primitives in logic programming languages are referred to as transducers (see [1]) and are divided
into four groups. However, as pointed out in [178] this list of transducer types is not exhaustive,
although no indication is given as to why this is the case.

(1) Enumerators (Generators). Enumerators produce a stream derived from some initial
values. A generic enumerator definition is as follows:

enumerate(Stream) :-
initial_state(State),
enumerate(State,Stream).

enumerate(S,[X | Xs]) :-

next_state_and_value(S,NS,X),
!

i

enumerate(NS, Xs).

enumerate(_,[]).
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(2) Maps. Maps produce an output stream by applying a function to an input stream. A
generic map definition is as follows:

map_f([X | Xs[.[Y'| Ys]) -
JX.Y),
map_f(Xs,Ys).

map_f([].[])-

(3) Filters. Filters produce part of their input stream as output, the elements selected being
based on defined criteria. A generic filter definition is as follows:

filter([X | Xs],Ys) :-
inadmissible(X),
!

filter(Xs, Ys).

filter([X | Xs,[X | Ys]) :-
filter(Xs,Ys).

filter([1.[]).

(4) Accumulators. Accumulators produce an ‘aggregate’ of input values as output. A generic
enumerator definition is as follows:

accumulate(Stream, Value) :-
initial_state(State),
accumulate(List,State, Value).

accumulate([X | Xs],S, Value) :-
next_state(X,5,NS),
accumulate(Xs,NS, Value).

accumulate([],S, Value) :-
final_state_value(S, Value).

Notice that accumulators are strictly first-order primitives.

8.3.2 [Examples of Relational Stream Processing Primitives. We now list the

examples of second-order stream processing primitives (in functional form) presented informally
in [179] based on the list given in [17].

(A) For each constant ¢ € A, for some s € S we define
ConStre :— [T — Aj]

by
(VteT) ConStre(t) = c.
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(B) For each constant i € Z we define
IntFrom' :— [T — 7]
by '
(VteT) IntFrom'(t)=1i4(t—1).
(C) For each binary operator o : A, x A, — A, for some s € 5 we define

Agyg” [T — A = [T — A,]
by

a(0) ift=0,and
Vaec [T — A)(VteT) Agg’(a)(t)=
(Va el =AD( ) 99°(@)(t) {U(Agg"(a)(t —1),a(t)) otherwise.
(D) For each unary operator o : A, — A, for some s € 5 we define
Map? : [T — A,] — [T — Aj]
by
(Vae [T — A)(VteT) Map®(a)(t) = o(a(t)).

(E) For each binary relation p C A, X A, for some s € 5 we define

Com? : [T — A x [T — Ayl — [T — B]
by

Plai, a _ it plai(t),as(t)), and
(Vah(Zz S [T — As]) (Vt € T) Com ( 1, 2)(t) = {ﬁf Siherice.

(F) For each n € N and for each s € S we define
Repr + [T — A) — [T — A
by
(Va e [T — A,)) (Yt €T) Rep?(a)(t) = a(tdivn).
(G) For each s € S and for each n,z € A, we define

Lag?® [T — A] — [T — A]
by

if ¢ d
(Vae[T —N)Y(VieT) Lagh™(a)(t)=14" Hhsmn,an
a(t —n) otherwise.
(H) For each s € S we define

Merge, : [T — A x [T — Ay] — [T — A;]
by

t) ifti d
(Vas,as € [T — A]) (V€ T)  Mergey(ag,ap)(e)4 (1) 1 118 even an
as(t) otherwise.
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9 Stream Processing Languages

As promised we now examine some examples of stream processing languages designed to repre-
sent the particular classes of SPSs we have identified in the literature.

In Section 9.4 and Section 9.5 we discuss the languages Lucid and LUSTRE designed to
programme asynchronous and synchronous dataflow SPSs respectively. Also, in Section 9.6 we
briefly discuss the so-called Manchester Languages and mention some other dataflow languages
that can be found in the literature.

In Section 9.7 and Section 9.8 we discuss the related languages SIGNAL and ESTEREL that
are used for programming signal processing networks and reactive systems respectively.

In Sections 9.9, 9.10 and 9.11 we discuss the functional languages AL, PL and Daisy respec-
tively.

In Section 9.12 we examine a modification of PROLOG designed for stream programming.

In Section 9.13 we look at the language STREAM used in the design and verification of
hardware.

Finally, in Section 9.14 we describe the language ASTRAL that has been developed from
SCA theory. However, we begin this section with a discussion of the RS-Flip-Flop, that we
will use as a running example for presenting and hence comparing the syntax of the stream
processing languages that we discuss. We note that we choose to use a running example com-
bined with a formal analysis of language constructs, rather than use specific examples tailored
to demonstrate the features of each language, as we believe this is more objective and more
in keeping with the aim of this survey as discussed in the introduction. The reader interested
in examples that have motivated specific features of our example languages is directed to the
references cited in the appropriate section.

9.1 A Running Example: the RS-Flip-Flop

The RS-Flip-Flop (or simply Flip-Flop) is a widely occurring device found in computer hardware.
The Flip-Flop is designed to output a stream of ‘true’ (#t) and ‘false’ (ff) signals controlled by
two input streams of true and false control signals.

Valid control signals consist of one of three simultaneous input pairs:

e ‘Reset’ — (#t,ff). This indicates that the Flip-Flop’s next output should be a ff.
o ‘Set” — (ff,tt). This indicates that the Flip-Flop’s next output should be a tt.

e ‘Hold” — (ff.ff). This indicates that the Flip-Flop should repeat its previous output.

However, while the pair (#t,t) is considered to be illegal input, a practical implementation of
the Flip-Flop must be able to cope with this input.

9.2 Formalization of the Flip-Flop as a ST

This informal description of the Flip-Flop’s operation can be made more precise by defining the
Flip-Flop as an abstract ST as follows:

Flip-Flop : [T — B)* — [T — B]
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defined by
and
(Vby, by € [T — B]) (Vi €T)
Flip-Flop(by, b,)(t + 1) = < tt if b,(?) = ffand by(t) = tt; and

Flip-Flop(by,b5)(t) otherwise.

In particular, notice that this specification outputs its previous output if the illegal control signal
(tt,tt) is supplied as input.

9.3 An Implementation of the Flip-Flop as a SPS

A typical implementation of the Flip-Flop can be visualized at the conceptual level as a SDU-
SPS comprising two input streams, two modules, and two output streams wherein both modules
compute the ‘nor’ function. To reconcile this implementation with the functionality of the
specification only one stream is considered as ‘proper output’ (the first module’s output), with
the other stream used only as ‘feedback’ to compute the Flip-Flop’s next output.

9.3.1 The Flip-Flop SPS’s Computation. The SPS representing the Flip-Flop is
shown in Figure 2. Initially the modules of the SPS representing the Flip-Flop will output

Figure 2: The RS-Flip-Flop as a SPS

some initial values that for convenience we will assume is the pair (,ff).
After the Flip-Flop’s initial output each module computes (synchronously) on the streams
of control signals and the previous output of the other module to produce the next output.

9.3.2 Properties of the Flip-Flop. We note that this description of the Flip-Flop is
a highly conceptualized model of idealized hardware, for which the Flip-Flop SPS requires pre-
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and post-processing of its input and output respectively to meet its specification. Indeed, it has
been pointed out that ‘real’ discrete models of Flip-Flop implementations should be developed
using three- or four-valued logic (see for example [48], [228] and [133]). This stems from the
fact that associating ¢t and ff with low and high signal values leads to a false correspondence
between boolean logic and voltage values.

However, as our use of this example is only to demonstrate certain basic, but important
language features we find it convenient. In particular, our model of the Flip-Flop enables us to
show how mutual recursion is expressed; how vector-valued components are specified; and how
each language deals with explicit synchronization.

The interested reader can find studies of the Flip-Flop at various levels of abstraction in
[114], [208], [200] and [134].

9.4 Lucid

Lucid (][223]) is perhaps the best known of all the dataflow languages that have been developed.
A Lucid programme is essentially a system of recursion equations, although Lucid is described
by its authors as a ‘functional dataflow programming language’. The term ‘dataflow’ is chosen
because each Lucid programme is semantically equivalent to a dataflow network; and ‘functional’
because the output of each filter is a function of its inputs. (Note that the term ‘functional” used
here does not imply a computation without side-effects as in the mathematical sense.) Lucid is
also described by its authors as a ‘typeless’ language as there is no declaration section. However,
a more formal description would be to say that Lucid operators are overloaded and their type
is inferred from their context.

Lucid was conceived by its authors in 1974 with what they claim to be quite modest aims;
that is, to show that real-life programmes could be written in a purely declarative style so that
programme verification would be possible. The authors felt that a purely functional language was
not creditable for this purpose for reason of efficiency, and so Lucid contains iterative constructs
so that (the authors claim) when writing Lucid programmes the programmer may make use of
algorithms used in real ‘everyday’ programming. It was also (later?) intended that Lucid could
exploit the new highly-parallel, multiprocessor dataflow machines.

9.4.1 Constructs and Primitives. Each Lucid programme is an expression structured
using the ‘where’ clause taken from ISWIM (see [140]) over simple ‘data types’, for exam-
ple: integers; reals; Booleans; words; character strings; and finite lists. Lucid also uses the
if. .. then. . . else construct.

Lucid has the ‘usual’ operators over the data types just mentioned and treats them as point-
wise extensions over time and hence can be used to manipulate streams directly. In addition
Lucid uses six explicit stream processing primitives with the following semantics.

(1) First. For each u € S* we define
Firstd: [T — A*] — [T — A"]

by
(Va e [T — A]) (Wt e T) Firsti{(a)(t) = a(0).
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(2) Next. For each u € St we define
Newt%: [T — A*] = [T — AY]

by
(Vae[lI'— A'])(Vte€T) Nexti(a)(t) = a(t+1).

(3) Followed By. For each u € ST we define
Fbyf: [T — AY] x [T — A"] = [T — AY]
by

ai(t) ift =0, and

asx(t —1) otherwise.

(Vay,ay € [T — A]) (VL € T)  FbyiHay, as)(t) = {

(4) At Time. For each u € S* we define
AtTimed : [T — A“] x [T — N] — [T — A"]
by
(Vae[lI'— A"])(Vne [T — N)(VteT) AtTimed{a,n)(t) = a(n(t)).

(5) Whenever. For each u € ST we define
Whenever2 : [T — A*] x [T — B] — [T — AY]

u

by
(Vae[I'— AY])(Vbe [T —=B)) (VteT)

t if b(t) = tt d
W heneverg{(a,b)(t) = alt) N if b() 7 o
Wheneverg(a,b)(t+ 1) otherwise.

(6) As Soon As. For each u € S* we define
Asai:[T%A“] X [T'— B| ~ [T — A"]
by

(Va € [T — A])(Vbe [T —B)) (Yt €T) Asai(a,b)(t) = a(u k.[b(k) = t]).
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(7) Upon. For each u € St we define
Upon%: [T — AY] x [T — B] — [T — AY]

by
(Vae[I'— A*])(Vbe [T —=B)) (VteT)

if t =
Upony(a.b)(0) = | 1 o =
. a(NumOfTrues(Nexti(b))(1)) otherwise
wherein Newtﬁ is defined as above and NumOfTrues : [T — B] — [T — N] is defined by
(Wb e [T — B)

1 if b(0) = £, and

0 otherwise

NumOfTrues(b)(0) = {

and
1 4+ NumOfT b)(t) ifb(t+ 1) =tt, and
NumOfTrues(b)(t 4 1) = + NumOfTrues(b)(t) - if & +_ ) >
NumOfTrues(b)(t) otherwise.
9.4.2 The use of Streams. As with many of the other languages we will discuss streams

are represented as variables. In the particular case of Lucid any free variables (not explicitly
declared) are treated as input streams.

9.4.3 Language Development and Current Uses. Since its conception various
implementations of Lucid have been written (see [75] and [188]) and one such implementation
pLucid — Lucid over the algebra of POP-2 taken from [51] — has been used experimentally for
software design (see [221]). Recently work on GLU (Granular Lucid) has appeared in [11].

9.4.4 Lucid Syntax. The RS-Flip-Flop can be described in Lucid as follows:

flipflop(Ini, In2) = (Outl, Out?2)
where
Outl = true fby (Inl nor Out?2)
Out2 = false fby (In2 nor Outl)

9.5 LUSTRE

LUSTRE (see [53]) is a synchronous dataflow language related to Lucid. Like Lucid it is based
on the description of a SPS as a system of equations. However, unlike Lucid, LUSTRE requires
that the output at time ¢ of the functions defined by such a set of equations depends only on
input received either before or at time ¢. This property is referred to by the authors of LUSTRE
as causality.

We note in passing that intuitively causality appears to restrict LUSTRE to expressing the
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class of course-of-values recursive functions (see [212]). However, the authors do not discuss the
issue of computability in this respect.

In common with languages for describing reactive systems LUSTRE is based on the strong
synchrony hypothesis and has a multiform notion of time (see Section 5). Furthermore, in
common with the language ESTEREL (see Section 9.8) LUSTRE programs are implemented
via compilation into finite automata.

The authors state that LUSTRE programs are subject to a strict analysis for deadlock based
on a domain theoretic analysis of the various clocks defined using the When operator, rather
than by the cycle sum test that is applied to Lucid programmes (see [222]). However, the authors
concede that while this approach does detect any potential deadlock it also rejects some valid
programmes. It is this strict approach to the interplay between the various clocks over which the
various filters compute within a programme that ensures the synchronous nature of LUSTRE.

9.5.1 Primitives and Constructs. In common with Lucid underlying operations are
treated as point-wise extensions over time in LUSTRE and can be directly applied to streams.

Any LUSTRE program, that is correct with respect to the various static-semantic tests that
are applied to it, is compiled into a simplified basic abstract syntax. Compilation into this
restricted syntax eliminates separate node (filter) definitions, used to employ a modular pro-
gramming technique. In particular, stream operators are compiled into a restricted subset of
stream operators that form a functionally complete set. This functionally complete set consists
of the following four operations that we now define informally.

Let A be some algebra wherein S = {s;,...,s,} forsomen € N. Also,letU=<U,,...,U, >
be some collection of distinct values such that U,, & A,, fori =1,...,n, and let AV = AUU.

(1) Previous. For each u € 5 we define
Pre% T — A]Y — [T — AV

by
(a)(t—1) if t >0, and
(Uuys -+, Uyy,,)  otherwise.

(Va e [T — A]")(VteT) Prei(a)(t) = {
(2) Followed By. For each u € S we define
FBys : [T — A" X [T — A]" — [T — A]"

by
(Vay,aq € [T — A]*) (Vt €T) FByEA(al,az)(t) =

a;(0) if ¢t =0, and
as(t) otherwise.

Notice that this is different from the Lucid operator Fby.

(3) When. For each u € § we define
Whenz;: [T — A]* x [T — B] ~ [T — A"
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by

(Vae[lI'— A]*)(Vbe [T —B]) (VteT) Wheng(a,b)(t)=a(pk.[b(k)=ttAk>1]).

(4) Current. For each u € 5 we define
Currentd : [T — A]* X [T — B] — [T' — A]"

by
(Vae[I'— A")(Vbe [T —B])(VteT)

a(t) if b(t) = tt
Currenti(a,b)(t) = Currentd(a,b)(t —1) if b(t) = ffAt >0
Wheni(a, b)(0) otherwise.

9.5.2 The use of Streams. As is common in equational stream processing languages
undefined variables are treated as input streams in LUSTRE programmes. Indeed, the notion
of a stream in LUSTRE is the same as in standard dataflow and is not the same as in the
reactive system paradigm. It is for this reason that we choose to classify LUSTRE as a dataflow
language.

9.5.3 Semantics. Two separate approaches to the semantics of LUSTRE have been
applied. The first is a domain-theoretic approach in the style of Kahn’s work. The second
approach is an operational semantics based on the work of Plotkin (see [180]). This operational
semantics can been used for proofs of equivalence of different LUSTRE programs, and is the
semantic model that has been used to analyse the properties of the compilation of LUSTRE
programmes into finite automata.

9.5.4 Language Development and Current Uses. LUSTRE has been used for
such diverse applications as music synthesis description (see [8]) and for verification of real-time
systems (see [87]).

9.5.5 Syntax. The RS-Flip-Flop can be expressed in LUSTRE as follows:

node flipflop(In1, In2 : bool)
returns(Outl, Out? : bool);
let
Outl = tt : FBy pre(Inl) nor pre(Out2);
Out?2 = ff : FBy pre(In2) nor pre(Outl);
tel



J sl nAM FRROUCESISING LANGUAGLED

9.6 Other Dataflow Languages

9.6.1 The ‘Manchester Languages’.  There are several so-called ‘Manchester Languages’
(see [101]) including SASL, SISAL, LAPSE and MAD that have been used on the Manchester
Dataflow Machine. In this Section we very briefly discuss these languages. The reader interested
in the topic of specialized dataflow architecture can consult [86] and more recently [190].

SASL. The language SASL (see [101]) is a functional language. SASL derives its name
from the fact that only single assignment functions (one argument) are permitted. Multiple
argument functions are achieved with Currying.

SISAL. The language SISAL (see [156]) is a typed ‘value orientated’ functional language
designed for dataflow computing machines. The name SISAL is derived from Streams and It-
eration in a Single Assignment Language. SISAL allows recursive constructs and looping. In
addition to being implemented on the Manchester Machine, SISAL has also been implemented
on the VAX, CRAY and HP dataflow machines (see [190]).

VALID. The language VALID (see [7]) is a higher-order functional language designed to
achieve very high-level parallelism. VALID derives its name from Value Identification Language
and has a mix of ALGOL- and LISP-like syntax, including block-structuring and case state-
ments.

DCBL. The language DCBL (pronounced ‘decibel’ - see [101]) is a high-level dataflow language
designed to define the operational semantics for dataflow computing languages. In particular,
DCBL is designed to enable users to express programmes with many forms of concurrency, at a
high-level of abstraction without any machine dependent characteristics.

9.6.2 General Dataflow Languages.

VAL. The language VAL (see [68] and [33]) is a synchronous functional language with im-
plicit concurrency. The name VAL is derived from the languages ‘value orientated’ rather than
‘variable orientation’ nature; that is, new values can be derived, but cannot be modified. This
principle is used in the language so that values can be assigned to identifiers, but identifiers can-
not be used as variables in order to address certain issues arising from the automatic generation
of concurrent implementations.

ID. The language ID (see [9]) is an un-typed, functional, block-structured language that
supports non-determinism and the use of streams. A programme in ID consists of a list of
expressions wherein each expression is either a ‘loop’, a ‘conditional’, a ‘block’ or a ‘procedure
application’.

9.7 SIGNAL

SIGNAL (see [84]) is an applicative language designed to programme real-time systems using
synchronous dataflow. The authors claim that a SIGNAL representation is very close to the
specification of a system, either mathematical or graphical, and leads to an elegant formal
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‘synchronization calculus’.

SIGNAL uses two concepts of time: logical time and an associated timing calculus based on
the strong synchrony hypothesis (see Section 5); and physical time. Using this system temporal
references are determined entirely by the sequence of communication events and not as (the
authors claim) by the input events as in either LUSTRE or the dataflow approach.

Individual processing elements in a SPSs described by SIGNAL are not synchronized by
a single global clock 7" = {0,1,2,...}, rather SIGNAL has a ‘multiform notion’ of time (see
Section 5).

9.7.1 The use of Streams. The name SIGNAL is derived from the infinite sequences
called signals over which all processes in a SIGNAL system compute (see Section 5.1). Each
signal is a map a : T' — A for some data set A and some clock T = {1,2,...}. (Notice that
the clock starts at 1 and not 0.) It would appear from this description that signals are streams.
However, the individual values of a signal may be ‘sampled’ at continuous points rather than
simply at the discrete division indicated by the signal’s clock. In addition, the values are not
persistent and as such may only be sampled in order; that is, once the value of a signal a has
been sampled at time ¢ € T it may henceforth only be sampled at some time ¢’ wherein ¢’ > t.
(Also see the following section on further operators.) Notice that this interpretation of a signal
is related to Kahn’s visualization of streams as asynchronous FIFO queues (see Section 3.3.1).

9.7.2 Constructs and Primitives. SIGNAL operators are divided into two classes: ‘S-
operators’ that define signals and ‘P-operators’ that are used to create interconnections between
processes. We will only consider signal definition operators here.

(1) Basic Operations. The syntax
a:=b+1

for some signals a € [T — A] and b € [T" — A] for some data set A wherein 1 is a constant
signal creates a process with the following semantics:

(VteT) a(t)=>5b(t)+1;

that is, it creates a process that takes a single signal input b and produces a single signal
output a that at every time cycle ¢ is precisely the value of a(t) plus one.

Notice here that because of the nature of the process specified the two clocks 7" and
T' are synchronized and hence considered to be the same. This is not a property of signal
processes in general.

(2) Delays. The syntax
ainit c
a:=0b%1

for some signals a € [T — A] and b € [T — A] for some data set A wherein ¢ is a constant
signal and creates a process with the following semantics:

c if t=20and
b(t —1) otherwise;

(VteT) a(t)= {
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that is, the statement creates a process with a single input that delays its output by one
time cycle and outputs a constant at time ¢ = 0.

Notice here that a delay is defined by two separate processes (statements) and hence
if the first statement is omitted (as in some of the reference examples) then the signal
described by its process is undefined at time ¢t = 0. Also, there is an inconsistency in the
reference examined in that the signal’s underlying clocks are given as T' = {1,2,...}, but
the tnit statement define values of streams at time ¢ = 0.

(3) Composition. The syntax
(lainitcla:=b+ 1|b:= a$1])

denotes the process formed by the composition of the processes a tnit ¢, a := b+ 1 and
b := a $1 specified in the previous examples. The ordering of the sub-processes within a
composition is unimportant; that is, it is associative and commutative, and communication
is implied between processes wherein an output signal of one process (an identifier on the

left of an “:=’") has the same name as an input signal (an identifier on the right of an “:=")
from a different process. So our example has the intended semantics
if t =0 and
(VteT) a(t)y={" ' o
a(t—1)4+ 1 otherwise;

(4) Further operators. SIGNAL also uses the operators when, event and synchro with the
following syntax
a := bwhen c,

a = eventbh

and
synchroa,b

respectively. Because the semantics of these statements is ‘formalized’ using a clock calcu-
lus, that we will not discuss, we will only give the intuitive meanings of these statements:
when is a so-called undersampling operator that, in the context of our example, produces
the input signal bif it is defined at the same time the Boolean signal ¢ is defined and ‘true’;
event delivers an always ‘true’ Boolean signal whenever (in the context of our example)
signal b is defined; and synchro (again in the context of our example) explicitly synchro-
nizes the signal’s ¢ and bs clocks.

Because of the lack of a global clock and the definition of a signal, when examining
the current value of a particular signal @ : T — A we have two possible results: it may
either be undefined or will have some value in the data set A. Because of this definition
of signals the authors use a clock calculus to give and check the semantics of SIGNAL
definitions. As Boolean signals are used to define clocks (via the event operator) this
clock calculus requires two data sets (and is the reason, the authors claim, that a Boolean
calculus is insufficient); that is, C' = {—1,0, 1} for Boolean signals, wherein 0 denotes the
absence of a value, —1 denotes ‘false’, and 1 denotes ‘true’; and C" = {0,1} for all other
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signals, wherein 0 denotes the absence of a value and 1 the presence of a value. Within
this calculus the data set €' is given the structure of a commutative field onto which all
SIGNAL processes can be mapped. This ‘mapping’ of a process is used to analyse the
relationship of any sub-modules clocks and to detect incorrectly defined processes. For
example, the compositional process

(lz := awhen (a > 0)]y := a when (not(a > 0))|z := z + y|)

gives rise to the following equations in the clock calculus (using ¢ to represent the Boolean
expression a > 0)

2

a*(—c—c?)
2 aZ(C— CZ)
22 =y

SUEE=S
(

that gives —¢ = ¢. As this has a single solution (¢ = 0) the process defined by this
composition is undefined. This is intuitively clear from the example as the clocks over
which z and y are defined are mutually exclusive.

9.7.3 Semantics. SIGNALS semantics is based on the clock calculus described above that
we will not discuss further.

9.7.4 Syntax. The RS-Flip-Flop can be expressed as follows in SIGNAL:

(| Outl wnat tt | Out2 inat ff |
Int' := In181 | In2 := In281 |
Outl’ := Out1$1 | Out? := Out281 |
Outl := Inl’ nor Out? | Out2 := In2 nor Outl

)

9.8 ESTEREL

ESTEREL (see [24], [25], [26] and [32]) is a real-time imperative concurrent language for de-
scribing reactive systems. However, ESTEREL is designed for describing ADB-SPSs rather than
ADU-SPSs as in the case of the languages LUSTRE and SIGNAL. (See the following section
on the use of streams in ESTERELL.)

The authors state that the aim of ESTEREL is to develop a rigorous formal model of real-
time computation with an operational semantics that can be used for tasks where programming
using conventional languages is difficult.

9.8.1 Constructs and Primitives. The basic structuring device in an ESTEREL pro-
gramme is the module with input and output signals for broadcast communication and internal
signals for internal broadcast communication.

The body of a module that describes its operation can include the following basic primitives
and constructs:
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(1) Null process. The command
nothing

creates a process that does nothing in zero time.

(2) Local variable declaration. The command
var X : type in i end

creates a local variable X for process 1.

(3) Variable assignment. The command
X = exp

assigns variable X with the value of the expression exp.

(4) Signal Transmission. The command
emit s(ezp)

emits the value of exp on signal s.

(5) Conditional execution. The command
do 7 upto s(exp)
repeatedly execute process ¢ until the value exp is broadcast onto signal s and
do 7 uptonext s(exp)

repeatedly execute process ¢ until the value exp is broadcast onto signal ‘s’ twice.
(6) Sequential Composition. The command
i13 U
invokes process ¢, immediately upon completion of process ¢;.

(7) Parallel Composition. The command

i ]2



J sl nAM FRROUCESISING LANGUAGLED

simultaneously invokes processes ¢; and i, sharing the same local variables and local sig-
nals.

(8) Iteration. The command
loop i end
executes process 7 in a continuous loop. However, processes like
X :=0; loop X := X + 1 end; loop emit s(X) end

have no semantics, due to the strong synchrony hypothesis, and are checked for during
static semantic evaluation.

(10) If Then Else. The command
if boolexp then 12, else v5 fi

has the usual semantics, but because of the strong synchrony hypothesis, we assume here
that boolexp is evaluated in zero time so control is passed immediately to either ¢; or ¢,.

(11) Process termination. The command

tag T in 7 end
exit T

executes process ¢ until ‘exit T7 is executed (in i) whereupon process i is terminated.

From these basic primitives many ‘higher-level’” construct are formed. However, these are just
for convenience during programming and do not occur in the semantic model.

9.8.2 The use of Streams. ESTEREL uses the same notion of stream processing as
SIGNAL; that is, signals and a multiform notion of time. However, unlike SIGNAL in ESTEREL
some signals are used for both input and output from processes and information is broadcast in
the sense that complete connectivity is assumed between processes. A commutative operator ‘*’
is explicitly associated with each signal to deal with simultaneous transmission (see [168]) such
that if the values vy, v9,...,v, for n > 1 are broadcast simultaneously onto a signal s then the
value on s is vy * vy % - - * v,,.

9.8.3 Semantics. ESTEREL has a complicated semantic model with three different
levels:

(1) Static Semantics. Used to establish temporal relations between processes and check for
any temporal paradoxes.
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(2) Behavioural Semantics. Used to define the temporal behaviour with respect to the
static semantics.

(3) Computational Semantics. Used to establish exactly what a program computes.

Once the computational semantics has been established any concurrency is eliminated by
compiling into a sequential programme that is implemented as an automaton in C (for example)
by a similar method used in parser generators (see for example [204]). The authors are confident
that this technique leads to an efficient implementation.

9.8.4 Language Development and Current Uses. ESTEREL has been used for
HCI and for programming communication protocols and real-time controllers (see [57], [173]
and [27] respectively). An ESTEREL environment exists (see [31]) that includes simulators,
debugging tools and a compiler to hardware, based on the techniques discussed in [23]. One
current research aim is to implement existing ESTEREL programmes directly in hardware.

9.8.5 Syntax. The RS-Flip-Flop can be described in ESTEREL as follows:

var L1,L2 : bool in flipflop ;
module flipflop:
nput Inl, In2 : bool ;
output Outl, Out?2 : bool ;
L1 := true ;
L2 := false ;
emat Outl(L1) ;
emit Out2(L2) ;
loop
L1 :=1InilnorL2;
L2 :=In2nor L1 ;
emat Outl(L1) ;
emit Out2(L2) ;
end.

9.9 AL

AL is a typed equational language that provides a specification formalism for (potentially)
recursive stream operations. Implicit concurrency is expressed by the juxtaposition of equational
definitions within both programme and agent definitions.

9.9.1 Constructs and Primitives. AL uses a block structure and includes constructs
such as if...then...else...fi. It also includes the finite choice operator O, and hence is AL is
able to define non-deterministic behaviour.

AL has all of the basic stream processing primitives as described in Section 8.2 as built
in operators. In addition, functions mapping data to data and components mapping data and
streams of data to streams of data can be defined by the user.
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9.9.2 The use of Streams. The declaration of input and output streams is explicit
in AL and streams may occur at most once on the left-hand-side of an equation. In particular
output streams must occur exactly once as a left-hand-side and input streams may not occur as

a left-hand-side.

9.9.3 Semantics. AL is restricted to second-order definitions and has a fixed-point
semantics in the style of Kahn.

9.9.4 Language Development and Current Uses. For an introduction to the use of
AL see Section 4.2.2 on the FOCUS project.

A prototype of AL has been implemented on a SUN workstation (see [175]) and experiments
to implement AL on an INTEL hyper-cube are in progress (see [83]).

9.9.5 Syntax. The RS-Flip-Flop can be represented in AL as follows:

programme flipflop = chan bool Inl, In2 — chan bool Outl, Out2:
funct nor = bool b1, b2 — bool:
not(b1 or b2),
agent streamnor = chan bool sbl, sb2 — chan bool sbout:

sbout = nor(ft.sbl, ft.sb2)

end,

agent leftbs = chan bool lbs1, rbsl — chan bool lbs
lbs = lbs1

end,

agent rightbs = chan bool lbsi, rbsl — chan bool rbs
rbs = rbsl

end,

Outl = true & streamnor(Inl, rightbs.flipflop(Ini, In2)) & leftbs.rt.flipflop(rt.Inl, rt.In2)
Out2 = false & streamnor(In2, leftbs.flipflop(Ini, In2)) & rightbs.rt.flipflop(rt.In1, rt.In2)

end flipflop.

9.10 PL

PL is a imperative, parallel procedural language designed for stream programming.

Constructs and Primitives. In some sense PL can be considered to be a classical lan-
guage containing assignment statements and while loops. However, in addition PL also has the
non-terminating loop construct loop. . . pool. PL is syntactically very similar to AL and allows the
definition of functions and components (see Section 9.9) and also has all the stream processing
functions described in Section 8.2 as basic operations.

9.10.1 The use of Streams. As with many stream programming languages variables
are used to represent input, but in addition as with AL variables are also used to explicitly
represent output. In contrast to AL there are two explicit operators in PL for ‘reading’ and
‘writing’ values to and from streams (channels) denoted ‘7" and ‘I’ respectively that can be
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defined informally as follows.
If ¢ is a channel identifier and x is a variable of appropriate type then the command

clx

is interpreted informally as ‘remove the first value from channel ¢ and assign this value to variable
2’ If ¢ is empty then execution of this command is delayed (possible infinitely). Similarly if ¢ is
again a channel identifier and F is an expression of appropriate type then the command

cF

is interpreted informally as ‘evaluate F and then write this value to channel ¢.” Again if F
cannot be evaluated, as it may depend on some input evaluation, then this command may also
be delayed (possible infinitely).

The use of these two operations provides a model of asynchronous communication and it is
pointed out in [45] that they should not be confused with the operators ‘?” and ‘" in C'SP (see
[102]) that provide synchronous communication.

In PL equations are further restricted in that channel identifiers may only occur once (at
most) in the right hand side. Also, new channels may be introduced dynamically within PL via
recursion and hence dynamic networks may be modelled. For this reason the use of the word
channel is less related to the concept of a stream in PL than it is in AL.

9.10.2 Semantics. PL is based on an operational state transformer semantics derived from
work in [47] and [62]. It is intended that this semantics can be related to an equivalent abstract
(denotational) semantics as a ST and hence PL can be related formally to an AL specification.

9.10.3 Language Development and Current Use. For an introduction to the use of
PL see Section 4.2.2 on the FOCUS project.

9.10.4 Syntax. The RS-Flip-Flop can be represented in PL as follows:

programme flipflop = chan bool Inl, In2 — chan bool Outl, Out2:
var bool i1, i2, U1, [2;

var bool ol := true, 02 := false;
var nat time := 0;
loop
of time > 0 then
Ini1%i1;
n2%2;
ol := 1l nor l2;
02 := 12 nor li;
fi
Outllol;
Out2lo2;
l1:=o0l;
12 := 02;
time := time + 1;
pool

end flip-flop.
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9.11 Daisy

Daisy (see for example [176], [114], [115], [118], [116] and [113]) is a lazy, higher-order, untyped
language based on a ‘suspending constructor’ (see also [80] and [78]) that has been used ex-
tensively for the stream-based programming and synthesis of hardware. In particular, Daisy
contains higher-order mapping operators that are optimized for stream filtering, and a demand-
driven intermediate constructor that orders lists based on the convergence of suspensions. This
latter feature provides a means to express and manage asynchronous concurrency.

9.11.1 Constructs and Primitives.  As Daisy is a general purpose functional language it
is possible to define all the stream processing functions described in Section 8.2. However, among
Daisy’s specific primitives are unidirectional device instantiators for terminal screens, keyboards,
pipes, sockets and virtual channels to window managers, and (un)scanners and (un)parsers that
can be used to iteratively coerce between character streams, symbol streams and expressions.

9.11.2 The Use of Streams. Daisy has a standard functional approach to the definition
of first-order streams.

9.11.3 Semantics. As Daisy is a functional language it can be given a standard
Kahn style semantics. However, in additional it has a formal calculus for reasoning about
and symbolically manipulating Daisy programmes (see for example [232]). Furthermore, the
operational interpretation of Daisy programmes may differ from standard functional programmes
due to the suspending constructors.

9.11.4 Language Development and Current Uses. Daisy is currently in its third
implementation stage (see for example [113]). Most of the current research is concerned with the
refinement of the algebra for digital system derivation (see for example [231]). In particular, the
development of formal laws for the manipulation of Daisy programmes for hardware synthesis.

9.11.5 Daisy Syntax. The RS-Flip-Flop can be described in Daisy as follows:
NOR = /Z. [not *|:[or *]:Z

flipflop = /[S R]. [Qhi Qlo]

where
Qhi = [tt ! NOR:[S Qlo]]
Qlo = [ff I NOR:[R Qhi]]

9.12 PROLOG with streams

[19] and [18] describe a modification of PROLOG (see [136]) (that for convenience we will denote
PROLOG) to provide an applicative language for the specification of a class of ADU-SPSs.

9.12.1 Constructs and Primitives. In PROLOG a network of agents is specified by
a set of Horn clauses wherein each clause corresponds to a particular agent. The structure of
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the language is essentially that of PROLOG and the stream processing primitives available are
those used in the functional approach (see Section 8.2).

9.12.2 The use of Streams. The approach to streams in PROLOG is the same as that in
functional languages. In particular, in PROLOG uni-directional channels are modelled by shared
syntactically distinguished input and output variables within each atomic clause and hence the
expressive power of PROLOG is limited compared to conventional PROLOG, as invertibility is
limited. However, the authors claim that this is not a problem in practice.

9.12.3 Semantics. PROLOG is formalized using a standard fixed-point semantics (see
[217]) and makes a explicit distinction between data constructors and functions (see [144]) to
modify the semantic model to deal with infinite terms.

9.12.4 Language Development and Current Uses. It is intended that PROLOG is
viewed as a proper extension of a term re-writing system, wherein each Horn clause is interpreted
as an extended re-write rule. It is also the authors’ intention that completion algorithms such
as Knuth-Bendix (see [128]) can be generalized to generate confluent systems from PROLOG
network descriptions. However, we are not aware of any subsequent work by the authors in this

field.

9.12.5 Syntax. The RS-Flip-Flop can be represented in PROLOG as follows:

type BOOI s tt, ff ;
type STREAM-OF-BOOL s nil, cons(BOOL, STREAM-OF-BOOL) ;

floptl : STREAM-OF-BOOIL x STREAM-OF-BOOIL — STREAM-OF-BOOL ;
flop2 : STREAM-OF-BOOIL x STREAM-OF-BOOIL — STREAM-OF-BOOL ;
Nor : BOOL x STREAM-OF-BOOIL — BOOL ;

not : BOOL — BOOL ;

flop1(cons(bl,sb1),cons(b2,sb2)) = cons(cons(tt,ol),02) —
ol = Nor(bl,fflop2(cons(bl,sb1),cons(b2,sb2))) ;
02 = fflop1(sb1,sb2) ;

flop2(cons(bl,sbl),cons(b2,5b2)) = cons(cons(ff,03),04) —
03 = Nor(b2,fflop1(cons(bl,sbl),cons(b2,5b2))) ;
o4 = fflop2(sb1,sb2) ;

Nor(ff,cons(b,sb)) = not(b) — ;
Nor(tt,cons(b,sb)) = ff — ;

not(tt) = ff — ;
not(ff) = tt — ;
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9.13 STREAM

STREAM (see [65] and [66]) is a concurrent scheme language designed for formally specifying,
reasoning about and transforming hardware designs at the conceptual, register and gate level.
Furthermore, STREAM is intended to address description features associated with each level
in a single formalism. The approach is rather like a single programming language that includes
formal, high-level and machine-code descriptions as primitives, and is referred to as almost
hierarchical approach (see [205]).

STREAM is an acronym for STandard REpresentation of Algorithms for Micro-electronics.
However, the name STREAM is also intended to reflect the stream processing nature of the
language. Indeed, in addition to its role as hardware description language STREAM can also
be directly interpreted as a dataflow language, resembling the language of [68]. However, the
formal equivalence of STREAM and Dennis’s language is not addressed.

9.13.1 Constructs and Primitives. STREAM uses the following stream processing
primitives that are referred to as agents.

(1) Append. For each s € S we define the append agent
&t Ay X [T — Al = [T — A
(ambiguously denoted &) by

a if t =0, and

a'(t—1) otherwise.

(Vo€ A) (Vo' € [T~ AD(VIET) (a&a)(t)= {

(2) Lifting. For each o € X, ; for each w € ST and for each s € 5 we define the lifting agent
ks L (AY — Ay) = ([T — AY] — [T — A))
(ambiguously denoted ) by

(Vae AY)(VteT) o (a)(t)=o(a(t)).

(3) Distribution. For each s € S we define the distribution agent
distr, : [T — B] X [T — A;] ~ [T — A x [T — Aj]
(ambiguously denoted distr) by
(Vbe [T —B]) (Vae [T — A])(VteT) distr(b,a)(t) = (21, z2)

wherein

v =a(pk > t.[b(k) = tt])

and

zy = a(p k' > t.[b(K) = f]).
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(4) Selection. For each s € 5 we define the selection agent
selec, : [T'— B] x [T — A,] — [T — A;]
(ambiguously denoted selec) by

a(t) if b(t) = tt, and

as(t) otherwise.

(Vb e [T — B])(Vay,a, € [T — AVt €T) selec(b,ar,a:)(t) = {

In addition STREAM also uses the following functional constructs for building SPSs from more
primitive SPSs:

(A) Parallel Composition. For each u,u’,v,v" € ST we define the parallel composition
constructor ambiguously denoted |} with functionality

([T = A" = [T — A x ([T = A*] = [T — A7) = (IT — A**] = [T — 4°*])

by
(VS e [T — AY] — [T — A (VS' € [T — AY] — [T — AY])
(Va = (ay, ..., apu) € [T — A*Y ) (Vt € T)
(SU8)a)(t) = (21,20 0)
wherein

(S(ar, ..., auu)(t)); if ¢ < |u|, and
r; =
(S"(@puj+15 - - - Quar)(t));  otherwise.

(B) Sequential Composition. For each u,v,w € ST we define the sequential composition
constructor ambiguously denoted = with functionality

= ([T = A= [T = A x ([T = A = [T = A*]) = ([I' = A] = [T = A"])
by
(VSel[l' = A% =T = A'])(VS' € [[T = A’ = [T — AY])) Va € [T — A"]) (Vt € T)
(S = &) (a)(t) = S'(8(a))(1).

(C) Feedback. For each s € S and for each u,v € St we define the feedback constructor
ambiguously denoted C with functionality

C: ([T — As“] — [T — A”]) — ([T—> A“] — [T — Av])
by
(VSe[l' = A ] = [T = A")NVae [l = A*))(VteT) (C'S)(a)(t) =S(z,a)t)

wherein
z = (S(z,a)).

Notice here that as z is defined recursively in terms of itself whether C(S)is computable
will depend on the definition of S.
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(D) Forking. For each s € S we define the fork constructor ambiguously denoted fork with
functionality

fork : [T — A,] — [T — A x [T — Aj]

by
(Va € [T — A]) (VL€ T) fork,(a)(t) = (a(t),a(t)).

(E) Permuting. For each s € S we define the permutation constructor ambiguously denoted
perm with functionality

perm : [T — A X [T — A,] = [T — A, x [T — A,]

by
(Vay,a, € [T — A ])(Vt€T)  permg(a,as)(t) = (as(t), a:(1)).

(F) Sinks. For each s € S and for each v € 5* we define the sink constructor ambiguously
denoted sink with functionality

sink : [T — A*Y] — [T — A"]
by
(Va = (ar,a0,...,a1q41) € [T — A]) (VL € T) sink®“(a)(t) = (as(t), ..., au4+1(1)).

9.13.2 The use of streams. Again in common with the functional approach to stream
programing, STREAM adopts the generalized concept of stream as the union of finite and infinite
sequences.

9.13.3 Semantics. Both a denotational and algebraic semantics have been derived
for STREAM (see [65] and [67] respectively). The denotational semantics is used in [65] to
demonstrate the equivalence of STRIEAM with a procedural language for stream processing.

9.13.4 Language Development and Current Uses. We are not aware of the
development of the use of STREAM in hardware design.

9.13.5 Syntax. SIGNAL uses two syntactic styles to reflect the different requirements
of hardware description at different levels of abstraction: an applicative style and a functional
style. The RS-Flip-Flop can be represented in the two styles as follows:

Applicative.

agent RS-flipflop =
mr,s nt
t:= nor(r,s'),
ri=tt&t,
u = nor*(s,r’),
s=ff&u

out ', s tou
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Functional.

agent RS-flipflop =
C(
C(

(perm | Id* | Id*) =
(Id= | perm* |} Id*) =
(nor || nor) =

(f& | tt&) =

(fork |} fork) =

(I¢* | perm | Id*)

9.14 ASTRAL

ASTRAL Algebraic Stream Transfomer Language (see [200] — not related to [49]) is intended
to provide a formal, equational specification language for STs based on ideas taken from SCA
theory (see Section 6.1). In particular, using the theory in [201], ASTRAL has been designed to
reconcile the use of AFSTs as a specification technique with the use of CFSTs as a formal seman-
tics (see Section 6.1). This is desirable as by using a CFST semantics in [200] it is shown that
the correctness of a broad and non-trivial class of ASTRAL programmes is decidable relative to
the use of equational logic augmented with induction and case analysis as a proof system.

Based on these theoretical ideas an implementation of ASTRAL has been developed that in
addition to its use for hardware specification is intended to be used as a high-level, declarative,
general purpose programming language. (We note that the implementation of ASTRAL actu-
ally restricts the user to using primitive recursive definitions to maintain the same theoretical
properties as abstract ASTRAL. However, the authors claim [contenciously] that for practical
purposes this restriction is not a limitation.) This implementation of ASTRAL is discussed
below.

9.14.1 Constructs and Primitives. Because the implementation of ASTRAL is in-
tended to be a general purpose stream programming language it has no language specific stream
processing primitives. In contrast, ASTRAL is able to specify (primitive recursive equational
forms of) all of the stream processing primitives mentioned in this survey. Indeed, each AS-
TRAL programme is essentially nothing more than a collection of two types of AFST definition,
although non-STs (first-order functions); user-defined data types; and abbreviations to reduce
the size and syntactic complexity of programmes are also permitted. As such, we now discuss
some of these classes of definitions. However, because ASTRAL’s syntax is derived indirectly by
compilation into the language PRFE(), in contrast with our other examples, it is not possible in
this survey to indicate the formal semantics of the ASTRAL constructs. The interested reader
can consult [200].

Evaluated and Un-Evaluated AFST Definitions, and Function Definitions. All of
these classes of definitions have the following basic structure:

Function_name(var_1 : d_type_1,...,var_n : d_type_n ) r_type_1,... ,r_type_m [(t)]
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definition_body

wherein ‘(¢)” is only used to indicate an evaluated AFST definition.

Evaluated AFST definitions are the concrete mechanism by which (primitive recursive) AF-
STs are specified. A such to insure primitive recursiveness Function_name can only be used in
the definition body in evaluated form. Sort names in the range of an AFST definition must be
stream sorts.

Un-evaluated AFST definitions are the the concrete mechanism by which AFSTs (with a
Cartesain form semantics) can be composed. Hence, Function_name cannot be used in the func-
tion body. Again, sort names in the range of an AFST definition must be stream sorts.

For first-order function definitions this syntax is nothing more than a standard functional
specification technique, although the form in which ‘function_name’ may appear in ‘defini-
tion_body’ is controlled syntactically to preserve primitive recursiveness. Hence, as far as the
user is concerned the only syntactic distinction between un-evaluated AFST and function defi-
nitions is the range type of the defined function.

There are four basic types of compound expressions that can be used in the body of AFST
and function definitions: case statements, ifmatch statement, for ... statements and for ...
while ... statements that simply restrict the usual general purpose programming primitives to
their primitive recursive form. For example, a primitive recursive form of the Lucid primitive
Whenever can be expressed in ASTRAL as follows:

whenever(s : sortStream, b : boolStream) u_sortStream (t)

s(t) if b(t) = true;

whenever(s,b)(n) for n = t" to MAX_NAT
while not b(n);

u.

wherein ‘¢’ is an abbreviation for ‘¢+ 17, ;" is used as a shorthard for ‘or’ or ‘otherwise’ (*,” is

used as an abbreviation for ‘and’ — see below); and ‘MAX_NAT’ is some pre-defined maximum
value that will vary from implementation to implementation.
Pre-Defined and User-Defined Type Definitions. In contrast with most formal algebraic
specification languages it is not necessary to make an explicit definition of the underlying signa-
ture and variables that are used in an ASTRAL programme. Rather, this information is derived
implicitly from each individual ST and function definition. In particular, the standard constants
and operations associated with the following pre-defined data types are always available to the
user without the need for their explicit inclusion: bit, byte, bool, char, nat and int. In addition,
for each of these data types (and also for each user-defined data type), the associated array
type, set type, stream type, stream of array type, stream of set type and the data type extended
with the undefined element w are also available to the user without their explicit definition.
For example: bitArray, bitSet, bitStream, bitArrayStream, u_bitArray, u_bitSet, u_bitStream and
u_bitArrayStream are always available to the user. For technical reasons associated with the
automated verification of ASTRAL programmes, the ‘real numbers’ are supported via a built in
library rather than a pre-defined type.

User defined data types come in three basic forms: restrictions of pre-defined types, com-
pound types and type unions.
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9.14.2 Language Development and Current Use. A partial implementation of
a prototype ASTRAL specification and verification system is discussed in [200]. Work on the
development of a full verification system based on ideas taken from [200] is currently in progress.

9.14.3 ASTRAL Syntax.  Because of the limitiations in describing ASTRAL’s constructs
concisely, in this section we show how both the Flip-Flop specification and the full Flip-Flop
implementation can be specified in ASTRAL including its pre- and post-processing scedules (see
Section 9.1). In so doing we note that RSFlipFlopSpec, FFlop, OutSch and InpSch are examples
of evalunated AFST definitions; and RSFlipFlopImp is an example of an un-evaluated AFST
definition defined by the composition of other AFSTs.

RSFlipFlopSpec(s1,s2 : boolStream) boolStream (t)
true if t = 0;
false if t > 0, s1(t) = true, s2(t) = false;
true if t > 0, s1(t) = false, s2(t) = true;
RSFlipFlopSpec(si,s1)(t).

and

RSFlipFlopImp(s1,s2 : boolStream) boolStream boolStream

OutSch(FFlop(true,false, InpSch(s1,s2))).

FFlop(b1,b2 : bool, 51,52 : boolStream) boolStream boolStream (t)
(b1,62) if t = 0;
(FFlop1(b1,b2,51,52)(t) nor s2, s1 nor Fflop2(b1,b2,s1,s2)(t)).

OutSch(s1,52 : boolStream) boolStream (t)

s1(t * 2).

InpSch(s1,s2 : boolStream) boolStream boolStream (t)

(s1(t div 2), s2(t div 2)).

10 Conclusions

We have examined the topic of ‘stream processing’ that we have classified as the study of stream
transformers STs (second-order functionals) and stream processing systems SPSs (implemen-
tations of STs typically visualized as directed graphs). We have shown the literature is rich
with examples of stream processing research with many different motivating interests, semantic
models, and implementation techniques.

However, despite the breadth of existing researach we have shown that in general the lit-
erature has concentrated on the examination of the practical properties of SPSs, rather than
the theoretical properties of more abstract STs. Therefore, we believe that the literature is still
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underdeveloped from certain theoretical perspectives. Indeed, it has been one of our motivations
in the writing of this survey to clarify this point, and show that at present no general theory of
stream processing exists in an accessible form.

Research that has begun to address more general theoretical considerations is: [4] and [16]
that discuss why streams can be a problem for the perspective of foundational mathematics;
[213] and [214] that study the generalized computability of stream-based computation; [201] that
studies the compositional properties of Cartesian form stream transformers; [200] that studies
the specification and formal verification of STs; and [160], [161], [162], [163], [164] and [99] that
algebraically study the specification and verification of higher-order systems including STs.
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