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+ GPU: Z&2i1E:8

- GPUZHEIEEY: SPMD (Single Program Multiple Data)
— {EF3%AE (SPMD JRiZiREY), ANZ2FSIMDIE<SYRIZ
- BMEERITEEINS, ERMERENEIETER
+ BEEAE N E T EPR LRSIt ER/ I TE)

— HERAXENBEEIENAIZFE(CUDA threads or microthreads) 2%,
%&%@%éﬁﬁéﬂ%@;& (thread blocks) 7"

- GPUH1THEEY: SIMT (Single Instruction Multiple
Thread)
- —HPTHHEIE S IISEEE 4 ENSE R warp
— —Mwarp 2 HEHZAHISIMDERE

- GPUTFE=RAR
— Local Memory, Shared Memory, Global Memory

- GPULZAME (&EISICER)
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H

Vector term

Closest CUDA/NVIDIA

GPU term

Comment

Vectorized

Grid

Concepis are similar, with the GPL using the less descriptive term

s Leop
g S Chime — Becaose a vector instruction (PTX instruction) takes just 2 cycles
2 E on Pascal 10 complete, a chime is short in GPUs, Pascal has two
E E execution unils that support the most common (loating-point
instructions that are used allernately, so the effective issue rate is 1
instruction every clock cycle
Vector PTX Instruction A PTX instruction of a SIMD Thread is broadeast o all SIMD
Instruction Lanes, so il 15 similar 1o a vector instruction
= Ciather! Gilobal load/store (1d. All GPU loads and stores are gather and scatter, in that each SIMD
i Scafler globalfst, global) Lane sends a umigue address, 105 up o the GPU Coalescing Unit o
s gel unit-siride performance when addresses from the SIMD Lanes
k- allow it
'§ Mask Predicate Regisiers and Vector mask regisiers are explicitly part of the archilectural siate,
= Registers Internal Mask Registers while GPU mask registers are internal to the hardware. The GPU
conditional hardware adds a new feature beyond predicale registers
o manage masks dynamically
Veclor Multithreaded SIMD These are similar, but SIMD Processors tend 1o have many lanes,
Processor Processor taking a few clock cycles per lane (o complete a vector, while
veelor architectures have few lanes and lake many cycles o
complete a vecior, They are also multithreaded where veciors
wsually are nol
g Control Thread Block Scheduler The closest is the Thread Block Scheduler that assigns Thread
z Processor Blocks to a multithreaded SIMD Processor. But GPUs have no
E scalar-vector operations and no unit-stride or sinded data transfer
= instructions, which Control Processors often provide in veclor
= archilectures
E Scalar Syslem Processor Because of the lack of shared memory and the high latency 1o
Processor communicate over a PCI bus (1000s of clock cycles), the system
§ processor in a GPU rarely takes on the same tasks that a scalar
sl processor does in a vector architectore
g Vector Lane  SIMD Lane Very similar; both are essentially funclional units with registers
E Vector SIMD Lane Registers The equivalent of a vector register is the same register in all 16
Registers SIMD Lanes of a multithreaded SIMD Processor running a thread
of SIMD instructions. The number of registers per SIMD Thread is
Nexible, but the maximom is 256 in Pascal, 50 the maximum
number of veclor registers is 256
Main GPU Memory Memory for GPU versus syslem memory in veclor case
Memary

Figure 4.21 GPU equivalent to vector terms.



GPU: throughput processing
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"CPU-style” cores

ALU
(Execute)

Data cache (a big one)




Slimming down

ALU
(Execute)

==

|ldea #1:
Remove components that
help a single instruction

stream run fast




fragment 1 fragment 2
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16 cores = 16 simultaneous instruction streams



Instruction stream sharing

O O O O
‘ 4 4 4

But ... many fragments

+ ¥ ¥ ¥
@ @ i) O
- 5 o o shogld be qble to share
& k k k an instruction stream!
+ 4 + 4
[ ] d ()
<diffuseShader>:
@) O d d
+ ¥ ¥ ¥ sample ro, v4, to, so
4 ¥ ¥ mul r3, vo, cbo[0]
(@) & @ ()
madd r3, vi, cbe[1], r3
@) [ ] ad ad
¥

madd r3, v2, cbe[2], r3

clmp r3, r3, 1(0.0), 1(1.9)

0«
@«
O«
O«

mul 00, ro, r3
mul ol, rl, r3
mul 02, r2, r3

mov 03, 1(1.0)



Recall: simple processing core

ALU
(Execute)




Add ALUs

ldea #2:

Amortize cost/complexity
o] [awe] [aoq [auos of managing an instruction
woq [acod] [ [ stream across manyALUs

i || cax|fee Jlcee .
SIMD processing

_Shared CixData_
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16 cores = 128 ALUs



Clarification

SIMD processing does not imply SIMD instructions
«  Option 1: explicit vector instructions

— x86 SSE, AVX, Intel Larrabee
»  Option 2: scalar instructions, implicit HW vectorization

—  HW determines instruction stream sharing across ALUs (amount of
sharing hidden from software)

— NVIDIA GeForce (“SIMT” warps), ATl Radeon architectures
(“wavefronts™)

ag (] ag
oo [m] ao
EE = EE
EE =i EE

oo aooooo
aoo aooooo
EEE EEEEELE
EEE SEEEEE

In practice: 16 to 64 fragments share an instruction stream.



Stalls occur when a core cannot run the next
instruction because of a dependency on a previous
operation.

Texture access latency = 100’s to 1000’s of cycles

We've removed the fancy caches and logic that helps avoid stalls.



|dea #3:

Interleave processing of many fragments on a single core
to avoid stalls caused by high latency operations

r(gE%ﬁ%?d:?&%ﬂ*Ei" BRER, LR SIEREFIERAE
n.)







Time (clocks)  -Frag1...8 . . Frag9..16 . . Frag17..24 = . Frag25...32 .

- OODOoond 90n0ooos | 90OEOenm




Time (clocks) - Frag1...8 . . Frag9..16 . . Frag17..24 == Frag25...32 . S
B ;5 EEEEEEEE"C CERESEENEEE G OSEREESEN R




Time (clocks)  Frag1..8 -~ Frag9..16 = Frag17..24 = Frag25..32 ;
S AR ) cooooooo - Dooooooo - oooooooo - oooooooo
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— « —4* warp H 324" pthreads
liiili::iliiili MEE
1 .w:ﬂ? v . 5¢warp2§$§ﬁ¥’h&t3‘§ﬂ
W 1_1._1_.}_| L1 l..J_T - 1217, LARSiEf=fifsSiniafnLn
warp 3 nstruction 06 EEEBFFHQEE
i - ENZEIEREEZwarp , X
warp 8 insiruction 12 _ Lwarp#fIRGIZIE—1M % L
L1 : i f;ﬁ! Ll SMERRUALER— M
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Warp scheduler Scoreboard
) Warp No. | Address | SIMD instructions Operands?
Instruction 1 42 Id.global f64 Ready
cache 1 43 mul 164 No
3 95 shl.s32 Ready
3 96 add.s32 Mo
8 11 Id.global .f64 Ready
3 12 id.global .f64 Ready
|
t
Instruction register
| 1
S e e e ) O P S G P
SIMD Lanas
E; 35 x% E% gtf' QI? q} %5 EE’ %? QB x:.ti %!7 3} QB QJI# {Thread
i ¥ ¥ ¥ f i ¥ 1 1 f ¥ ¥ ¥ { i ¥ | Procassors)
Ham?é Aesy | Rag | Reg | Aeg | Rag | Reg | Reg | Aeq | Reg | Aeg | Aeg | Aeg | Reg | Reg | Aeg
5
TH=32 | TK=32 TR =32 | TR =32 (1K x32 [ TKx32 TR x32 | 132 | 1K= 32 [ 1K 32 | 132 | 1K= 32 | {Kx32 | 1K =32 | TR =32 | 1K= 32
Load | iped | load | Losd | Load | Loed | Lead | Load | Load | boed | Load | Load | Load | Loed | Losd | Load
sore | slora RIE glore Eiore o siore ginre Einne 0 SIE gloae Ehore =l =) giore Elors
unit Lirit uni uni unit Lrit uni unit unit unit unk unit unit LUnit unift unit
AEIEINTFIRNESEIESEIEAEAEDBINNENE,
4
Addrass coalascing unit Intarconnaction network
1 ’ +
To Global
Local Memory
BAKE Memory

Figure 4.14 Simplified block diagram of a Multithreaded SIMD Processor. It has 16 SIMD lanes. The SIMD Thread
5/31/ Scheduler has, say, 48 independent threads of SIMD instructions that it schedules with a table of 48 PCs.



6.3 GPU Il - ya R
(ZEISICR)




Threads Can Take Different Paths in

Warp-based SIMD

- BNEGETUESIEGITES
° iZ“:“é%EEJL‘mt?EKH Eﬁ:ﬁ“umﬂ%&

Thread Warp Common PC
Thread| Thread | Thread | Thread
1 2 3 4
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©)) Control Flow Problem in GPUs/SIMT

 GPU EHIBIE(ER SIMDYE
Kk DI ERR
~ TR AR

warp

RRRRRRY
PUELELLD
P
AL

SRRRRRY

« I—1WARPHHIZRFIEDSZ
ZIARERAITIRRAT,
G el (Branch

divergence)

B rELEHNBRHEEFHITRM

(Vector Mask and Masked Vector Operations?)
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- SmE%idzEl, GPU {EHMRIERAIRE#= (masks)

- WERAT (SIMT-Stack)

- SRS
- (REFD RIS {E ML

o (FIFZERHUSIMD lane FifE(mask)
— BMEREBLEEE R LURACER

— 38 FRic(instruction markers)
- EIEARTHSZ (divergence) EIZMMAITIERR, (AIRYERISICS (converge)
« PTXE
— CUDJAQ)%IEH’J}I%IJMHHPTX Sz i5< (branch, call, return and exit)

- HRERFRIEENEB N EEEERL-bitEIRE 7Y
* GPUﬁEﬁ: 5/37\4;; ﬂﬂmu@;ﬁ

— O FE<S (branch,jump call return)

— fF—:ﬁka’J?E BFeEEsXELHE
— GPURE{4 98 SIMD thread 12k (RED AR
— GPUBBHESHERHIB NEREFEN 1-hitBIaSFes
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Branch divergence

. F=Zuth A (FIEMLER .
E’gg ﬁ@yg *é')eadsﬁﬁgﬂgﬁ M (FIEMLESINA0ETE, I

: g%%ﬁﬁ&%%%%&mq,wzwu%%ﬁﬂswm#mi
=
. R EEEEEAEA—, BAE—RE (mask)
et el Eie iy
- BEATOSANMEE 50T RINEEEARHES
(DX REHR) | ST
. SIMD ZF&@EHA{TH RS R I
B ToopiRlE, BT ERS, TR
- SIND lene B SRR T TR B

— WFHEEHEERNIRR, IFF-THEN-ELSE 2E 19 =T H950%
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if (X[i]'=0)
X[i] = X[i] - Y[il;
else X[i] = Z[i];

Id.global.f64 RDO, [X+R8] ; RD0 = X[i]
setp.neq.s32 P1, RDO, #0 ; P1 is predicate register 1
@!P1, bra ELSE1, *Push [ Push old mask, set new mask bits
; if P1 false, go to ELSE1
Id.global.f64 RD2, [Y+R8] ; RD2 = Y[i]
sub.f64 RDO, RDO, RD2 ; Difference in RDO
st.global.f64 [X+R8], RDO ; X[i] = RDO
@P1, bra ENDIF1, *Comp ; complement mask bits
; if P1 true, go to ENDIF1
ELSE1: Id.global.f64 RDO, [Z+R8] ; RDO = Z[i]
st.global.f64 [X+R8], RDO ; X[i] = RDO
ENDIF1: <next instruction>, *Pop , pop to restore old mask

5/31/2021 PERIZFRAKRE 30



Eif (some condition) {é
: f One per warp

é} else {

Control Flow Stack

TOS —»

Next PC Recv PC Active Mask
-- 1111
D 1110
D 0001

C B D
1T{[Of [1][7
1T{[Of [1][7
1T{[Of [1][7
1 (1] LOf (1

5/31/2021
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do {

A: mul.lo.u32

tl = tid*N; /il A dd.uD
. add.u
E; = E:tzltﬁ]: e
mov.u32
J_m = 0 setp.eq.u32
1f{ t3 = t4 ) { @l bra
tS = dataz(t2]: // B B: 1d.global.u32
1f( t5 |=t4 ) { setp.eq.u32
X 4= 1; /L @2 bra
1 else { %, add.u32
Y += 2; [/ D bra
1 D: add.u32
} else { E:  bra
7 e 3 IF F add.u3z2
} G: add.u32
s /7 G setp.le.u3z
@3 bra

+ while{ 1 <N );

Example CUDA C source code
for illustrating SIMT stack

_ SIMT stack operation.
operation

5/31/2021 hER] SRR A

11,
AR 2 T
. [t2]:

P 1 = T T
ORI LA %e b P L R

b=l = I s T - e Ry =

e i e

tid. N;

. 13, td;

[t2]:

. 15, t4;

Example PTX assembly code for illustrating

32



I Ret./Reconv. PC I"~F+=:}c.‘:l:_1 PC  Active Mask
- ! 1111
A/1111 5 F 0001
l_ TOS — G B 1110
B/1110 (c) Initial State
r —,l { Ret./Reconv. PC Next PC_ Active Mask
C/1000 | [Dro110] [F/0001 - - At
l—‘ 4_| G E 1110
L D 0110
E/1110 TOS — | O ks 1000
L (d) After Divergent Branch
Gﬂllll Ret/Reconv. PC_ NextPC__ Active Mask
- 3 1111
(a) Example Program TOS — 2 ][:: {]][1“1}5
(e) After Reconvergence
A B3 D E I G A
—|[ - - : =[]
= - - = - —{= — - . =
- - > || == —» || —»
il || || —»

> Time

(b) Re-convergence at Immediate Post-Dominator of B

Figure 3.4: Example of SIMT stack operation (based on Figure 5 from Fung et al. [2007]).
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(i)
(ii)
(iii)
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Remember: Each Thread Is Independent

« SIMT &5

— AL AR R, BN EAE o] LATE R AR K
2 FERIRHAIT ( MIMD A IEIRT)

o] LB EFEH R warp, BIRILUSHITHEEIES RS
%EF%E/%}{?EVE rp, FZRKSIMD &bERRES, LAFE 0 & 1ESIMD

- MNREGIFSEIE, NWNEGHREPCERZEDTLISE
ﬁJrJJ SHEAE—PwarpH
o XHEEOJLARY "9 &E” RS SIMD I

— SIMD FIFER: #1176 BEIERISIMD lanesfyEt 5l (B,
ﬁlﬁzsbfﬁzﬁﬁtlﬁ’ﬂ)
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+ Idea: D3RRI E, ASEFRITHERE

SHIZFZ

— MBBLEZFEFAIwarpHZakHTAwarp

— BIEZHERES X EIEF MR, BreEt|ER
FHIFTwarp

WarpX ¢ ¢ § ' - yHddd L) warpz
Warp Y { !

\

PV bd 4
T oLlbE b
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e |dea:

- P REZE, SEFITHEIESHEE
2R 2R R R Warp x
ERRE R RN Warp y
R R RN
AREREREER,
1R R } RN

—p
Path B HY b ¥ ¢ :

= Fungetal., “Dynamic Warp Formation and Scheduling
for Efficient GPU Control Flow,” MICRO 2007.
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A

x/1111

y/1111
Legend
x/1110 A A
B y/0011 Iil Execution of Warp x |1| Execution of Warp y
|_>| at Basic Block A |_>| at Basic Block A
G X11000] [ x/0770] [ =" x/0001 1 ZI e
y/0010] |* y/0001 y/1100 5
A new warp created from scalar
x/1110 ‘_: threads of both Warp x and y
y/0011 —»| executing at Basic Block D
x/1111
Gy/1111
IAIIAIIEIIEIIQIIg QIIQIIEIIE
> >l > > >
Baseline 12BN TISBZ 11,
IZH2ZH P2 2 12
| = =
Dynamic A A B B |C E E G G A A
Warp |5 155 [ > > 1511551 151 155
F f e I:;]I::] ::: >I1> :;: > IZIHIIIH [j:ll::l"' °
ormation 12112 1= > IZ112Z12Z] 2]
|
PERFRAKRSE
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Hardware Constraints Limit Flexibility of Warp

Grouping
e Functional Unit
(r ) 2
L L L L
l/ &F l/ &F [/ &F [/ lk
Registers\/T/\T\‘ /T/\T\‘ /T/\T\w /T/\T\w)
for each
Thread Registers for Registers for Registers for Registers for
| ||thread IDs thread IDs thread IDs thread IDs
0,4,8, .. 1,5,9, .. 2, 6,10, ... 3,7, 11, ..
[\ A 4 \/ V</l_ I\ A 4 \/ V</l_ I\ A 4 \/ V</l_ I\ A 4 \/ V</l_
1 Can you move any thread
[ ] ?
flexibly to any lane*
Lane

Memory Subsystem

5/31/2021

FEMERAKRE
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©)) When You Group Threads Dynamically

- FhasinRIAmELE?

- BIERIIBFESGIENER, JHE
fapkwarphd, (EEhEENEEMEE,
(FEEBETEES. > FEFMHEEHE
Sk kS
- > BT s ARV BE

5/31/2021 PERIZFRAKRE 39



&) What About Memory Divergence?

. i;.';.ﬁ GPUs SiEERERF, RANTFHEESaY
Wil

» ldeally: —{*warpshRIFfIE & IZRITFEER IR
[B)EBas R (EHHiRBMHEE)
* Problem: —fMWarphgLtinh, BLLM

 Problem: —MN&iERstallSEE M warp(=E
i

+ BEBHEXEARFERFMHELENAEERE

5/31/2021 hER] SRR A



* NVIDIA-speak:

— 240 stream processors
— "SIMT execution”

+ Generic speak:
— 30 cores
— 8 SIMD functional units per core

5/31/2021 PERIZFRAKRE 41



NVIDIA GeForce GTX 285 “core”

. R ] ] 64 KB of storage

‘ ‘ . ’ l ‘ for thread contexts
L B | 47 .
(registers)

shared across & units

= multiply-add = execution context storage
B = multiply
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NVIDIA GeForce GTX 285 “core”

] ] ] B 64 KB of storage

‘ I l ' ' I for thread contexts
L B | 4, .
(registers)

« Groups of 32 threads share instruction stream
(each group is a Warp)

« Up to 32 warps are simultaneously interleaved
« Up to 1024 thread contexts can be stored

5/31/2021 hER] SRR A



VIDIA GeForce GTX 285

EEEE|EE | EEEEEE | EE | EE N EE I EE | EE | EE =] EE] EE) =E R EE EE EE EE R EE EE) EE )
EEEEEEEEE EE EE EE N EE EE EEEE ([0o]|oe|(oa]|os| | | (O8] [0s][o8][00] || (O] [0a] (o] [Coa]
Loty I TIT OO I11 1] I (I | | (I
[=]=] | [=]=]) == == R EE | EE  EE EE R EE EE | EE | EE) |[=[=] | [=E | [=E EE I EE EE EE EE R EE D EE EE EE]
[=]=] | [=]=11[=[=1) [=[=1 )} == | == | == EE R EEN EE | EE | ) |[=]=]{[=[=]|[=[=1{ [=T=] |§ == | == | =EH EE R EE I EE  EE ] EE]
gy O T IO III 11 -ty I -1 Irtd
[=]5]|[=I=1) == =E R EE | EE  EE I EE R EE EE | EE | ) | [=]=] | [=[=1) [=[=1) == R EE | EEH EE EE I EE EE | EE | )
[=]=] | [=]=1)[=[=1) == 1 =E | EE  EE EE I EE EE | EE | ) |[=[=]{[=[=]| [=E | == I EE | EE EE EE I EE  EE  EE ] EE]
Loty TN 1111l T e -1
[EE] | EE | EE]) =E i EE | EE EE EE Y EE | EE) EE EE EEIEEEEIEENEE EE EE EEEE EE  EEEE)
=] EE] EE) EE R EE) EE EE EE R EE EE) EE ) [=]=]{[=[=1|[=[=1{[=1=] J§} == | == [=EH EE R EE EE  EE ] EE]
Cer---rrr - T IO II1 Il ety T o111 1l
[EE] | EE | EE) =E i EE EE| EE EE ) EE | EE) EE | EE EEE|EEEEEE EE EE EE N EE I EE  EEEE)
=] EE] EE) EE R EE) EE EE EE R EE EE) EE ) |[=[=] | [=T=]{ [=[=] | ==1} )i [=I=] | =] | [=EH EE R EE EE | EE] EE])

« 30 cores on the GTX 285: 30,720 threads

5/31/2021
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e 56 SMs
e 64 Lanes/SM

Or
e 3584
Stream Processors

%

Texture / L1 Cache

B64KB Shared Memory

DP
Unit
DP
Unit

it

et W e I | R T I el
; % = B | 3 2 i 25

REEREREERE

Unit

Figure 4.20 Block diagram of the multithreaded SIMD Processor of a Pascal GPU. Each of the 64 SIMD Lanes
(cores) has a pipelined floating-point unit, a pipelined integer unit, some logic for dispatching instructions and oper-
ands to these units, and a queue for holding results. The 64 SIMD Lanes interact with 32 double-precision ALUs (DP
units) that perform 64-bit floating-point arithmetic, 16 load-store units (LD/STs), and 16 special function units (SFUs)

that calculate functions such as square roots, reciprocals, sines, and cosines.
AR P RS

5/31/2021 45



Summary- [[Z4bEH] vs. GPU
» AREREIERIARIEELE

Closest CUDA/NVIDIA

Type Vector term GPU term Comment
Vectonzed Gnd Concepts are similar, with the GPU using the less descriptive term
g oo
= % Chime o Because a vector instruction (PTX instruction) takes just 2 cycles
Ef‘ i on Pascal to complete, a chime i1s short in GPUs. Pascal has two
- e execution units that support the most common floating-point
= instructons that are used altemately, so the effective 1ssue rate 1s |
instruction every clock cycle
Vector PTX Instruction A PTX instruction of a SIMD Thread is broadcast to all SIMD
Instruction Lanes, so it 15 stmilar to a vector instruction
s Gather/ Global load/store (1d. All GPU loads and stores are gather and scatter, in that each SIMD
i Scatter global/st.global) Lane sends a unique address. It’s up to the GPU Coalescing Unit to
E get umt-stride performance when addresses from the SIMD Lanes
2 allow it
E Mask Predicate Registers and Vector mask registers are explicitly part of the architectural state,
g Registers Internal Mask Registers while GPU mask registers are internal to the hardware. The GPU

conditional hardware adds a new feature beyond predicate registers
to manage masks dynamically

5/31/2021 PERIZFRAKRE 46



Summary-E=R-E4] vs. GPU

Closest CUDA/NVIDIA

Type Vectorterm GPU term Comment
Vector Multithreaded SIMD These are similar, but SIMD Processors tend to have many lanes,
Processor Processor taking a few clock cycles per lane to complete a vector, while

vector architectures have few lanes and take many cycles (o
complete a vector. They are also multithreaded where vectors
usually are not

Control Thread Block Scheduler The closest is the Thread Block Scheduler that assigns Thread

Processor Blocks to a multithreaded SIMD Processor. But GPUs have no
scalar-vector operations and no unit-stride or strided data transfer
instructions, which Control Processors ofien provide in vector

architectures
Scalar System Processor Because of the lack of shared memory and the high latency to
Processor communicate over a PCI bus (1000s of clock cycles), the system

processor in a GPU rarely takes on the same tasks that a scalar
processor does in a vector architecture

Processing and memory hardware

Vector Lane  SIMD Lane Very similar; both are essentially functional units with registers
Vector SIMD Lane Registers The equivalent of a vector register is the same register in all 16
Registers SIMD Lanes of a multithreaded SIMD Processor munning a thread

of SIMD instructions. The number of registers per SIMD Thread is
flexible, but the maximum is 256 in Pascal, so the maximum
number of vector registers is 256

Main GPU Memory Memory for GPU versus system memory in vector case
Memory

Figure 4.21 GPU equivalent to vector terms.
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Summary-Multimedia SIMD Computers

and GPUs

Feature Multicore with SIMD GPU
SIMD Processors 4-8 §-32
SIMD Lanes/Processor 24 up to 64
Multithreading hardware support for SIMD Threads 2-4 up to 64
Typical ratio of single-precision to double-precision performance 2:1 2¢1
Largest cache size 40 MB 4 MB
Size of memory address 64-bit 64-bit
Size of main memory up to 1024 GB up to 24 GB
Memory protection at level of page Yes Yes
Demand paging Yes Yes
Integrated scalar processor/SIMD Processor Yes No
Cache coherent Yes Yes on some systems

Figure 4.23 Similarities and differences between multicore with multimedia SIMD extensions and recent GPUs.
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More
descriptive
name used in
this book

Type

Short explanation and AMD and
OpenCL terms

Official CUDA/NVIDIA definition

Vectorizable Gnid A vectorizable loop, executed on the A Grid is an array of Thread Blocks
loop GPU, made up of one or more “Thread that can execute concurrently,
Blocks™ (or bodies of vectorized loop)  sequentally, or a mixture
that can execute in parallel. OpenCL
name is “index range.” AMD name is
“NDRange™
% Body of Thread A vectorized loop executed on a A Thread Block 1s an array of CUDA
k> Vectonzed Block multithreaded SIMD Processor, made Threads that execute concurrently
g loop up of one or more threads of SIMD and can cooperate and communicate
=z instructions. These SIMD Threads can  via shared memory and barrier
& communicate via local memory. AMD  synchronization. A Thread Block has
£ and OpenCL name is “work group” a Thread Block ID within its Grid
E Sequence of CUDA A vertical cut of a thread of SIMD A CUDA Thread is a lightweight
5IMD Lane Thread instructions corresponding to one thread that executes a sequential
operations element executed by one SIMD Lane. program and that can cooperate with
Result is stored depending on mask. other CUDA Threads executing in
AMD and OpenCL calla CUDA Thread the same Thread Block. A CUDA
a “work item” Thread has a thread 1D within its
Thread Block
A thread of Warp A traditional thread, but it contains just A warp is a set of parallel CUDA
*g SIMD SIMD instructions that are executedona  Threads (e.g., 32) that execute the
= Instructions multithreaded SIMD Processor. Results  same instruction together in a
3 are stored depending on a per-clement multithreaded SIMT/SIMD
= mask. AMD name 15 “wavefront” Processor
_
E SIMD PTX A single SIMD mstruction executed A PTX instruction specifies an
= instruction instruction  across the SIMD Lanes. AMD name is  instruction executed by a CUDA

“AMDIL” or “FSAIL" instruction

Thread

Figure 4.24 Conversion from terms used in this chapter to official NVIDIA/CUDA and AMD jargon. OpenCL names

are given in the book's definitions.
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More

descriptive Official
name used in CUDA/ Short explanation and AMD and
Type this book NVIDIA term OpenCL terms Official CUDA/NVIDIA definition
Multithreaded  Streaming Multithreaded SIMD Processor that A streaming multiprocessor (SM) is
SIMD multiprocessor  executes thread of SIMD a multithreaded SIMT/SIMD
processor instructions, independent of other Processor that executes warps of
SIMD Processors. Both AMD and  CUDA Threads. A SIMT program
OpenCL call it a “compute unit.” specifies the execution of one
However, the CUDA programmer CUDA Thread, rather than a vector
writes program for one lane rather of multiple SIMD Lanes
than for a “vector” of multple SIMD
Lanes
Thread Block  Giga Thread Assigns multiple bodies of Distributes and schedules Thread
= Scheduler Engine vectorized loop to multithreaded Blocks of a grid to streaming
% SIMD Processors. AMD name is multiprocessors as resources
= “Ultra-Threaded Dispatch Engine” become available
20 SIMD Thread  Warp Hardware unit that schedules and A warp scheduler in a streaming
Z scheduler scheduler issues threads of SIMD instructions — multiprocessor schedules warps for
g when they are ready to execute: execution when their next
& includes a scoreboard to rack SIMD  instruction is ready to execute
Thread execution. AMD name 15
“"Work Group Scheduler”
SIMD Lane Thread Hardware SIMD Lane that executes A thread processor 1s a datapath and
processor the operations in a thread of SIMD  register file portion of a streaming

instructions on a single element.
Results are stored depending on
mask. OpenCL calls it a “processing
element.” AMD name is also “SIMD
Lane”

multiprocessor that executes
operations for one or more lanes of a

warp
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More

descriptive Official
name used in CUDA/ Short explanation and AMD and
Type this book NVIDIA term OpenCL terms Official CUDA/NVIDIA definition
GPU Memory  Global DRAM memory accessible by all Global memory 1s accessible by all
memory multithreaded SIMD Processorsina  CUDA Threads in any Thread Block
GPU. OpenCL calls it “global in any grid; implemented as a region
memory” of DRAM, and may be cached
Private Local memory  Portion of DRAM memory private Private “thread-local”™ memory for a
memory to each SIMD Lane. Both AMD and CUDA Thread; implemented as a
"‘é‘ OpenCL call it “private memory™ cached region of DRAM
8 Local memory  Shared Fast local SRAM for one Fast SRAM memory shared by the
E memory multithreaded SIMD Processor, CUDA Threads composing a Thread
& unavailable to other SIMD Block, and private to that Thread
g Processors. OpenCL calls it “local Block. Used for communication
g memory.” AMD calls it “group among CUDA Threads in a Thread
memory” Block at barrier synchronization
points
SIMD Lane Registers Registers in a single SIMD Lane Private registers for a CUDA
registers allocated across body of vectorized  Thread; implemented as

loop. AMD also calls them
“registers”

multithreaded register file for certain
lanes of several warps for each
thread processor

Figure 4.25 Conversion from terms used in this chapter to official NVIDIA/CUDA and AMD jargon. Note that our
descriptive terms “local memory” and “private memory” use the OpenCL terminology. NVIDIA uses SIMT (single-
instruction multiple-thread) rather than SIMD to describe a streaming multiprocessor. SIMT is preferred over SIMD
5/ because the per-thread branching and control flow are unlike any SIMD machine.
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