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15-721 (Spring 2020)

ADMINISTRIVIA

April 29: Guest Speaker (Live)

May 4: Code Review #2 Submission

May 5: Final Presentations (Live)

May 13: Final Exam Due Date

May 16: Hack-a-Thon (Extra Credit, Optional)
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15-721 (Spring 2020)

ADMINISTRIVIA

Course Evaluation
→ Please tell me what you really think of me.
→ I take your feedback in consideration.
→ Take revenge on next year's students.

https://cmu.smartevals.com/
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DATABASE HARDWARE

People have been thinking about using hardware 
to accelerate DBMSs for decades.

1980s: Database Machines

2000s: FPGAs + Appliances

2010s: FPGAs + GPUs

2020s: PM + FPGAs + GPUs + CSAs + More!
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DATABASE MACHINES: AN IDEA WHOSE TIME HAS PASSED? A CRITIQUE 
OF THE FUTURE OF DATABASE MACHINES
UNIVERSITY OF WISCONSIN 1983

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikichip.org/wiki/intel/configurable_spatial_accelerator
https://minds.wisconsin.edu/handle/1793/58446
https://minds.wisconsin.edu/handle/1793/58446
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Persistent Memory

GPU Acceleration

Hardware Transactional Memory 
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PERSISTENT MEMORY

Emerging storage technology that provide low 
latency read/writes like DRAM, but with 
persistent writes and large capacities like SSDs.
→ aka Storage-class Memory, Non-Volatile Memory

First devices are block-addressable (NVMe)

Later devices are byte-addressable.
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FUNDAMENTAL ELEMENTS OF CIRCUITS
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FUNDAMENTAL ELEMENTS OF CIRCUITS

In 1971, Leon Chua at Berkeley predicted the 
existence of a fourth fundamental element.

A two-terminal device whose resistance depends 
on the voltage applied to it, but when that voltage 
is turned off it permanently remembers its last 
resistive state.
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TWO CENTURIES OF MEMRISTORS
NATURE MATERIALS 2012

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.eecs.berkeley.edu/Faculty/Homepages/chua.html
http://www.nature.com/nmat/journal/v11/n6/full/nmat3338.html
http://www.nature.com/nmat/journal/v11/n6/full/nmat3338.html
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FUNDAMENTAL ELEMENTS OF CIRCUITS

9

Capacitor
(1745)

Resistor
(1827)

Inductor
(1831)

Memristor
(1971)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

MERISTORS

A team at HP Labs led by Stanley Williams
stumbled upon a nano-device that had weird 
properties that they could not understand.

It wasn’t until they found Chua’s 1971 paper that 
they realized what they had invented.
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HOW WE FOUND THE MISSING MEMRISTOR
IEEE SPECTRUM 2008

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/R._Stanley_Williams
http://spectrum.ieee.org/semiconductors/processors/how-we-found-the-missing-memristor
http://spectrum.ieee.org/semiconductors/processors/how-we-found-the-missing-memristor


Andy Pavlo // Carnegie Mellon University // Spring 2016

11Source:  Luke Kilpatrick

https://www.flickr.com/photos/17638385@N05/4728649107/in/album-72157624344076304/
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TECHNOLOGIES

Phase-Change Memory (PRAM)

Resistive RAM (ReRAM)

Magnetoresistive RAM (MRAM)

13
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PHASE-CHANGE MEMORY

Storage cell is comprised of two metal electrodes 
separated by a resistive heater and the phase 
change material (chalcogenide).

The value of the cell is changed based on
how the material is heated.
→ A short pulse changes the cell to a ‘0’.
→ A long, gradual pulse changes the cell to a ‘1’.
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PHASE CHANGE MEMORY ARCHITECTURE AND THE 
QUEST FOR SCALABILITY
COMMUNICATIONS OF THE ACM 2010

Heater

Bitline

Access

chalcogenide

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://cacm.acm.org/magazines/2010/7/95046-phase-change-memory-architecture-and-the-quest-for-scalability/fulltext
http://cacm.acm.org/magazines/2010/7/95046-phase-change-memory-architecture-and-the-quest-for-scalability/fulltext
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RESISTIVE RAM

Two metal layers with two TiO2 layers in between. 
Running a current one direction moves electrons 
from the top TiO2 layer to the bottom, thereby 
changing the resistance.

Potential programmable storage fabric…
→ Bertrand Russell’s Material Implication Logic
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HOW WE FOUND THE MISSING MEMRISTOR
IEEE SPECTRUM 2008

Platinum

Platinum

TiO2 Layer

TiO2-x Layer
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MAGNETORESISTIVE RAM

Stores data using magnetic storage elements 
instead of electric charge or current flows.

Spin-Transfer Torque (STT-MRAM) is the 
leading technology for this type of PM.
→ Supposedly able to scale to very small

sizes (10nm) and have SRAM latencies.
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Fixed FM Layer→

Oxide Layer

Free FM Layer ↔

SPIN MEMORY SHOWS ITS MIGHT
IEEE SPECTRUM 2014

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://spectrum.ieee.org/semiconductors/memory/spin-memory-shows-its-might
http://spectrum.ieee.org/semiconductors/memory/spin-memory-shows-its-might
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WHY THIS IS  FOR REAL

Industry has agreed to standard technologies and 
form factors (JDEC).

Linux and Microsoft added support for PM in 
their kernels (DAX).

Intel added new instructions for flushing cache 
lines to PM (CLFLUSH, CLWB).

17
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PMDRAM

PM Next to 
DRAM

DBMS

Virtual Memory Subsystem

DBMS Address Space

PM

DRAM

DRAM as Hardware-
Managed Cache

DBMS

DBMS Address Space

Virtual Memory Subsystem

PM CONFIGURATIONS
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Source: Ismail Oukid

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://sigmod2017.org/wp-content/uploads/2017/05/06-Data-Structures-Engineering-For-Byte-Addressable-Non-Volatile-Memory.pdf
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PM FOR DATABASE SYSTEMS

Block-addressable PM is not that interesting.

Byte-addressable PM will be a game changer but 
will require some work to use correctly.
→ In-memory DBMSs will be better positioned to use byte-

addressable PM.
→ Disk-oriented DBMSs will initially treat PM as just a 

faster SSD.
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STORAGE & RECOVERY METHODS

Understand how a DBMS will behave on a system 
that only has byte-addressable PM.

Develop PM-optimized implementations of 
standard DBMS architectures.

Based on the N-Store prototype DBMS.
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LET'S TALK ABOUT STORAGE & RECOVERY METHODS FOR NON-
VOLATILE MEMORY DATABASE SYSTEMS
SIGMOD 2015

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/jarulraj/storage
https://dl.acm.org/doi/10.1145/2723372.2749441
https://dl.acm.org/doi/10.1145/2723372.2749441
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SYNCHRONIZATION

Existing programming models assume that any 
write to memory is non-volatile.
→ CPU decides when to move data from caches to DRAM.

The DBMS needs a way to ensure that data is 
flushed from caches to PM.
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STORE CLWB

L1 Cache

L2 Cache

ADR
Memory

Controller

https://db.cs.cmu.edu/
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NAMING

If the DBMS process restarts, we need to make 
sure that all the pointers for in-memory data point 
to the same data.

22

Table Heap

Tuple #00

Tuple #02

Tuple #01

Index

Tuple #00 (v2)
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PM-AWARE MEMORY ALLOCATOR

Feature #1: Synchronization
→ The allocator writes back CPU cache lines to PM using 

the CLFLUSH instruction.
→ It then issues a SFENCE instruction to wait for the data to 

become durable on PM.

Feature #2: Naming
→ The allocator ensures that virtual memory addresses 

assigned to a memory-mapped region never change even 
after the OS or DBMS restarts.
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DBMS ENGINE ARCHITECTURES

Choice #1: In-place Updates
→ Table heap with a write-ahead log + snapshots.
→ Example: VoltDB

Choice #2: Copy-on-Write
→ Create a shadow copy of the table when updated.
→ No write-ahead log.
→ Example: LMDB

Choice #3: Log-structured
→ All writes are appended to log. No table heap.
→ Example: RocksDB

24
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IN-PL ACE UPDATES ENGINE
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IN-PL ACE UPDATES ENGINE
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IN-PL ACE UPDATES ENGINE
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IN-PL ACE UPDATES ENGINE
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PM-OPTIMIZED ARCHITECTURES

Leverage the allocator’s non-volatile pointers to 
only record what changed rather than how it 
changed.

The DBMS only must maintain a transient UNDO 
log for a txn until it commits.
→ Dirty cache lines from an uncommitted txn can be 

flushed by hardware to the memory controller.
→ No REDO log because we flush all the changes to PM at 

the time of commit. 
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PM IN-PL ACE UPDATES ENGINE

27

PM
Table Heap

Tuple #00

Tuple #02

PM
Storage

Write-Ahead Log

Tuple Pointers

PM
Index

Tuple #01 1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

PM IN-PL ACE UPDATES ENGINE

27

PM
Table Heap

Tuple #00

Tuple #02

PM
Storage

Write-Ahead Log

Tuple Pointers

PM
Index

Tuple #01Tuple #01 (!) 1
2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

COPY-ON-WRITE ENGINE

28

Current Directory

Master Record

Leaf 1 Leaf 2

Page #00 Page #01

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

COPY-ON-WRITE ENGINE
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COPY-ON-WRITE ENGINE
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COPY-ON-WRITE ENGINE
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COPY-ON-WRITE ENGINE
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PM COPY-ON-WRITE ENGINE
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PM COPY-ON-WRITE ENGINE
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PM COPY-ON-WRITE ENGINE
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LOG-STRUCTURED ENGINE
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LOG-STRUCTURED ENGINE
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LOG-STRUCTURED ENGINE

30

SSTableMemTable

Write-Ahead Log

Tuple Delta

Bloom Filter

Tuple Delta

Tuple Data

1
2

3

Duplicate Data

Compactions

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

PM LOG -STRUCTURED ENGINE
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PM LOG -STRUCTURED ENGINE
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PM LOG -STRUCTURED ENGINE

31
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OBSERVATION

WAL serves two purposes
→ Transform random writes into sequential log writes.
→ Support transaction rollback.
→ Design makes sense for disks with slow random writes.

But PM supports fast random writes
→ Directly write data to the multi-versioned database.
→ Only record meta-data about committed txns in log.

32

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

WRITE-BEHIND LOGGING

PM-centric logging protocol that provides instant 
recovery and minimal duplication overhead.
→ Directly propagate changes to the database.
→ Only record meta-data in log.

Recover the database almost instantaneously.
→ Need to record meta-data about in-flight transactions.
→ In case of failure, ignore their effects.

33

WRITE-BEHIND LOGGING
VLDB 2017

https://db.cs.cmu.edu/
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WRITE-BEHIND LOGGING

34
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WRITE-BEHIND LOGGING

34
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WRITE-BEHIND LOGGING

DBMS assigns timestamps to transactions
→ Get timestamps within same group commit timestamp 

range to identify and ignore effects of in-flight txns.

Use failed group commit timestamp range:
→ DBMS uses range during tuple visibility checks.
→ Ignores tuples created or updated within this range.
→ UNDO is implicitly done via visibility checks.

35
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WRITE-BEHIND LOGGING

Recovery consists of only analysis phase
→ The DBMS can immediately start processing transactions 

after restart with explicit UNDO/REDO phases.

Garbage collection eventually kicks in to remove 
the physical versions of uncommitted transactions.
→ Using timestamp range information in write-behind log.
→ After this finishes, no need to do extra visibility checks.

36
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METADATA FOR INSTANT RECOVERY

Use group commit timestamp range to ignore 
effects of transactions in failed group commit.
→ Maintain list of failed timestamp ranges.

37
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WRITE-BEHIND LOGGING RECOVERY
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WRITE-BEHIND LOGGING RUNTIME
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PM SUMMARY

Storage Optimizations
→ Leverage byte-addressability to avoid unnecessary data 

duplication.

Recovery Optimizations
→ PM-optimized recovery protocols avoid the overhead of 

processing a log.
→ Non-volatile data structures ensure consistency.

40
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GPU ACCELERATION

GPUs excel at performing (relatively simple) 
repetitive operations on large amounts of data 
over multiple streams of data.

Target operations that do not require blocking for 
input or branches:
→ Good: Sequential scans with predicates
→ Bad: B+Tree index probes

AFAIK, GPU memory is not cache coherent with 
CPU memory.

41
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GPU ACCELERATION
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GPU ACCELERATION

42

DDR4 (~40 GB/s)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

GPU ACCELERATION

42

PCIe Bus (~16 GB/s)

DDR4 (~40 GB/s) NVLink (~25 GB/s)

NVLink (~25 GB/s)
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GPU ACCELERATION

Choice #1: Entire Database
→ Store the database in the GPU(s) VRAM.
→ All queries perform massively parallel seq scans.

Choice #2: Important Columns
→ Return the offsets of records that match the portion of 

the query that accesses GPU-resident columns.
→ Must materialize full results in CPU.

Choice #3: Streaming
→ Transfer data from CPU to GPU on the fly. 

43
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HARDWARE TRANSACTIONAL MEMORY

Create critical sections in software that are 
managed by hardware.
→ Leverages same cache coherency protocol to detect 

transaction conflicts.
→ Intel x86: Transactional Synchronization Extensions

Read/write set of transactions must fit in L1 cache.
→ This means that it is not useful for general purpose txns.
→ It can be used to create latch-free indexes.

TO LOCK, SWAP OR ELIDE: ON THE INTERPLAY OF HARDWARE 
TRANSACTIONAL MEMORY AND LOCK-FREE INDEXING
VLDB 2015

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Transactional_Synchronization_Extensions
http://www.vldb.org/pvldb/vol8/p1298-makreshanski.pdf
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HTM PROGRAMMING MODEL

Hardware Lock Elision (HLE)
→ Optimistically execute critical section by eliding the write 

to a lock so that it appears to be free to other threads.
→ If there is a conflict, re-execute the code but take locks 

the second time.

Restricted Transactional Memory (RTM)
→ Like HLE but with an optional fallback codepath that the 

CPU jumps to if the txn aborts.
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HTM L ATCH ELISION
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Insert Key 25 TSX-START {
LATCH A 
Read A
LATCH C
UNLATCH A
Read C
LATCH F
UNLATCH C

}
TSX-COMMIT
Insert 25
UNLATCH F
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Insert 25
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PARTING THOUGHTS

Byte-addressable PM is going to be a game 
changer when it comes out.

We are likely to see many new computational 
components that DBMSs can use in the next 
decade.
→ The core ideas / algorithms will still be the same.
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FINAL PARTING THOUGHTS

You now are aware of the major topics involved in 
building a modern, single-node DBMS.

You have a foundation for reasoning about 
systems in order to discern whether claims are 
legitimate or marketing hype.
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NEXT CL ASS
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