
L
e

c
tu

re
 #

2
4

Server-side Logic Execution

@Andy_Pavlo // 15-721 // Spring 2020

ADVANCED
DATABASE
SYSTEMS

https://15721.courses.cs.cmu.edu/spring2020/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

15-721 (Spring 2020)

Background

UDF In-lining

UDF CTE Conversion

2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

Until now, we have assumed that all of the logic
for an application is located in the application
itself.

The application has a "conversation" with the
DBMS to store/retrieve data.
→ Protocols: JDBC, ODBC

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CONVERSATIONAL DATABASE API

4

Application

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CONVERSATIONAL DATABASE API

4

Application

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

Parser
Planner
Optimizer
Query Execution

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CONVERSATIONAL DATABASE API

4

Application

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

Parser
Planner
Optimizer
Query Execution

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CONVERSATIONAL DATABASE API

4

Application

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

Parser
Planner
Optimizer
Query Execution

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CONVERSATIONAL DATABASE API

4

Application

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

Parser
Planner
Optimizer
Query Execution

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

EMBEDDED DATABASE LOGIC

Move application logic into the DBMS to avoid
multiple network round-trips and to extend the
functionality of the DBMS.

Potential Benefits
→ Efficiency
→ Reuse

5

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

EMBEDDED DATABASE LOGIC

6

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

Application

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

EMBEDDED DATABASE LOGIC

6

CALL PROC(x=99)

PROC(x)Application

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

EMBEDDED DATABASE LOGIC

User-Defined Functions (UDFs)

Stored Procedures

Triggers

User-Defined Types (UDTs)

User-Defined Aggregates (UDAs)

7

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

USER-DEFINED FUNCTIONS

A user-defined function (UDF) is a function
written by the application developer that extends
the system's functionality beyond its built-in
operations.
→ It takes in input arguments (scalars)
→ Perform some computation
→ Return a result (scalars, tables)

8

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

UDF EXAMPLE

Get all the customer ids and
compute their customer service
level based on the amount of
money they have spent.

9

SELECT c_custkey,
cust_level(c_custkey)

FROM customer

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN
DECLARE @total float;
DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE
SET @level = 'Regular';

RETURN @level;
END

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

UDF ADVANTAGES

They encourage modularity and code reuse
→ Different queries can reuse the same application logic

without having to reimplement it each time.

Fewer network round-trips between application
server and DBMS for complex operations.

Some types of application logic are easier to
express and read as UDFs than SQL.

10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

UDF DISADVANTAGES (1)

Query optimizers treat UDFs as black boxes.
→ Unable to estimate cost if you don't know what a UDF is

going to do when you run it.

It is difficult to parallelize UDFs due to correlated
queries inside of them.
→ Some DBMSs will only execute queries with a single

thread if they contain a UDF.
→ Some UDFs incrementally construct queries.

11

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

UDF DISADVANTAGES (2)

Complex UDFs in SELECT / WHERE clauses force
the DBMS to execute iteratively.
→ RBAR = "Row By Agonizing Row"
→ Things get even worse if UDF invokes queries due to

implicit joins that the optimizer cannot "see".

Since the DBMS executes the commands in the
UDF one-by-one, it is unable to perform cross-
statement optimizations.

12

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

UDF PERFORMANCE

TPC-H Q12 using a UDF (SF=1).
SELECT l_shipmode,

SUM(CASE
WHEN o_orderpriority <> '1-URGENT'
THEN 1 ELSE 0 END

) AS low_line_count
FROM orders, lineitem
WHERE o_orderkey = l_orderkey
AND l_shipmode IN ('MAIL','SHIP')
AND l_commitdate < l_receiptdate
AND l_shipdate < l_commitdate
AND l_receiptdate >= '1994-01-01'
AND dbo.cust_name(o_custkey) IS NOT NULL

GROUP BY l_shipmode
ORDER BY l_shipmode

Source: Karthik Ramachandra

Microsoft SQL Server

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.microsoft.com/en-us/research/people/karam/

15-721 (Spring 2020)

UDF PERFORMANCE

TPC-H Q12 using a UDF (SF=1).
→ Original Query: 0.8 sec
→ Query + UDF: 13 hr 30 min

SELECT l_shipmode,
SUM(CASE

WHEN o_orderpriority <> '1-URGENT'
THEN 1 ELSE 0 END

) AS low_line_count
FROM orders, lineitem
WHERE o_orderkey = l_orderkey
AND l_shipmode IN ('MAIL','SHIP')
AND l_commitdate < l_receiptdate
AND l_shipdate < l_commitdate
AND l_receiptdate >= '1994-01-01'
AND dbo.cust_name(o_custkey) IS NOT NULL

GROUP BY l_shipmode
ORDER BY l_shipmode

CREATE FUNCTION cust_name(@ckey int)
RETURNS char(25) AS
BEGIN
DECLARE @n char(25);
SELECT @n = c_name
FROM customer WHERE c_custkey = @ckey;

RETURN @n;
END

Source: Karthik Ramachandra

Microsoft SQL Server

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.microsoft.com/en-us/research/people/karam/

15-721 (Spring 2020)

MICROSOFT SQL SERVER UDF HISTORY

2001 – Microsoft adds TSQL Scalar UDFs.

2008 – People realize that UDFs are "evil".

14

Source: Karthik Ramachandra

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.microsoft.com/en-us/research/people/karam/

15-721 (Spring 2020)

MICROSOFT SQL SERVER UDF HISTORY

2001 – Microsoft adds TSQL Scalar UDFs.

2008 – People realize that UDFs are "evil".

14

Source: Karthik Ramachandra

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.microsoft.com/en-us/research/people/karam/
https://sqlblogcasts.com/blogs/simons/archive/2008/11/03/TSQL-Scalar-functions-are-evil-.aspx

15-721 (Spring 2020)

MICROSOFT SQL SERVER UDF HISTORY

2001 – Microsoft adds TSQL Scalar UDFs.

2008 – People realize that UDFs are "evil".

2010 – Microsoft acknowledges that UDFs are evil.

14

Source: Karthik Ramachandra

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.microsoft.com/en-us/research/people/karam/

15-721 (Spring 2020)

MICROSOFT SQL SERVER UDF HISTORY

2001 – Microsoft adds TSQL Scalar UDFs.

2008 – People realize that UDFs are "evil".

2010 – Microsoft acknowledges that UDFs are evil.

14

Source: Karthik Ramachandra

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.microsoft.com/en-us/research/people/karam/
https://techcommunity.microsoft.com/t5/datacat/soften-the-rbar-impact-with-native-compiled-udfs-in-sql-server/ba-p/305260?advanced=false&collapse_discussion=true&search_type=thread

15-721 (Spring 2020)

MICROSOFT SQL SERVER UDF HISTORY

2001 – Microsoft adds TSQL Scalar UDFs.

2008 – People realize that UDFs are "evil".

2010 – Microsoft acknowledges that UDFs are evil.

2014 – UDF decorrelation research @ IIT-B.

2015 – Froid project begins @ MSFT Gray Lab.

2018 – Froid added to SQL Server 2019.

14

Source: Karthik Ramachandra

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://ieeexplore.ieee.org/document/6816679
https://www.microsoft.com/en-us/research/project/froid/
https://www.microsoft.com/en-us/research/people/karam/

15-721 (Spring 2020)

MICROSOFT SQL SERVER UDF HISTORY

2001 – Microsoft adds TSQL Scalar UDFs.

2008 – People realize that UDFs are "evil".

2010 – Microsoft acknowledges that UDFs are evil.

2014 – UDF decorrelation research @ IIT-B.

2015 – Froid project begins @ MSFT Gray Lab.

2018 – Froid added to SQL Server 2019.

14

Source: Karthik Ramachandra

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://ieeexplore.ieee.org/document/6816679
https://www.microsoft.com/en-us/research/project/froid/
https://www.microsoft.com/en-us/research/people/karam/
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining

15-721 (Spring 2020)

FROID

Automatically convert UDFs into relational
expressions that are inlined as sub-queries.
→ Does not require the app developer to change UDF code.

Perform conversion during the rewrite phase to
avoid having to change the cost-base optimizer.
→ Commercial DBMSs already have powerful

transformation rules for executing sub-queries efficiently.

15

FROID: OPTIMIZATION OF IMPERATIVE PROGRAMS
IN A RELATIONAL DATABASE
VLDB 2017

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p432-ramachandra.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p432-ramachandra.pdf

15-721 (Spring 2020)

SUB-QUERIES

The DBMS treats nested sub-queries in the where
clause as functions that take parameters and return
a single value or set of values.

Two Approaches:
→ Rewrite to de-correlate and/or flatten them
→ Decompose nested query and store result to temporary

table. Then the outer joins with the temporary table.

16

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SUB-QUERIES REWRITE

17

SELECT name FROM sailors AS S
WHERE EXISTS (

SELECT * FROM reserves AS R
WHERE S.sid = R.sid
AND R.day = '2020-04-22'

)

SELECT name
FROM sailors AS S, reserves AS R
WHERE S.sid = R.sid
AND R.day = '2020-04-22'

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

L ATERAL JOIN

A lateral inner subquery can refer to fields in rows
of the table reference to determine which rows to
return.
→ Allows you to have sub-queries in FROM clause.

The DBMS iterates through each row in the table
referenced and evaluates the inner sub-query for
each row.
→ The rows returned by the inner sub-query are added to

the result of the join with the outer query.

18

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FROID OVERVIEW

Step #1 – Transform Statements

Step #2 – Break UDF into Regions

Step #3 – Merge Expressions

Step #4 – Inline UDF Expression into Query

Step #5 – Run Through Query Optimizer

21

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SET @level = 'Platinum';

SELECT @total = SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';

Imperative Statements

SELECT 'Platinum' AS level;

SELECT (
SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey

) AS total;

SELECT (
CASE WHEN total > 1000000
THEN 'Platinum'
ELSE NULL

END) AS level;

SQL Statements

STEP #1 TRANSFORM STATEMENTS

22

Source: Karthik Ramachandra

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.microsoft.com/en-us/research/people/karam/

15-721 (Spring 2020)

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN
DECLARE @total float;
DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE
SET @level = 'Regular';

RETURN @level;
END

STEP #2 BREAK INTO REGIONS

23

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN
DECLARE @total float;
DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE
SET @level = 'Regular';

RETURN @level;
END

1

STEP #2 BREAK INTO REGIONS

23

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN
DECLARE @total float;
DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE
SET @level = 'Regular';

RETURN @level;
END

1

2

STEP #2 BREAK INTO REGIONS

23

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN
DECLARE @total float;
DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE
SET @level = 'Regular';

RETURN @level;
END

1

2

STEP #2 BREAK INTO REGIONS

23

3

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular'
ELSE E_R2.level END) AS level

) AS E_R3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN
DECLARE @total float;
DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE
SET @level = 'Regular';

RETURN @level;
END

1

2

STEP #2 BREAK INTO REGIONS

23

3

4

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular'
ELSE E_R2.level END) AS level

) AS E_R3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

STEP #3 MERGE EXPRESSIONS

24

SELECT E_R3.level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total <= 1000000
THEN 'Regular'
ELSE E_R2.level END) AS level

) AS E_R3;

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular'
ELSE E_R2.level END) AS level

) AS E_R3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

STEP #4 INLINE EXPRESSION

25

SELECT c_custkey,
cust_level(c_custkey)

FROM customer

Original Query

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

STEP #4 INLINE EXPRESSION

25

SELECT c_custkey,
cust_level(c_custkey)

FROM customer

Original Query SELECT c_custkey, (
SELECT E_R3.level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total <= 1000000
THEN 'Regular'
ELSE E_R2.level END) AS level

) AS E_R3;
) FROM customer;

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

STEP #4 INLINE EXPRESSION

25

SELECT c_custkey,
cust_level(c_custkey)

FROM customer

Original Query SELECT c_custkey, (
SELECT E_R3.level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total <= 1000000
THEN 'Regular'
ELSE E_R2.level END) AS level

) AS E_R3;
) FROM customer;

4

1

2

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

STEP #5 - OPTIMIZE

26

SELECT c_custkey, (
SELECT E_R3.level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total <= 1000000
THEN 'Regular'
ELSE E_R2.level END) AS level

) AS E_R3;
) FROM customer;

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

STEP #5 - OPTIMIZE

26

SELECT c_custkey, (
SELECT E_R3.level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total <= 1000000
THEN 'Regular'
ELSE E_R2.level END) AS level

) AS E_R3;
) FROM customer;

SELECT c.c_custkey,
CASE WHEN e.total > 1000000

THEN 'Platinum'
ELSE 'Regular'

END
FROM customer c LEFT OUTER JOIN

(SELECT o_custkey,
SUM(o_totalprice) AS total

FROM order GROUP BY o_custkey
) AS e
ON c.c_custkey=e.o_custkey;

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BONUS OPTIMIZATIONS

27

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';

ELSE
SET @val = 'low';

RETURN @val + ' value';
END SELECT getVal(5000);

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BONUS OPTIMIZATIONS

27

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';

ELSE
SET @val = 'low';

RETURN @val + ' value';
END

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000

THEN 'high'
ELSE 'low' END AS val)

AS DT1
OUTER APPLY
(SELECT DT1.val + ' value'

AS returnVal) DT2

Froid

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BONUS OPTIMIZATIONS

27

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';

ELSE
SET @val = 'low';

RETURN @val + ' value';
END

Dynamic Slicing Const Propagation &
Folding

Dead Code Elimination

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000

THEN 'high'
ELSE 'low' END AS val)

AS DT1
OUTER APPLY
(SELECT DT1.val + ' value'

AS returnVal) DT2

BEGIN
DECLARE @val char(10);
SET @val = 'high';
RETURN @val + ' value';

END

SELECT returnVal FROM
(SELECT 'high' AS val)
AS DT1
OUTER APPLY
(SELECT DT1.val +

' value'
AS returnVal)

AS DT2

BEGIN
DECLARE @val char(10);
SET @val = 'high';
RETURN 'high value';

END

SELECT returnVal FROM
(SELECT 'high value'

AS returnVal)
AS DT1

Froid

BEGIN
RETURN 'high value';
END

SELECT 'high value';

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SUPPORTED OPERATIONS (2019)

T-SQL Syntax:
→ DECLARE, SET (variable declaration, assignment)
→ SELECT (SQL query, assignment)
→ IF / ELSE / ELSE IF (arbitrary nesting)
→ RETURN (multiple occurrences)
→ EXISTS, NOT EXISTS, ISNULL, IN, … (Other relational

algebra operations)

UDF invocation (nested/recursive with
configurable depth)

All SQL datatypes.

28

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

APPLICABILIT Y / COVERAGE

29

of Scalar
UDFs

Froid
Compatible

Workload 1 178 150

Workload 2 90 82

Workload 3 22 21

84%

95%

91%

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

UDF IMPROVEMENT STUDY

30

0.1

10

1000
Table: 100k Tuples

0.1

10

1000

Im
pr

ov
em

en
t F

ac
to

r

Workload 2

Workload 1

Source: Karthik Ramachandra

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.microsoft.com/en-us/research/people/karam/

15-721 (Spring 2020)

UDFs-TO-CTEs

Rewrite UDFs into plain SQL commands.

Use recursive common table expressions (CTEs)
to support iterations and other control flow
concepts not supported in Froid.

DBMS Agnostic
→ Can be implemented as a rewrite middleware layer on

top of any DBMS that supports CTEs.

31

COMPILING PL/SQL AWAY
CIDR 2020

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p1-duta-cidr20.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p1-duta-cidr20.pdf

15-721 (Spring 2020)

UDFs-TO-CTEs OVERVIEW

Step #1 – Static Single Assignment Form

Step #2 – Administrative Normal Form

Step #3 – Mutual to Direct Recursion

Step #4 – Tail Recursion to WITH RECURSIVE

Step #5 – Run Through Query Optimizer

32

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Static_single_assignment_form
https://en.wikipedia.org/wiki/A-normal_form

15-721 (Spring 2020)

STEP #1 STATIC SINGLE ASSIGNMENT

33

CREATE FUNCTION pow(x int, n int)
RETURNS int AS
$$
DECLARE
i int = 0;
p int = 1;
BEGIN
WHILE i < n LOOP
p = p * x;
i = i + 1;

END LOOP;
RETURN p;
END;
$$

Source: Torsten Grust

pow(x,n):
i0 ← 0;
p0 ← 0;

while: i1 ← Φ(i0,i2);
p1 ← Φ(p0,p2);
if i1 < n then

goto loop;
else
goto exit;

loop: p2 ← p1 * x;
i2 ← i1 + 1;
goto while;

exit: return p1;

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

15-721 (Spring 2020)

STEP #2 ADMINISTRATIVE NORMAL FORM

34

Source: Torsten Grust

pow(x,n) =
let i0 = 0 in
let p0 = 1 in
while(i0,p0,x,n)

while(i1,p1,x,n) =
let t0 = i1 >= n in
if t0 then p1
else body(i1,p1,x,n)

body(i1,p1,x,n) =
let p2 = p1 * x in
let i2 = i1 + 1 in
while(i2,p2,x,n)

pow(x,n):
i0 ← 0;
p0 ← 0;

while: i1 ← Φ(i0,i2);
p1 ← Φ(p0,p2);
if i1 < n then
goto loop;

else
goto exit;

loop: p2 ← p1 * x;
i2 ← i1 + 1;
goto while;

exit: return p1;

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

15-721 (Spring 2020)

STEP #3 MUTUAL TO DIRECT RECURSION

35

Source: Torsten Grust

pow(x,n) =
let i0 = 0 in
let p0 = 1 in

run(i0,p0,x,n)

run(i1,p1,x,n) =
let t0 = i1 >= n in
if t0 then p1
else
let p2 = p1 * x in
let i2 = i1 + 1 in
run(i2,p2,x,n)

pow(x,n) =
let i0 = 0 in
let p0 = 1 in
while(i0,p0,x,n)

while(i1,p1,x,n) =
let t0 = i1 >= n in
if t0 then p1
else body(i1,p1,x,n)

body(i1,p1,x,n) =
let p2 = p1 * x in
let i2 = i1 + 1 in
while(i2,p2,x,n)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

15-721 (Spring 2020)

pow(x,n) =
let i0 = 0 in
let p0 = 1 in
run(i0,p0,x,n)

run(i1,p1,x,n) =
let t0 = i1 >= n in
if t0 then p1
else
let p2 = p1 * x in
let i2 = i1 + 1 in
run(i2,p2,x,n)

STEP #4 WITH RECURSIVE

36

Source: Torsten Grust

WITH RECURSIVE
run("call?",i1,p1,x,n,result) AS (

SELECT true,0,1,x,n,NULL

UNION ALL
SELECT iter.* FROM run, LATERAL (

SELECT false,0,0,0,0,p1
WHERE i1 >= n

UNION ALL
SELECT true,i1+1,p1*x,x,n,0
WHERE i1 < n

) AS iter("call?",i1,p1,x,n,result)
WHERE run."call?"

)
SELECT * FROM run;

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

15-721 (Spring 2020)

pow(x,n) =
let i0 = 0 in
let p0 = 1 in
run(i0,p0,x,n)

run(i1,p1,x,n) =
let t0 = i1 >= n in
if t0 then p1
else
let p2 = p1 * x in
let i2 = i1 + 1 in
run(i2,p2,x,n)

STEP #4 WITH RECURSIVE

36

Source: Torsten Grust

WITH RECURSIVE
run("call?",i1,p1,x,n,result) AS (

SELECT true,0,1,x,n,NULL

UNION ALL
SELECT iter.* FROM run, LATERAL (

SELECT false,0,0,0,0,p1
WHERE i1 >= n

UNION ALL
SELECT true,i1+1,p1*x,x,n,0
WHERE i1 < n

) AS iter("call?",i1,p1,x,n,result)
WHERE run."call?"

)
SELECT * FROM run;

1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

15-721 (Spring 2020)

pow(x,n) =
let i0 = 0 in
let p0 = 1 in
run(i0,p0,x,n)

run(i1,p1,x,n) =
let t0 = i1 >= n in
if t0 then p1
else
let p2 = p1 * x in
let i2 = i1 + 1 in
run(i2,p2,x,n)

STEP #4 WITH RECURSIVE

36

Source: Torsten Grust

WITH RECURSIVE
run("call?",i1,p1,x,n,result) AS (

SELECT true,0,1,x,n,NULL

UNION ALL
SELECT iter.* FROM run, LATERAL (

SELECT false,0,0,0,0,p1
WHERE i1 >= n

UNION ALL
SELECT true,i1+1,p1*x,x,n,0
WHERE i1 < n

) AS iter("call?",i1,p1,x,n,result)
WHERE run."call?"

)
SELECT * FROM run;

1

2

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

15-721 (Spring 2020)

UDFs-TO-CTEs EVALUATION

37

POW UDF on Postgres v11.3

0

1500

3000

4500

10 20 30 40 50 60 70 80 90 100

R
u

n
 T

im
e

(m
s)

of Iterations (×1000)

PL/SQL CTE

Source: Torsten Grust

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

15-721 (Spring 2020)

PARTING THOUGHTS

This is huge. You rarely get 500x speed up without
either switching to a new DBMS or rewriting your
application.

Another optimization approach is to compile the
UDF into machine code.
→ This does not solve the optimizer's cost model problem.

38

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NEXT CL ASS

Last Lecture: Databases on New Hardware

39

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

