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OBSERVATION

Until now, we have assumed that all of the logic
for an application is located in the application
itself.

The application has a "conversation" with the

DBMS to store/retrieve data.
— Protocols: JDBC, ODBC
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CONVERSATIONAL DATABASE API
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EMBEDDED DATABASE LOGIC

Move application logic into the DBMS to avoid

multiple network round-trips and to extend the
functionality of the DBMS.

Potential Benefits
— Efficiency
— Reuse
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EMBEDDED DATABASE LOGIC
Application

PROC(x)

CALL PROC(x=99)

. ©

BEGIN

soL

Program Logic
SQL

Program Logic

COMMIT
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EMBEDDED DATABASE LOGIC

IUser-Deﬁned Functions (UDFs) I
Stored Procedures

Triggers

User-Defined Types (UDTs)
User-Defined Aggregates (UDAs)
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USER-DEFINED FUNCTIONS

A user-defined function (UDF) is a function
written by the application developer that extends
the system's functionality beyond its built-in

operations.

— It takes in input arguments (scalars)
— Perform some computation

— Return a result (scalars, tables)
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UDF EXAMPLE

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS

Get all the customer ids and

BEGIN . .
DECLARE @total float; Compute thelr customer service
DECLARE @level char(10); level based on the amount of
SELECT @total = SUM(o_totalprice) money they have spent.

FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';

ELSE

SET @level = 'Regular'; SELECT c_custkey,

RETURN @level; cust_level(c_custkey)
END FROM customer
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UDF ADVANTAGES

They encourage modularity and code reuse
— Different queries can reuse the same application logic
without having to reimplement it each time.

Fewer network round-trips between application
server and DBMS for complex operations.

Some types of application logic are easier to
express and read as UDFs than SQL.
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UDF DISADVANTAGES (1)

Query optimizers treat UDFs as black boxes.
— Unable to estimate cost if you don't know what a UDF is
going to do when you run it.

[t is difficult to parallelize UDFs due to correlated

queries inside of them.

— Some DBMSs will only execute queries with a single
thread if they contain a UDF.

— Some UDFs incrementally construct queries.
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UDF DISADVANTAGES (2)

Complex UDFs in SELECT / WHERE clauses force

the DBMS to execute iteratively.

— RBAR = "Row By Agonizing Row"

— Things get even worse if UDF invokes queries due to
implicit joins that the optimizer cannot "see".

Since the DBMS executes the commands in the
UDF one-by-one, it is unable to perform cross-
statement optimizations.
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UDF PERFORMANCE
Microsoft SQL Server

SELECT

FROM
WHERE
AND
AND
AND
AND
AND
GROUP
ORDER

1_shipmode,
SUM(CASE
WHEN o_orderpriority <> '1-URGENT'
THEN 1 ELSE 0 END
) AS low_line_count
orders, lineitem
o_orderkey = 1_orderkey
1_shipmode IN ('MAIL','SHIP')
1_commitdate < 1_receiptdate
1_shipdate < 1_commitdate
1_receiptdate >= '1994-01-01'
dbo.cust_name(o_custkey) IS NOT NULL
BY 1_shipmode
BY 1_shipmode

Source: Karthik Ramachandra
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TPC-H Q12 using a UDF (SF=1).
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UDF PERFORMANCE
Microsoft SQL Server

SELECT 1_shipmode,
SUM(CASE

THEN 1 ELSE © END
) AS low_line_count
FROM orders, lineitem
WHERE o_orderkey = 1_orderkey
AND 1_shipmode IN ('MAIL','SHIP')
1_commitdate < 1_receiptdate
1_shipdate < 1_commitdate
i >=_ -01-01"

GROUP BY l_shipmode
ORDER BY 1_shipmode

WHEN o_orderpriority <> '1-URGENT'

TPC-H Q12 using a UDF (SF=1).
— Original Query: 0.8 sec
— Query + UDF: 13 hr 30 min

_—»| CREATE FUNCTION cust_name(@ckey int)

RETURNS char(25) AS
BEGIN
DECLARE @n char(25);
SELECT @n = c_name
FROM customer WHERE c_custkey = @Qckey;
RETURN @n;
END

Source: Karthik Ramachandra
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MICROSOFT SQL SERVER UDF HISTORY

2001 — Microsoft adds TSQL Scalar UDFs.
2008 — People realize that UDFs are "evil".

Source: Karthik Ramachandra
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TSQL Scalar functions are evil.

I've been working with a number of clients recently who all have suffered at the hands of TSQL Scalar functions. Scalar functions were introduced
in 5QL 2000 as a means to wrap logic so we benefit from code reuse and simplify our queries. who would be daft enough not to think this was a
good idea. | for one jumped on this initially thinking it was a great thing to do.

However as you might have gathered from the Hitle scalar functions aren't the nice friend you may think they are.
If you are running queries across large tables then this may explain why you are getting poor performance.
In this post we will look at a simple padding function, we will be creating large volumes to emphasize the issue with scalar udfs.

create function padiLeft(@val varchar(100), @len int, @char char (1))
returns varchar(100)
as
hegin
return right(replicate(@char,@len) + @val, @len)
end
go

Interpreted

Scalar functions are interpreted code that means EVERY call to the function results in your code being interpreted. That means overhead for
processing your function is proportional to the number of rows.

Running this code you will see that the native system calls take considerable less time than the UDF calls. On my machine it takes 2614 ms for the
system calls and 38758ms for the UDF. Thats a 19x increase.

set statistics time on

go

select max(right(replicate('a‘,loe) + o.name + c.name, 100))
from msdb.sys.columns o

cross join msdb.sys.columns €

select max(dbo.padLeft(o.name * c.name, 100,'@'))
from msdb.sys.columns 0
cross join msdb.sys.columns ¢

DF HISTORY

DF's.

vil'".
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MICROSOFT SQL SERVER UDF HISTORY

2001 — Microsoft adds TSQL Scalar UDFs.
2008 — People realize that UDFs are "evil".
2010 — Microsoft acknowledges that UDFs are evil.

Source: Karthik Ramachandra
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MICROSOFT

2001 — Micr

2008 - Peop
2010 — Micr

Source: Karthik Ramachandra
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] Microsoft
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Sign in

Soften the RBAR Impact with Native
Compiled UDFs In SQL Server 2016

First published ©n MSDN on Fep 17, 2016

Reviewers: Joe Sack, Denzif Ribeiro, Jos de Bruijn

Many of us are very familiar with the negative performance implications of using scalar UpFs on columns in Queries: my colleagues haye Posted about issyes
here and here . Using UDFs in this manner js an anti-pattern most of us frown upon, because of the row-by-agonizing-row (RBAR) Processing that this
implies. Iny addition, scalar UDF Usage alsa |imits the optimizer to yse serial plans, Overall, eyjl Personified|

Native Compiled UDFs introduced

We recently worked with an actual customer workload in the lab. In this workload, we had a query which invoked a scalar UDF in the output list. That means
that the UDF was actually executing once Per row - in this case a total of 75 million rows; The UDF has a simple CASE expression inside it. However, we
wanted to Improve query performance 50 we decided to try rewriting the UDF.
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MICROSOFT SQL SERVER UDF HISTORY

2001 — Microsoft adds TSQL Scalar UDFs.

2008 — People realize that UDFs are "evil".

2010 — Microsoft acknowledges that UDFs are evil.
2014 — UDF decorrelation research @ II'T-B.

2015 - Froid project begins @ MSFT Gray Lab.
2018 — Froid added to SQL Server 2019.

Source: Karthik Ramachandra
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Source: Karthi
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1 Download PDF

Scalar UDF Inlining

02/27/2019 » 10 minutes to read « Contributors 5]

APPLIES TO: @ sQL Server @ Azure SQL Database * Azure SQL Data Warehouse X
Parallel Data Warehouse

This article introduces Scalar UDF inlining, a feature under the intelligent query processing
suite of features. This feature improves the performance of queries that invoke scalar UDFs
in SQL Server (starting with SQL Server 2019 preview) and SQL Database.

T-SQL Scalar User-Defined Functions

User-Defined Functions that are implemented in Transact-5QL and return a single data
value are referred to as T-SQL Scalar User-Defined Functions. T-SQL UDFs are an elegant
way to achieve code reuse and modularity across SQL queries. Some computations (such as
complex business rules) are easier to express in imperative UDF form. UDFs help in building
up complex logic without requiring expertise in writing complex SQL queries.

Performance of Scalar UDFs

Scalar UDEs tvpicallv end up performing noorly due to the followina reasons

Al Microsoft ~ 0

2 Dark assface

In this article

T-SQL Scalar User-
Defined Functions

performance of
Scalar UDFs

Automatic Inlining
of Scalar UDFs

Inlineable Scalar
UDFs requirements

Enabling scalar
UDF inlining
Disabling Scalar
UDF inlining
without changing
the compatibility
level

Important Notes

See Also
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FROID

Automatically convert UDFs into relational

expressions that are inlined as sub-queries.
— Does not require the app developer to change UDF code.

Perform conversion during the rewrite phase to

avoid having to change the cost-base optimizer.
— Commercial DBMSs already have powerful
transformation rules for executing sub-queries efficiently.

== |FROID: OPTIMIZATION OF IMPERATIVE PROGRAMS
IN A RELATIONAL DATABASE
VLDB 2017

{H)

l’
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SUB-QUERIES

The DBMS treats nested sub-queries in the where
clause as functions that take parameters and return
a single value or set of values.

Two Approaches:

— Rewrite to de-correlate and/or flatten them

— Decompose nested query and store result to temporary
table. Then the outer joins with the temporary table.
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SUB-QUERIES — REWRITE

SELECT name FROM sailors AS S
WHERE EXISTS (
SELECT * FROM reserves AS R
WHERE |S.sid = R.sid
AND R.day = '2020-04-22'

SELECT name

FROM sailors AS S, reserves AS R
WHERE S.sid = R.sid
AND R.day = '2020-04-22'
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LATERAL JOIN

A lateral inner subquery can refer to fields in rows
of the table reference to determine which rows to

return.
— Allows you to have sub-queries in FROM clause.

The DBMS iterates through each row in the table
referenced and evaluates the inner sub-query for

each row.

— The rows returned by the inner sub-query are added to
the result of the join with the outer query.
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FROID OVERVIEW

Step #1 — Transform Statements

Step #2 — Break UDF into Regions

Step #3 — Merge Expressions

Step #4 — Inline UDF Expression into Query
Step #5 — Run Through Query Optimizer
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STEP #1 — TRANSFORM STATEMENTS

Imperative Statements

SET @level = 'Platinum’; »

SELECT @total = SUM(o_totalprice) »
FROM orders

WHERE o_custkey=@ckey;

IF (@total > 1000000) »
SET @level = 'Platinum';

Source: Karthik Ramachandra

S=CMU-DB 15-721 (Spring 2020)

SQL Statements

SELECT 'Platinum' AS level;

SELECT (
SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey
) AS total;

SELECT (
CASE WHEN total > 1000000
THEN 'Platinum'
ELSE NULL

END) AS level;

22
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STEP #2 — BREAK INTO REGIONS

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN

DECLARE @total float;

DECLARE Q@level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum’;
ELSE

SET @level = 'Regular’;

RETURN @level;
END
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STEP #2 — BREAK INTO REGIONS

(SELECT NULL AS level,
CREATE FUNCTION cust_level(@ckey int) (SELECT SUM(o_totalprice)
RETURNS char(10) AS FROM orders
BEGIN WHERE o_custkey=@ckey) AS total
@)|DECLARE @total float; ) AS

DECLARE Q@level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum’;
ELSE

SET @level = 'Regular’;

RETURN @level;
END

U

\
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STEP #2 — BREAK INTO REGIONS

(SELECT NULL AS level,
CREATE FUNCTION cust_level(@ckey int) (SELECT SUM(o_totalprice)
RETURNS char(10) AS FROM orders
BEGIN WHERE o_custkey=@ckey) AS total
@)[DECLARE etotal float; ) AS
DECLARE Q@level char(10);
: (SELECT (
SELECT @total = SUM(o_totalprice) CASE WHEN E_R1.total > 1000000
FROM orders WHERE o_custkey=@ckey; _—> THEN 'Platinum'
@)[1F (ctotal > 1000000) - : i'gsm'level END) AS level
SET @level = 'Platinum'; -
ELSE
SET @level = 'Regular’;
RETURN @level;
END
(-

CMU-DB 15-721 (Spring 2020)
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STEP #2 — BREAK INTO REGIONS

RETURNS char(10) AS
BEGIN

CREATE FUNCTION cust_level(@ckey int)

0 DECLARE @total float;
DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

) As Y]

IF (@total > 1000000)

SET @level = 'Platinum';
9 ELSE

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) As G

SET @level = 'Regular’;

—
B

RETURN @level;
END

\

$2CMU-DB

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level

) As FlE

15-721 (Spring 2020

)
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STEP #2 — BREAK INTO REGIONS

RETURNS char(10) AS
BEGIN

CREATE FUNCTION cust_level(@ckey int)

DECLARE @total float;
DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

) As Y]

IF (@total > 1000000)

SET @level = 'Platinum';

ELSE
SET @level = 'Regular’;

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) As G

—
™

\

RETURN @level;

END

$2CMU-DB

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level

) As FlE

15-721 (Spring 2020
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STEP #3 — MERGE EXPRESSIONS

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

) As ]

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum’
ELSE E_R1.1level END) AS level

LR _R2

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular'’
ELSE E_R2.1evel END) AS level

) AS FHE

»
»

=

CMU-Ds o

1 (Spring 202

SELECT E_R3.level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
) As EiGYl
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.1level END) AS level
) As G
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1evel END) AS level

) As [FGE;

24
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STEP #4 — INLINE EXPRESSION

Original Query

SELECT c_custkey,
cust_level(c_custkey)
FROM customer
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STEP #4 — INLINE EXPRESSION

SELECT c_custkey, (

Original Query SELECT E_R3.level FROM

(SELECT NULL AS level,
SELECT c_custkey, » (SELECT SUM(o_totalprice)

cust_level(c_custkey) FROM orders
WHERE o_custkey=@ckey) AS total
FROM customer ) AS
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total > 1000000
THEN 'Platinum’
ELSE E_R1.1level END) AS level

) As ¥

CROSS APPLY

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level

) As FlGE};

) FROM customer;

CMU-DB 15-721 (Spring 20207
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STEP #4 — INLINE EXPRESSION

O o o l SELECT ¢ custkey (
riginal Query SELECT E_R3.1level| FROM
(SELECT NULL AS level,
SELECT c_custkey, » (SELECT SUM(o_totalprice)
cust_level(c_custkey) €| FroM orders
FROM customer AVSVHERE o_custkey=@ckey) AS total
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total > 1000000
o THEN 'Platinum'

ELSE E_R1.1level END) AS level
) AS

CROSS APPLY

(SELECT (
CASE WHEN E_R1.total <= 1000000

€| THEN 'Regular’
ELSE E_R2.1level END) AS level

) As FCE!:

) FROM customer;
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STEP #5 - OPTIMIZE

SELECT c_custkey, (
SELECT E_R3.level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
) As ]
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.1level END) AS level
) As ¥
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level
) As FlGE};

) FROM customer;

CMU-DB 15-721 (Spring 20207
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STEP #5 - OPTIMIZE

SELECT c_custkey, (
SELECT E_R3.1level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
) AS
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum’
ELSE E_R1.level END) AS level
) AS
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level
) As ElGE};

) FROM customer;

E—? CMoos

»

SELECT c.c_custkey,
CASE WHEN e.total > 1000000
THEN 'Platinum'
ELSE 'Regular’
END
FROM customer c¢ LEFT OUTER JOIN
(SELECT o_custkey,
SUM(o_totalprice) AS total
FROM order GROUP BY o_custkey
) AS e
ON c.c_custkey=e.o_custkey;
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BONUS OPTIMIZATIONS

CREATE FUNCTION getVal(@x int) |e
RETURNS char(10) AS
BEGIN

DECLARE @val char(10);
IF (@x > 1000)

SET @val = 'high';
ELSE

SET @val = 'low';
RETURN @val + ' value';

END SELECT getVal(5000);

W

{
I\
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BONUS OPTIMIZATIONS

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN

DECLARE @val char(10);

IF (@x > 1000)

SET @val = 'high';

ELSE

SET @val = 'low';

RETURN @val + ' value';

END
Froid ‘

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000
THEN 'high'
ELSE 'low' END AS val)
AS
OUTER APPLY
(SELECT DT1.val + ' value'
AS returnval)

{H)

"

CMU-DB
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BONUS OPTIMIZATIONS

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS

BEGIN
, BEGIN BEGIN
DECLLRE el char(lo) DECLARE @val char(10):

W

J
Al

(f

DECLARE @val char(10); BEGIN
I§E$@2V211ge?ai e » SET @val = 'high'; » SET @val = 'high'; » RETURN 'high value';
ELSE g RETURN @val + ' value'; RETURN 'high value'; END
END END
SET @val = 'low';
RETURN @val + ' value';
END
Froid ‘ Dynamic Slicing Const Propagation & : Dead Code Elimination
Folding

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000
THEN 'high'
ELSE 'low' END AS val)
As Nl
OUTER APPLY
(SELECT DT1.val + ' value'
AS returnval)

SELECT returnVal FROM
(SELECT 'high' AS val)
AS DNl
OUTER APPLY
(SELECT DT1.val +

' value'
AS returnVal)

AS BIE

SELECT returnVal FROM
(SELECT 'high value'
AS returnVal)

AS Bl

SELECT 'high value';

CMU-DB
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$2CMU-DB

SUPPORTED OPERATIONS (2019)

T-SQL Syntax:

— DECLARE, SET (variable declaration, assignment)
— SELECT (SQL query, assignment )

— IF / ELSE / ELSE IF (arbitrary nesting)

— RETURN (multiple occurrences)

— EXISTS, NOT EXISTS, ISNULL, IN, ... (Other relational
algebra operations)

UDF invocation (nested/recursive with

configurable depth)
All SQL datatypes.

15-721 (Spring 2020)
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$2CMU-DB

APPLICABILITY / COVERAGE

# of Scalar Froid
UDFs Compatible

Workload1  [178 150 | 84%
Workloa 2 1%

Worlkload 3 95%

15-721 (Spring 2020)
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UDF IMPROVEMENT STUDY
Table: 100k Tuples

Workload 1

Workload 2

1000
S
§ 10
&
S 01
§ .
S 1000
S
-~
§~ 10
Py

0.1

Source: Karthik Ramachandra

$=CMU-DB
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UDFs-TO-CTEs

Rewrite UDFs into plain SQL commands.

Use recursive common table expressions (CTEs)
to support iterations and other control flow
concepts not supported in Froid.

DBMS Agnostic

— Can be implemented as a rewrite middleware layer on
top of any DBMS that supports CTEs.

| COMPILING PL/SQL AWAY
CIDR 2020

S=CMU-DB 15-721 (Spring 2020)
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$=CMU-DB

UDFs-TO-CTEs OVERVIEW

Step #1 — Static Single Assignment Form

Step #2 — Administrative Normal Form

Step #3 — Mutual to Direct Recursion
Step #4 — Tail Recursion to WITH RECURSIVE
Step #5 — Run Through Query Optimizer

15-721 (Spring 2020)
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STEP #1 — STATIC SINGLE ASSIGNMENT

RETURNS int AS
$$

DECLARE

i int =

p int = 1;
BEGIN

WHILE i < n LOOP

END LOOP;
RETURN p;
END;
$$

CREATE FUNCTION pow(x int, n int)

»

pow(x,n):

while:

0,
0;
D(i,y,1,);
P € Cb(pe, pz);
if i, < n then
goto loop;
else
goto exit;

o
S
r» 1+ 4

Py € Py *OX,

1, « 1, + 1;
goto while;

: return p,;

Source: Torsten Grust

$=CMU-DB
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STEP #2 — ADMINISTRATIVE NORMAL FORM

while:

pow(x,n):

1, < 0;

Po 0;

i, € ©(iy,1,);

Py € 2(Py,P,);

if i, < n then
goto loop;

else

goto exit;

» P

Py € Py * X

1, « i, + 1;
goto while;

: return p,;

Source: Torsten Grust

$=CMU-DB

»

pow(x,n) =
let i, = 0 in
let p, = 1 in
while(i,,py,X%,Nn)

while(i,,p,,x,n) =
let t, = i, >= n in
if t, then p,
else body(i,,p;,x,n)

bOdy(i17p17X7n) -
let p, = p; * x in
let i, = i, + 1 in
while(i,,p,,X,n)

15-721 (Spring 2020)
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STEP #3 — MUTUAL TO D

pow(x,n) =
let i, = 0 in
let p, = 1 in

while(i,,pg,X,Nn)

while(i,,p,,x,n) =
let t, = i, >=n in
if t, then p,
else body(i,,p;,X,n)

bOdy(j-]’p]’X’n) =
let p, = p; * x in
let i, = i, + 1 in
while(i,,p,,Xx,n)

Source: Torsten Grust

$2CMU-DB

»

15-721 (Spring 2020)

RECT RECURSION

pow(x,n) =
let i, = 0 in
let p, = 1 in
run(i,, Py, X,N)

run(i,,p;,X,n) =
let t, = i, >= n in
if t, then p,
else
let p, = p; * x in
let i, = i, + 1 in
run(i,,p,,X,n)

35
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STEP #4

- WITH RECURSIVE

pow(x,n) =
let i, = 0 in
let p, = 1 in
run(i,, Py, X,Nn)

run(i,,p;,Xx,n) =

let t, = i, >= n in
if t, then p,
else

let p, = p; * x in
let i, = i, + 1 in
run(i,,p,,Xx,n)

»

Source: Torsten Grust

$=CMU-DB

36

WITH RECURSIVE
run("call?",i1,p1,x,n,result) AS (

SELECT true,0,1,x,n,NULL

UNION ALL
SELECT iter.* FROM run, LATERAL (

SELECT false,0,0,0,0,pT
WHERE i1 >= n

UNION ALL
SELECT true,i1+1,pl1*x,x,n,0
WHERE i1 < n

) AS iter("call?",il,pl1,x,n,result)
WHERE run."call?"

)
SELECT * FROM run;

15-721 (Spring 2020)
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STEP #4

- WITH RECURSIVE

pow(x,n) =

let i, = 0 in
let p, = 1 in
run(i,, Py, X,Nn)

run(i,,p;,Xx,n) =

let t, = i, >= n in
if t, then p,
else

let p, = p; * x in
let i, = i, + 1 in
run(i,,p,,Xx,n)

»

Source: Torsten Grust

$=CMU-DB

36

WITH RECURSIVE
run("call?",i1,p1,x,n,result) AS (

—>ISELECT true,0,1,x,n,NULL

UNION ALL
SELECT iter.* FROM run, LATERAL (

SELECT false,0,0,0,0,p1
WHERE i1 >= n

UNION ALL
SELECT true,i1+1,pl1*x,x,n,0
WHERE i1 < n

) AS iter("call?",il,pl1,x,n,result)
WHERE run."call?"

)
SELECT * FROM run;
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STEP #4

- WITH RECURSIVE

pow(x,n) =

36

WITH RECURSIVE

€@ let i, =0in
let p, = 1 in
run(i,, Py, X,Nn)

run("call?",i1,p1,x,n,result) AS (

|

—>ISELECT true,0,1,x,n,NULL

run(i,,p;,Xx,n) =
let t, = i, >=n in

UNION ALL
SELECT iter.* FROM run, LATERAL (

if t, then p,

SELECT false,0,0,0,0,p1

else

—=» UNION ALL

let p, = p; * x in
let i, = i, + 1 in
run(i,,p,,X,n)

TN\ WHERE i1 >= n

SELECT true,i1+1,pl1*x,x,n,0
WHERE i1 < n

Source: Torsten Grust

$=CMU-DB

) AS iter("call?",il,pl1,x,n,result)
WHERE run."call?"

)
SELECT * FROM run;
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Run Time (ms)
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S

Source: Torsten Grust

$2CMU-DB

UDFs-TO-CTEs EVALUATION
POW UDF on Postgres v11.3

«+-PL/SQL o-CTE

]
10 20 30 40 50 60 70 80 90 100
# of Iterations (x1000)

15-721 (Spring 2020)

37


https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

$2CMU-DB

PARTING THOUGHTS

This is huge. You rarely get 500x speed up without
either switching to a new DBMS or rewriting your
application.

Another optimization approach is to compile the

UDF into machine code.
— This does not solve the optimizer's cost model problem.
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NEXT CLASS

[ast Lecture: Databases on New Hardware
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