
L
e

c
tu

re
 #

2
3

Larger-than-Memory 
Databases
@Andy_Pavlo // 15-721 // Spring 2020

ADVANCED
DATABASE 
SYSTEMS

https://15721.courses.cs.cmu.edu/spring2020/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo


15-721 (Spring 2020)

ADMINISTRIVIA

April 22: Final Exam Released

April 29: Guest Speaker (Live)

May 4: Code Review #2 Submission

May 5: Final Presentations (Live)

May 13: Final Exam Due Date

2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

OBSERVATION

DRAM is expensive, son.
→ Expensive to buy.
→ Expensive to maintain.

It would be nice if our in-memory DBMS could 
use cheaper storage without having to bring in the 
entire baggage of a disk-oriented architecture.

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

Background

Implementation Issues

Real-world Examples

4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

L ARGER-THAN-MEMORY DATABASES

Allow an in-memory DBMS to store/access data 
on disk without bringing back all the slow parts 
of a disk-oriented DBMS.
→ Minimize the changes that we make to the DBMS that 

are required to deal with disk-resident data.

Need to be aware of hardware access methods
→ In-memory Storage = Tuple-Oriented
→ Disk Storage = Block-Oriented

5

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

OL AP

OLAP queries generally access the entire table.
Thus, there is not anything about OLAP queries 
that an in-memory DBMS would handle 
differently than a disk-oriented DBMS.

6

Disk Data
A

In-Memory

Zone Map (A)
MIN=##
MAX=##
SUM=##

COUNT=##
AVG=###

STDEV=###

⋮

A

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

OLTP

OLTP workloads almost always have hot and cold
portions of the database.
→ We can assume txns will almost always access hot tuples.

The DBMS needs a mechanism to move cold data 
out to disk and then retrieve it if it is ever needed 
again.

7

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

L ARGER-THAN-MEMORY DATABASES

8

In-Memory 
Table Heap

Tuple #01

Tuple #03

Tuple #04

Tuple #00

Tuple #02

Cold-Data 
Storage

In-Memory 
Index

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

L ARGER-THAN-MEMORY DATABASES

8

In-Memory 
Table Heap

Tuple #01

Tuple #03

Tuple #04

Tuple #00

Tuple #02

Cold-Data 
Storage

In-Memory 
Index

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

L ARGER-THAN-MEMORY DATABASES

8

In-Memory 
Table Heap

Tuple #00

Tuple #02

Cold-Data 
Storage

header

Tuple #01

Tuple #03

Tuple #04

In-Memory 
Index

???

???
???

E
victed T

u
ple B

lock

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

L ARGER-THAN-MEMORY DATABASES

8

In-Memory 
Table Heap

Tuple #00

Tuple #02

Cold-Data 
Storage

header

Tuple #01

Tuple #03

Tuple #04

In-Memory 
Index

??? ???

???
???

E
victed T

u
ple B

lock

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

L ARGER-THAN-MEMORY DATABASES

8

In-Memory 
Table Heap

Tuple #00

Tuple #02

Cold-Data 
Storage

header

Tuple #01

Tuple #03

Tuple #04

In-Memory 
Index

SELECT * FROM table
WHERE id = <Tuple #01>

??? ???

???
???

E
victed T

u
ple B

lock

???

???

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

OLTP ISSUES

Run-time Operations
→ Cold Data Identification

Eviction Policies
→ Timing, Evicted Metadata

Data Retrieval Policies
→ Granularity, Retrieval Mechanism, Merging

9

LARGER-THAN-MEMORY DATA MANAGEMENT ON MODERN 
STORAGE HARDWARE FOR IN-MEMORY OLTP DATABASE SYSTEMS
DAMON 2016

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/23-largethanmemory/ma-damon2016.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/23-largethanmemory/ma-damon2016.pdf


15-721 (Spring 2020)

COLD DATA IDENTIFICATION

Choice #1: On-line
→ The DBMS monitors txn access patterns and tracks how 

often tuples/pages are used.
→ Embed the tracking meta-data directly in tuples/pages.

Choice #2: Off-line
→ Maintain a tuple access log during txn execution.
→ Process in background to compute frequencies.

10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

EVICTION TIMING

Choice #1: Threshold
→ The DBMS monitors memory usage and begins evicting 

tuples when it reaches a threshold.
→ The DBMS must manually move data.

Choice #2: On Demand
→ The DBMS/OS runs a replacement policy to decide when 

to evict data to free space for new data that is needed.

11

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

EVICTED TUPLE METADATA

Choice #1: Tuple Tombstones
→ Leave a marker that points to the on-disk tuple.
→ Update indexes to point to the tombstone tuples.

Choice #2: Bloom Filters
→ Use approximate data structure for each index. 
→ Check both index + filter for each query.

Choice #3: DBMS Managed Pages
→ DBMS tracks what data is in memory vs. on disk.

Choice #4: OS Virtual Memory
→ OS tracks what data is on in memory vs. on disk.

12

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

EVICTED TUPLE METADATA

13

In-Memory 
Table Heap

Tuple #01

Tuple #03

Tuple #04

Tuple #00

Tuple #02

Cold-Data 
Storage

In-Memory 
Index

Access Frequency
Tuple #00
Tuple #01
Tuple #02
Tuple #03
Tuple #04
Tuple #05

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

EVICTED TUPLE METADATA

13

In-Memory 
Table Heap

Tuple #01

Tuple #03

Tuple #04

Tuple #00

Tuple #02

Cold-Data 
Storage

In-Memory 
Index

Access Frequency
Tuple #00
Tuple #01
Tuple #02
Tuple #03
Tuple #04
Tuple #05

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

EVICTED TUPLE METADATA

13

In-Memory 
Table Heap

Tuple #00

Tuple #02

Cold-Data 
Storage

header

Tuple #01

Tuple #03

Tuple #04

In-Memory 
Index

Access Frequency
Tuple #00
Tuple #01
Tuple #02
Tuple #03
Tuple #04
Tuple #05

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

EVICTED TUPLE METADATA

13

In-Memory 
Table Heap

Tuple #00

Tuple #02

Cold-Data 
Storage

header

Tuple #01

Tuple #03

Tuple #04

In-Memory 
Index

<Block,Offset>

<Block,Offset>

<Block,Offset>

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

EVICTED TUPLE METADATA

13

In-Memory 
Table Heap

Tuple #00

Tuple #02

Cold-Data 
Storage

header

Tuple #01

Tuple #03

Tuple #04

In-Memory 
Index

Bloom Filter Index

Does 'x' exist?

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

EVICTED TUPLE METADATA

13

In-Memory 
Table Heap

Tuple #00

Tuple #02

Cold-Data 
Storage

header

Tuple #01

Tuple #03

Tuple #04

In-Memory 
Index

Bloom Filter Index

Does 'x' exist?

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

DATA RETRIEVAL GRANUL ARIT Y

Choice #1: All Tuples in Block
→ Merge all the tuples retrieved from a block regardless of 

whether they are needed.
→ More CPU overhead to update indexes.
→ Tuples are likely to be evicted again.

Choice #2: Only Tuples Needed
→ Only merge the tuples that were accessed by a query back 

into the in-memory table heap.
→ Requires additional bookkeeping to track holes.

14

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

MERGING THRESHOLD

Choice #1: Always Merge
→ Retrieved tuples are always put into table heap.

Choice #2: Merge Only on Update
→ Retrieved tuples are only merged into table heap if they 

are used in an UPDATE query.
→ All other tuples are put in a temporary buffer.

Choice #3: Selective Merge
→ Keep track of how often each block is retrieved.
→ If a block's access frequency is above some threshold, 

merge it back into the table heap. 

15

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

RETRIEVAL MECHANISM

Choice #1: Abort-and-Restart
→ Abort the txn that accessed the evicted tuple.
→ Retrieve the data from disk and merge it into memory 

with a separate background thread.
→ Restart the txn when the data is ready.
→ Requires MVCC to guarantee consistency for large txns

that access data that does not fit in memory.

Choice #2: Synchronous Retrieval
→ Stall the txn when it accesses an evicted tuple while the 

DBMS fetches the data and merges it back into memory.

16

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

IMPLEMENTATIONS

H-Store – Anti-Caching

Hekaton – Project Siberia

EPFL’s VoltDB Prototype

Apache Geode – Overflow Tables

LeanStore – Hierarchical Buffer Pool

Umbra – Variable-length Buffer Pool

MemSQL – Columnar Tables

17

Tuples

Pages

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

H-STORE ANTI-CACHING

On-line Identification

Administrator-defined Threshold

Tombstones

Abort-and-restart Retrieval

Block-level Granularity

Always Merge

18

ANTI-CACHING: A NEW APPROACH TO DATABASE 
MANAGEMENT SYSTEM ARCHITECTURE
VLDB 2013

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/23-largethanmemory/hstore-anticaching.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/23-largethanmemory/hstore-anticaching.pdf


15-721 (Spring 2020)

HEKATON PROJECT SIBERIA

Off-line Identification

Administrator-defined Threshold

Bloom Filters

Synchronous Retrieval

Tuple-level Granularity

Always Merge

19

TREKKING THROUGH SIBERIA: MANAGING COLD DATA IN A 
MEMORY-OPTIMIZED DATABASE
VLDB 2014

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.vldb.org/pvldb/vol7/p931-eldawy.pdf
http://www.vldb.org/pvldb/vol7/p931-eldawy.pdf


15-721 (Spring 2020)

EPFL VOLTDB

Off-line Identification

OS Virtual Memory

Synchronous Retrieval

Page-level Granularity

Always Merge

20

ENABLING EFFICIENT OS PAGING FOR MAIN-MEMORY 
OLTP DATABASES
DAMON 2013

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/23-largethanmemory/a7-stoica.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/23-largethanmemory/a7-stoica.pdf


15-721 (Spring 2020)

In-Memory 
Table Heap

Cold-Data 
Storage

EPFL VOLTDB

21

Tuple #00

Tuple #02

Hot Tuples

Cold Tuples

Tuple #01

mlock

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

In-Memory 
Table Heap

Cold-Data 
Storage

EPFL VOLTDB

21

Tuple #00

Tuple #02

Hot Tuples

Cold Tuples

Tuple #01

mlock

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

In-Memory 
Table Heap

Cold-Data 
Storage

EPFL VOLTDB

21

Tuple #00

Tuple #02

Hot Tuples

Cold Tuples Tuple #01

Tuple #03

mlock

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

In-Memory 
Table Heap

Cold-Data 
Storage

EPFL VOLTDB

21

Tuple #00

Tuple #02

Hot Tuples

Cold Tuples Tuple #01

Tuple #03

mlock

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

In-Memory 
Table Heap

Cold-Data 
Storage

EPFL VOLTDB

21

Tuple #00

Tuple #02

Hot Tuples

Cold Tuples

Tuple #03

Tuple #01

mlock

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

In-Memory 
Table Heap

Cold-Data 
Storage

EPFL VOLTDB

21

Tuple #00

Tuple #02

Hot Tuples

Cold Tuples

Tuple #03

mlock

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

In-Memory 
Table Heap

Cold-Data 
Storage

EPFL VOLTDB

21

Tuple #00

Tuple #02

Hot Tuples

Cold Tuples

Tuple #03

mlock

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

APACHE GEODE OVERFLOW TABLES

On-line Identification

Administrator-defined Threshold

Tombstones (?)

Synchronous Retrieval

Tuple-level Granularity

Merge Only on Update (?)

22

Source: Apache Geode

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://geode.docs.pivotal.io/docs/managing/disk_storage/how_disk_stores_work.html


15-721 (Spring 2020)

OBSERVATION

The approaches that we have discussed so far are 
based on tuples.
→ The DBMS must track meta-data about individual tuples.
→ Not reducing storage overhead of indexes.

Need a unified way to evict cold data from both 
tables and indexes with low overhead…

23

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

LEANSTORE

Prototype in-memory storage manager from TUM 
that supports larger-than-memory databases.
→ Handles both tuples + indexes
→ Not part of the HyPer project.

Hierarchical + Randomized Block Eviction
→ Use pointer swizzling to determine whether a block is 

evicted or not.

24

LEANSTORE: IN-MEMORY DATA MANAGEMENT 
BEYOND MAIN MEMORY
ICDE 2018

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/11-largethanmemory/leis-icde2018.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/11-largethanmemory/leis-icde2018.pdf


15-721 (Spring 2020)

B1

POINTER SWIZZLING

Switch the contents of pointers based on whether 
the target object resides in memory or on disk.
→ Use first bit in address to tell what kind of address it is.
→ Only works if there is only one pointer to the object.

25

(1)<PageId, Offset>

B2

64-bits

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

B1

POINTER SWIZZLING

Switch the contents of pointers based on whether 
the target object resides in memory or on disk.
→ Use first bit in address to tell what kind of address it is.
→ Only works if there is only one pointer to the object.

25

(0)<MemoryAddr>

B2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

REPL ACEMENT STRATEGY

Randomly select blocks for eviction.
→ Don't have to maintain meta-data every time a txn

accesses a hot block.
→ Only track accesses for cold data, which should be rare if 

it is cold.

Unswizzle their pointer but leave in memory.
→ Add to a FIFO queue of blocks staged for eviction.
→ If page is accessed again, remove from queue.
→ Otherwise, evict pages when reaching front of queue.

26

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

BLOCK HIERARCHY

Blocks are organized in a tree hierarchy.
→ Each page has only one parent, which means that there is 

only a single pointer.

The DBMS can only evict a block if its children are 
also evicted.
→ This avoids the problem of evicting blocks that contain 

swizzled pointers.
→ If a block is selected but it has in-memory children, then 

it automatically switches to select one of its children.

27

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

BLOCK HIERARCHY

28

Source: Viktor Leis

B3

B2

B0

Cooling StageHash Table

Eviction Queue

¤ ¤ ¤ ¤

Hot Stage

Cold Stage

B1

Unswizzled
Pointer

Swizzled
Pointer

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dbis1.github.io/team/leis.html


15-721 (Spring 2020)

BLOCK HIERARCHY

28

Source: Viktor Leis

B3

B2

B0

Cooling StageHash Table

Eviction Queue

¤ ¤ ¤ ¤

Hot Stage

Cold Stage

B1

Unswizzled
Pointer

Swizzled
Pointer

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dbis1.github.io/team/leis.html


15-721 (Spring 2020)

BLOCK HIERARCHY

28

Source: Viktor Leis

B3

B2

B0

Cooling StageHash Table

Eviction Queue

¤ ¤ ¤ ¤

Hot Stage

Cold Stage

B1

Unswizzled
Pointer

Swizzled
Pointer

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dbis1.github.io/team/leis.html


15-721 (Spring 2020)

BLOCK HIERARCHY

28

Source: Viktor Leis

B3

B2

B0

Cooling StageHash Table

Eviction Queue

¤ ¤ ¤ ¤

Hot Stage

Cold Stage

B1

Unswizzled
Pointer

Swizzled
Pointer

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dbis1.github.io/team/leis.html


15-721 (Spring 2020)

UMBRA

New DBMS from German HyPer team at TUM.
→ Low overhead buffer pool with variable-sized pages.
→ Employs the same hierarchical organization and 

randomized block eviction algorithm from LeanStore.
→ Uses virtual memory to allocate storage but the DBMS 

manages block eviction on its own.

DBMS stores relations as index-organized tables, 
so there is no separate management needed to 
handle index blocks.

29

UMBRA: A DISK-BASED SYSTEM WITH 
IN-MEMORY PERFORMANCE 
CIDR 2020

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf


15-721 (Spring 2020)

VARIABLE-SIZED BUFFER POOL

30

Buffer Frames Blocks

64 KB 64 KB 64 KB 64 KB 64 KB 64 KB 64 KB 64 KB

128 KB 128 KB 128 KB 128 KB

256 KB 256 KB

512 KB

R
eserved V

irtu
al M

em
ory

Inactive

Active

Size Class 0

Size Class 1

Size Class 2

Size Class 3

(0)<MemoryAddr>
Swizzled

Unswizzled
(1)<BlockId><SizeClass>

Source: Thomas Neumann

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.in.tum.de/teaching/ws1819/queryopt/?lang=en


15-721 (Spring 2020)

MEMSQL COLUMNAR TABLES

Administrator manually declares a table as a disk-
resident columnar table with zone maps.
→ Pre-2017: Used mmap but this was a bad idea.
→ Pre-2019: DBMS splits columns into 1m tuple segments.
→ Current: Unified single logical table format that combines 

delta store with column store.

No Evicted Metadata

Synchronous Retrieval

Always Merge

31

Source: MemSQL

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.memsql.com/blog/linux-off-cpu-investigation/
https://www.memsql.com/blog/memsql-singlestore-then-there-was-one/
http://docs.memsql.com/docs/columnstore


15-721 (Spring 2020)

PARTING THOUGHTS

Today was about working around the block-
oriented access and slowness of secondary storage.

Fast and cheap byte-addressable NVM will make 
this lecture unnecessary.

32

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

NEXT CL ASS

Server-side Application Logic

33

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

