Lecture #H23

Carnegie Mell%ﬂmverﬂ

ADVANCE

@

DATABASE
Yy

La’rger—t%
| Databases
@Andy_Pavlo // 15-721 // Spring 20202

mz
H
ww

https://15721.courses.cs.cmu.edu/spring2020/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

$2CMU-DB

ADMINISTRIVIA

April 22: Final Exam Released
April 29: Guest Speaker (Live)
May 4: Code Review #2 Submission

May 5: Final Presentations (Live)

May 13: Final Exam Due Date

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

OBSERVATION

DRAM is expensive, son.
— Expensive to buy.
— Expensive to maintain.

[t would be nice if our in-memory DBMS could
use cheaper storage without having to bring in the
entire baggage of a disk-oriented architecture.

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TODAY'S AGENDA

Background
[Implementation Issues

Real-world Examples

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LARGER-THAN-MEMORY DATABASES

Allow an in-memory DBMS to store/access data
on disk without bringing back all the slow parts

of a disk-oriented DBMS.

— Minimize the changes that we make to the DBMS that
are required to deal with disk-resident data.

Need to be aware of hardware access methods
— In-memory Storage = Tuple-Oriented
— Disk Storage = Block-Oriented

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

OLAP

OLAP queries generally access the entire table.
Thus, there is not anything about OLAP queries
that an in-memory DBMS would handle
differently than a disk-oriented DBMS.

In-Memory Disk Data
Zone Map (A)
MIN=## COUNT=##

MAX=H## AVG=H#it#

SUM=## STDEV=###

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

OLTP

OLTP workloads almost always have hot and cold

portions of the database.
— We can assume txns will almost always access hot tuples.

The DBMS needs a mechanism to move cold data
out to disk and then retrieve it if it is ever needed
again.

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LARGER-THAN-MEMORY DATABASES

In-Memory In-Memory Cold-Data
Index Table Heap Storage

| Tuple #00
Tuple #01
Tuple #02
Tuple #03
Tuple #04

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LARGER-THAN-MEMORY DATABASES

In-Memory In-Memory Cold-Data
Index Table Heap Storage

| Tuple #00
Tuple #01
Tuple #02
Tuple #03
Tuple #04

I
I

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LARGER-THAN-MEMORY DATABASES

In-Memory In-Memory
Index Table Heap

| Tuple #00

rdrdre

Tuple #02

r&rdré

rdrdré

S=CMU-DB 15-721 (Spring 2020)

»

Cold-Data
Storage

Tuple #01
Tuple #03
Tuple #04

Yol a1dn | padiag

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LARGER-THAN-MEMORY DATABASES

In-Memory In-Memory Cold-Data
Index Table Heap Storage .
S
02 Tuple 40
Y drd Tuple #01 ar
- r&r & d =3
s SN s —=— Tuple #03 =
Tuple #02 ;
S
&

Tuple #04
\‘ 22?2 J
i drdr 4

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LARGER-THAN-MEMORY DATABASES

In-Memory In-Memory
Index Table Heap
! | . Tuple #00
rardrd
- rardrd
I | ® O O
Tuple #02
222
SELECT * FROM table 22?2
WHERE id = <Tuple #01>
7?7 T

S=CMU-DB 15-721 (Spring 2020)

Cold-Data
Storage

Tuple #01

Tupfe #03

Tuple #04

Yol a1dn | padiag

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

OLTP ISSUES

Run-time Operations
— Cold Data Identification

Eviction Policies
— Timing, Evicted Metadata

Data Retrieval Policies
— Granularity, Retrieval Mechanism, Merging

== | LARGER-THAN-MEMORY DATA MANAGEMENT ON MODERN
%}%gﬁ%%ﬂ;ARDWARE FOR IN-MEMORY OLTP DATABASE SYSTEMS

{H)

"

CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/23-largethanmemory/ma-damon2016.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/23-largethanmemory/ma-damon2016.pdf

$=CMU-DB

COLD DATA IDENTIFICATION

Choice #1: On-line

— The DBMS monitors txn access patterns and tracks how
often tuples/pages are used.
— Embed the tracking meta-data directly in tuples/pages.

Choice #2: Off-line

— Maintain a tuple access log during txn execution.
— Process in background to compute frequencies.

15-721 (Spring 2020)

10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$=CMU-DB

EVICTION TIMING

Choice #1: Threshold

— The DBMS monitors memory usage and begins evicting
tuples when it reaches a threshold.
— The DBMS must manually move data.

Choice #2: On Demand

— The DBMS/OS runs a replacement policy to decide when
to evict data to free space for new data that is needed.

15-721 (Spring 2020)

11

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

EVICTED TUPLE METADATA

Choice #1: Tuple Tombstones

— Leave a marker that points to the on-disk tuple.
— Update indexes to point to the tombstone tuples.

Choice #2: Bloom Filters

— Use approximate data structure for each index.
— Check both index + filter for each query.

Choice #3: DBMS Managed Pages

— DBMS tracks what data is in memory vs. on disk.

Choice #4: OS Virtual Memory

— OS tracks what data is on in memory vs. on disk.

15-721 (Spring 2020)

12

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

EVICTED TUPLE METADATA

In-Memory In-Memory Cold-Data
Index Table Heap Storage
! | . Tuple #00
Tuple #01
+_I_+ +_I_+ a
Tuple #02
Tuple #03
Access Frequency
Tuple #00 | I Tuple #04
Tuple#01 | 1R
Tuple #02 | N
Tuple#03 | R
Tuple#04 | 1R
Tuple #05 | IEEG—_
$=CMU-DB

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

EVICTED TUPLE METADATA

In-Memory In-Memory Cold-Data
Index Table Heap Storage
! | . Tuple #00
Tuple #01
+_I_+ +_I_+ a
Tuple #02
Tuple #03
Access Frequency
Tuple #00 | I Tuple #04
[_Tuple #01 | Ml |
Tuple #02 | I
Tuple#03 | R
Tuple #04 | 1R
Tuple #05 | IEEEG_
$=CMU-DB

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

EVICTED TUPLE METADATA

In-Memory In-Memory
Index Table Heap
Tuple #
: | . uple #00
Tuple #02
Access F requen&
Tuple #00 | IEEEG—_
[_Tuple #01 | Ml |
Tuple #02 | I
Tuple#03 | R
Tuple #04 | 1R
Tuple #05 | I

$2CMU-DB

»

Cold-Data
Storage

Tuple #01
Tuple #03
Tuple #04

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

EVICTED TUPLE METADATA

In-Memory In-Memory Cold-Data
Index Table Heap Storage
. Tuple 00
! ! Tuple #01
e Tuple #03
Tuple #02 Tuple #04

ﬁ <Block,Of fset>
ﬁ_ <Block,Of fset>

ﬁ_ <Block,Of fset> I-

$2CMU-DB

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

Does 'x' exist?

» In-Memory
Index

I
v v

T

In-Memory
Table Heap

EVICTED TUPLE METADATA

Cold-Data
Storage

Tuple #00

Bloom Filter

Y

$2CMU-DB

Tuple #02

Tuple #01
Tuple #03
Tuple #04

Index

13

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

EVICTED TUPLE METADATA

Does 'x' exist?

In-Memory In-Memory Cold-Data
Index Table Heap Storage
. Tuple 400
! ! Tuple #01
e Tuple #03
Tuple #02 Tuple #04
» Bloom Filter —» Index H\

Y— | &y

$2CMU-DB

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

DATA RETRIEVAL GRANULARITY

Choice #1: All Tuples in Block

— Merge all the tuples retrieved from a block regardless of
whether they are needed.

— More CPU overhead to update indexes.

— Tuples are likely to be evicted again.

Choice #2: Only Tuples Needed

— Only merge the tuples that were accessed by a query back
into the in-memory table heap.
— Requires additional bookkeeping to track holes.

15-721 (Spring 2020)

14

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

MERGING THRESHOLD

Choice #1: Always Merge

— Retrieved tuples are always put into table heap.

Choice #2: Merge Only on Update

— Retrieved tuples are only merged into table heap if they
are used in an UPDATE query.

— All other tuples are put in a temporary buffer.

Choice #3: Selective Merge

— Keep track of how often each block is retrieved.

— If a block's access frequency is above some threshold,
merge it back into the table heap.

15-721 (Spring 2020)

15

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

RETRIEVAL MECHANISM

Choice #1: Abort-and-Restart

— Abort the txn that accessed the evicted tuple.

— Retrieve the data from disk and merge it into memory
with a separate background thread.

— Restart the txn when the data is ready.

— Requires MV CC to guarantee consistency for large txns
that access data that does not fit in memory.

Choice #2: Synchronous Retrieval
— Stall the txn when it accesses an evicted tuple while the

DBMS fetches the data and merges it back into memory.

15-721 (Spring 2020)

16

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

Tuples

Pages

$2CMU-DB

IMPLEMENTATIONS

H-Store — Anti-Caching

Hekaton — Project Siberia

EPFL’s VoltDB Prototype

Apache Geode - Overflow Tables
LeanStore — Hierarchical Buffer Pool
Umbra - Variable-length Buffer Pool
MemSQL - Columnar Tables

15-721 (Spring 2020)

17

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

H-STORE — ANTI-CACHING

On-line Identification
Administrator-defined Threshold
Tombstones

Abort-and-restart Retrieval
Block-level Granularity

Always Merge

== |ANTI-CACHING: A NEW APPROACH TO DATABASE
\I\//IL%NBAZ%E,WENT SYSTEM ARCHITECTURE

S=CMU-DB 15-721 (Spring 2020)

18

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/23-largethanmemory/hstore-anticaching.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/23-largethanmemory/hstore-anticaching.pdf

HEKATON — PROJECT SIBERIA

Off-line Identification
Administrator-defined Threshold
Bloom Filters

Synchronous Retrieval
Tuple-level Granularity

Always Merge

—— | TREKKING THROUGH SIBERIA: MANAGING COLD DATAIN A
\I\//ILIIEDI\Q 2§1Y4_OPTIM IZED DATABASE

S=CMU-DB 15-721 (Spring 2020)

19

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.vldb.org/pvldb/vol7/p931-eldawy.pdf
http://www.vldb.org/pvldb/vol7/p931-eldawy.pdf

EPFL VOLTDB

Off-line Identification
OS Virtual Memory
Synchronous Retrieval

Page-level Granularity
Always Merge

— |ENABLING EFFICIENT OS PAGING FOR MAIN-MEMORY

U

\

OLTP DATABASES
DAMON 2013

CMU-DB 15-721 (Spring 2020)

{
I\

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/23-largethanmemory/a7-stoica.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/23-largethanmemory/a7-stoica.pdf

EPFL VOLTDB

In-Memory Cold-Data
Table Heap Storage
mlock Tuple #00
X Hot Tuples Tuple #01
Tuple #02

Cold Tuples

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

EPFL VOLTDB

In-Memory Cold-Data
Table Heap Storage
mlock Tuple #00
X Hot Tuples Tuple #01
Tuple #02

Cold Tuples

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

mlock

$2CMU-DB

X Hot Tuples

Cold Tuples

21

EPFL VOLTDB

In-Memory Cold-Data
Table Heap Storage

Tuple #00

Tuple #03

Tuple #02

Tuple #01

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

EPFL VOLTDB

In-Memory Cold-Data
Table Heap Storage
mlock Tuple #00
X Hot Tuples Tuple #03
Tuple #02
Cold Tuples » Tuple #01

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

EPFL VOLTDB

In-Memory Cold-Data
Table Heap Storage

mlock Tuple #00

X Hot Tuples Tuple #03
Tuple #02

Cold Tuples .IIIIIIIIIIII.’ITiZ[?Il'f;’IIééﬁQIIIIIIIIIII. »

...

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

mlock
X Hot Tuples

Cold Tuples

EPFL VOLTDB

In-Memory
Table Heap

Tuple #00
Tuple #03
Tuple #02

s Toaralion b i
— ——— E

...

15-721 (Spring 2020)

Cold-Data
Storage

21

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

mlock
X Hot Tuples

Cold Tuples

EPFL VOLTDB

In-Memory
Table Heap

Tuple #00

Tuple #03

Tuple #02

15-721 (Spring 2020)

Cold-Data
Storage
i Tonla.si........... j
—————————

...

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

APACHE GEODE - OVERFLOW TABLES

On-line Identification
Administrator-defined Threshold
Tombstones (?)

Synchronous Retrieval
Tuple-level Granularity

Merge Only on Update (?)

Source: Apache Geode

S=CMU-DB 15-721 (Spring 2020)

22

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://geode.docs.pivotal.io/docs/managing/disk_storage/how_disk_stores_work.html

$2CMU-DB

OBSERVATION

The approaches that we have discussed so far are
based on tuples.

— The DBMS must track meta-data about individual tuples.

— Not reducing storage overhead of indexes.

Need a unified way to evict cold data from both
tables and indexes with low overhead...

15-721 (Spring 2020)

23

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LEANSTORE

Prototype in-memory storage manager from TUM

that supports larger-than-memory databases.
— Handles both tuples + indexes
— Not part of the HyPer project.

Hierarchical + Randomized Block Eviction
— Use pointer swizzling to determine whether a block is
evicted or not.

~« |LEANSTORE: IN-MEMORY DATA MANAGEMENT
BEYOND MAIN MEMORY
ICDE 2018

{H)

l’

CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/11-largethanmemory/leis-icde2018.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/11-largethanmemory/leis-icde2018.pdf

$=CMU-DB

POINTER SWIZZLING

Switch the contents of pointers based on whether

the target object resides in memory or on disk.
— Use first bit in address to tell what kind of address it is.
— Only works if there is only one pointer to the object.

g

(1)<Pageld, Offset>

64-bits

15-721 (Spring 2020)

25

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$=CMU-DB

POINTER SWIZZLING

Switch the contents of pointers based on whether

the target object resides in memory or on disk.
— Use first bit in address to tell what kind of address it is.
— Only works if there is only one pointer to the object.

g o

(0)<MemoryAddr>

15-721 (Spring 2020)

25

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

26

REPLACEMENT STRATEGY

Randomly select blocks for eviction.

— Don't have to maintain meta-data every time a txn
accesses a hot block.

— Only track accesses for cold data, which should be rare if
it is cold.

Unswizzle their pointer but leave in memory.
— Add to a FIFO queue of blocks staged for eviction.

— If page is accessed again, remove from queue.

— Otherwise, evict pages when reaching front of queue.

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

27

BLOCK HIERARCHY

Blocks are organized in a tree hierarchy.
— Each page has only one parent, which means that there is
only a single pointer.

The DBMS can only evict a block if its children are

also evicted.

— This avoids the problem of evicting blocks that contain
swizzled pointers.

— If a block is selected but it has in-memory children, then
it automatically switches to select one of its children.

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

28

BLOCK HIERARCHY

Unswizzled
Pointer ~~""" B0
Swizzled e i A kg
Pointer) » Bi E B3
1
.. [o
Hash Table E Cooling Stage
Eviction Queue :
gla|d| X ! %
I
.. =
) 4 Cold Stage

Source: Viktor Leis

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dbis1.github.io/team/leis.html

28

BLOCK HIERARCHY

Unswizzled
Pointer ~~""" B0
Swizzled] A kg
Pointer) » E B3
1
.. [o
Hash Table E Cooling Stage
Eviction Queue :
gla|d| X Bi !
I
.. =
) 4 Cold Stage

Source: Viktor Leis

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dbis1.github.io/team/leis.html

28

BLOCK HIERARCHY

Unswizzled
Pointer ~~""" B0
Swizzled] A kg
Pointer) » E B3
1
.. [o
Hash Table E Cooling Stage
Eviction Queue :
gla|d| X Bi !
I
.. =
) 4 Cold Stage

Source: Viktor Leis

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dbis1.github.io/team/leis.html

28

BLOCK HIERARCHY

Unswizzled
Pointer =~~~ B&
Swizzled A — adfRiee
Pointer ' » Al B3

Ve l

........................ N S ——

Hash Table . A] Cooling Stage
Eviction Queue :

H " |Hd|X Bi ! %

I

.. =

) 4 Cold Stage

Source: Viktor Leis

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dbis1.github.io/team/leis.html

UMBRA

New DBMS from German HyPer team at TUM.

— Low overhead buffer pool with variable-sized pages.

— Employs the same hierarchical organization and
randomized block eviction algorithm from LeanStore.

— Uses virtual memory to allocate storage but the DBMS
manages block eviction on its own.

DBMS stores relations as index-organized tables,
so there is no separate management needed to

handle index blocks.

— |UMBRA: A DISK-BASED SYSTEM WITH

{H)

l’

IN-MEMORY PERFORMANCE
CIDR 2020

CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf

VARIABLE-SIZED BUFFER POOL

Buffer Frames Blocks
: 5 5 A : 5 A * f g \
SizeClassO.-, .- . 164 KB 64 KB: 64 KB:|64KB|:64KB: 64 KB:|64KB|:64KB:
Inactive
Size Class 1 . ® -. 128 KB 128 KB 128 KB 128 KB
Active

Swizzled Size Class 2 > 256 KB 256 KB
(0)<MemoryAddr> 4+
Unswizzled

(1)<Blockld><SizeClass> SizeClass3 | @

Source: Thomas Neumann

$2CMU-DB

512 KB

15-721 (Spring 2020)

—_——

CAOWIAT [PNIALA PINAISTY

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.in.tum.de/teaching/ws1819/queryopt/?lang=en

Source: MemSQL
S=CMU-DB

31

MEMSQL — COLUMNAR TABLES

Administrator manually declares a table as a disk-

resident columnar table with zone maps.

— Pre-2017: Used mmap but this was a bad idea.

— Pre-2019: DBMS splits columns into 1m tuple segments.

— Current: Unified single logical table format that combines
delta store with column store.

No Evicted Metadata
Synchronous Retrieval
Always Merge

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.memsql.com/blog/linux-off-cpu-investigation/
https://www.memsql.com/blog/memsql-singlestore-then-there-was-one/
http://docs.memsql.com/docs/columnstore

$=CMU-DB

PARTING THOUGHTS

Today was about working around the block-
oriented access and slowness of secondary storage.

Fast and cheap byte-addressable NVM will make
this lecture unnecessary.

15-721 (Spring 2020)

32

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$=CMU-DB

NEXT CLASS

Server-side Application Logic

15-721 (Spring 2020)

33

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

