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ADMINISTRIVIA

April 22: Final Exam Released

April 29: Guest Speaker (Live)

May 4: Code Review #2 Submission

May 5: Final Presentations (Live)

May 13: Final Exam Due Date
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OBSERVATION

DRAM is expensive, son.
→ Expensive to buy.
→ Expensive to maintain.

It would be nice if our in-memory DBMS could 
use cheaper storage without having to bring in the 
entire baggage of a disk-oriented architecture.
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Background

Implementation Issues

Real-world Examples
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L ARGER-THAN-MEMORY DATABASES

Allow an in-memory DBMS to store/access data 
on disk without bringing back all the slow parts 
of a disk-oriented DBMS.
→ Minimize the changes that we make to the DBMS that 

are required to deal with disk-resident data.

Need to be aware of hardware access methods
→ In-memory Storage = Tuple-Oriented
→ Disk Storage = Block-Oriented
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OL AP

OLAP queries generally access the entire table.
Thus, there is not anything about OLAP queries 
that an in-memory DBMS would handle 
differently than a disk-oriented DBMS.
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Disk Data
A

In-Memory

Zone Map (A)
MIN=##
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SUM=##

COUNT=##
AVG=###

STDEV=###

⋮
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OLTP

OLTP workloads almost always have hot and cold
portions of the database.
→ We can assume txns will almost always access hot tuples.

The DBMS needs a mechanism to move cold data 
out to disk and then retrieve it if it is ever needed 
again.
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L ARGER-THAN-MEMORY DATABASES
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L ARGER-THAN-MEMORY DATABASES
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L ARGER-THAN-MEMORY DATABASES
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L ARGER-THAN-MEMORY DATABASES
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OLTP ISSUES

Run-time Operations
→ Cold Data Identification

Eviction Policies
→ Timing, Evicted Metadata

Data Retrieval Policies
→ Granularity, Retrieval Mechanism, Merging
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LARGER-THAN-MEMORY DATA MANAGEMENT ON MODERN 
STORAGE HARDWARE FOR IN-MEMORY OLTP DATABASE SYSTEMS
DAMON 2016
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COLD DATA IDENTIFICATION

Choice #1: On-line
→ The DBMS monitors txn access patterns and tracks how 

often tuples/pages are used.
→ Embed the tracking meta-data directly in tuples/pages.

Choice #2: Off-line
→ Maintain a tuple access log during txn execution.
→ Process in background to compute frequencies.
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EVICTION TIMING

Choice #1: Threshold
→ The DBMS monitors memory usage and begins evicting 

tuples when it reaches a threshold.
→ The DBMS must manually move data.

Choice #2: On Demand
→ The DBMS/OS runs a replacement policy to decide when 

to evict data to free space for new data that is needed.
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EVICTED TUPLE METADATA

Choice #1: Tuple Tombstones
→ Leave a marker that points to the on-disk tuple.
→ Update indexes to point to the tombstone tuples.

Choice #2: Bloom Filters
→ Use approximate data structure for each index. 
→ Check both index + filter for each query.

Choice #3: DBMS Managed Pages
→ DBMS tracks what data is in memory vs. on disk.

Choice #4: OS Virtual Memory
→ OS tracks what data is on in memory vs. on disk.
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EVICTED TUPLE METADATA
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DATA RETRIEVAL GRANUL ARIT Y

Choice #1: All Tuples in Block
→ Merge all the tuples retrieved from a block regardless of 

whether they are needed.
→ More CPU overhead to update indexes.
→ Tuples are likely to be evicted again.

Choice #2: Only Tuples Needed
→ Only merge the tuples that were accessed by a query back 

into the in-memory table heap.
→ Requires additional bookkeeping to track holes.
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MERGING THRESHOLD

Choice #1: Always Merge
→ Retrieved tuples are always put into table heap.

Choice #2: Merge Only on Update
→ Retrieved tuples are only merged into table heap if they 

are used in an UPDATE query.
→ All other tuples are put in a temporary buffer.

Choice #3: Selective Merge
→ Keep track of how often each block is retrieved.
→ If a block's access frequency is above some threshold, 

merge it back into the table heap. 

15

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

RETRIEVAL MECHANISM

Choice #1: Abort-and-Restart
→ Abort the txn that accessed the evicted tuple.
→ Retrieve the data from disk and merge it into memory 

with a separate background thread.
→ Restart the txn when the data is ready.
→ Requires MVCC to guarantee consistency for large txns

that access data that does not fit in memory.

Choice #2: Synchronous Retrieval
→ Stall the txn when it accesses an evicted tuple while the 

DBMS fetches the data and merges it back into memory.
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IMPLEMENTATIONS

H-Store – Anti-Caching

Hekaton – Project Siberia

EPFL’s VoltDB Prototype

Apache Geode – Overflow Tables

LeanStore – Hierarchical Buffer Pool

Umbra – Variable-length Buffer Pool

MemSQL – Columnar Tables

17

Tuples

Pages

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

H-STORE ANTI-CACHING

On-line Identification

Administrator-defined Threshold

Tombstones

Abort-and-restart Retrieval

Block-level Granularity

Always Merge
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ANTI-CACHING: A NEW APPROACH TO DATABASE 
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HEKATON PROJECT SIBERIA
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TREKKING THROUGH SIBERIA: MANAGING COLD DATA IN A 
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EPFL VOLTDB

Off-line Identification

OS Virtual Memory
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Page-level Granularity

Always Merge
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ENABLING EFFICIENT OS PAGING FOR MAIN-MEMORY 
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DAMON 2013
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APACHE GEODE OVERFLOW TABLES

On-line Identification

Administrator-defined Threshold

Tombstones (?)

Synchronous Retrieval

Tuple-level Granularity

Merge Only on Update (?)

22

Source: Apache Geode

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://geode.docs.pivotal.io/docs/managing/disk_storage/how_disk_stores_work.html


15-721 (Spring 2020)

OBSERVATION

The approaches that we have discussed so far are 
based on tuples.
→ The DBMS must track meta-data about individual tuples.
→ Not reducing storage overhead of indexes.

Need a unified way to evict cold data from both 
tables and indexes with low overhead…
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LEANSTORE

Prototype in-memory storage manager from TUM 
that supports larger-than-memory databases.
→ Handles both tuples + indexes
→ Not part of the HyPer project.

Hierarchical + Randomized Block Eviction
→ Use pointer swizzling to determine whether a block is 

evicted or not.
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LEANSTORE: IN-MEMORY DATA MANAGEMENT 
BEYOND MAIN MEMORY
ICDE 2018
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B1

POINTER SWIZZLING

Switch the contents of pointers based on whether 
the target object resides in memory or on disk.
→ Use first bit in address to tell what kind of address it is.
→ Only works if there is only one pointer to the object.

25
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REPL ACEMENT STRATEGY

Randomly select blocks for eviction.
→ Don't have to maintain meta-data every time a txn

accesses a hot block.
→ Only track accesses for cold data, which should be rare if 

it is cold.

Unswizzle their pointer but leave in memory.
→ Add to a FIFO queue of blocks staged for eviction.
→ If page is accessed again, remove from queue.
→ Otherwise, evict pages when reaching front of queue.
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BLOCK HIERARCHY

Blocks are organized in a tree hierarchy.
→ Each page has only one parent, which means that there is 

only a single pointer.

The DBMS can only evict a block if its children are 
also evicted.
→ This avoids the problem of evicting blocks that contain 

swizzled pointers.
→ If a block is selected but it has in-memory children, then 

it automatically switches to select one of its children.
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BLOCK HIERARCHY
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UMBRA

New DBMS from German HyPer team at TUM.
→ Low overhead buffer pool with variable-sized pages.
→ Employs the same hierarchical organization and 

randomized block eviction algorithm from LeanStore.
→ Uses virtual memory to allocate storage but the DBMS 

manages block eviction on its own.

DBMS stores relations as index-organized tables, 
so there is no separate management needed to 
handle index blocks.
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UMBRA: A DISK-BASED SYSTEM WITH 
IN-MEMORY PERFORMANCE 
CIDR 2020
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VARIABLE-SIZED BUFFER POOL
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MEMSQL COLUMNAR TABLES

Administrator manually declares a table as a disk-
resident columnar table with zone maps.
→ Pre-2017: Used mmap but this was a bad idea.
→ Pre-2019: DBMS splits columns into 1m tuple segments.
→ Current: Unified single logical table format that combines 

delta store with column store.

No Evicted Metadata

Synchronous Retrieval

Always Merge
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Source: MemSQL
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PARTING THOUGHTS

Today was about working around the block-
oriented access and slowness of secondary storage.

Fast and cheap byte-addressable NVM will make 
this lecture unnecessary.
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NEXT CL ASS

Server-side Application Logic
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