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PROJECT #2

This Week
→ Status Meetings

Wednesday April 8th

→ Code Review Submission
→ Update Presentation
→ Design Document
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PARALLEL JOIN ALGORITHMS

Perform a join between two relations on multiple 
threads simultaneously to speed up operation. 

Two main approaches:
→ Hash Join
→ Sort-Merge Join
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Background

Sorting Algorithms

Parallel Sort-Merge Join

Evaluation
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SORT-MERGE JOIN (R⨝S)

Phase #1: Sort
→ Sort the tuples of R and S based on the join key.

Phase #2: Merge
→ Scan the sorted relations and compare tuples.
→ The outer relation R only needs to be scanned once.
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SORT-MERGE JOIN (R⨝S)
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SORT-MERGE JOIN (R⨝S)
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SORT-MERGE JOIN (R⨝S)
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SORT-MERGE JOIN (R⨝S)
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PARALLEL SORT-MERGE JOINS

Sorting is the most expensive part.

Use hardware correctly to speed up the join 
algorithm as much as possible.
→ Utilize as many CPU cores as possible.
→ Be mindful of NUMA boundaries.
→ Use SIMD instructions where applicable.
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MULTI-CORE, MAIN-MEMORY JOINS: 
SORT VS. HASH REVISITED
VLDB 2013
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PARALLEL SORT-MERGE JOIN (R⨝S)

Phase #1: Partitioning (optional)
→ Partition R and assign them to workers / cores.

Phase #2: Sort
→ Sort the tuples of R and S based on the join key.

Phase #3: Merge
→ Scan the sorted relations and compare tuples.
→ The outer relation R only needs to be scanned once.
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PARTITIONING PHASE

Approach #1: Implicit Partitioning
→ The data was partitioned on the join key when it was 

loaded into the database.
→ No extra pass over the data is needed.

Approach #2: Explicit Partitioning
→ Divide only the outer relation and redistribute among the 

different CPU cores.
→ Can use the same radix partitioning approach we talked 

about last time.
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SORT PHASE

Create runs of sorted chunks of tuples for both 
input relations.

It used to be that Quicksort was good enough and 
it usually still is.

We can explore other methods that try to take 
advantage of NUMA and parallel architectures …
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CACHE-CONSCIOUS SORTING

Level #1: In-Register Sorting
→ Sort runs that fit into CPU registers.

Level #2: In-Cache Sorting
→ Merge Level #1 output into runs that fit into CPU caches.
→ Repeat until sorted runs are ½ cache size.

Level #3: Out-of-Cache Sorting
→ Used when the runs of Level #2 exceed the size of caches.
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SORT VS. HASH REVISITED: FAST JOIN IMPLEMENTATION 
ON MODERN MULTI-CORE CPUS
VLDB 2009
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CACHE-CONSCIOUS SORTING
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Level #1

Level #2

Level #3
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LEVEL #1 SORTING NETWORKS

Abstract model for sorting keys.
→ Fixed wiring “paths” for lists with the same # of elements.
→ Efficient to execute on modern CPUs because of limited 

data dependencies and no branches.

13

9

5

3

6

Input Output

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

LEVEL #1 SORTING NETWORKS

Abstract model for sorting keys.
→ Fixed wiring “paths” for lists with the same # of elements.
→ Efficient to execute on modern CPUs because of limited 

data dependencies and no branches.

13

9

5

3

6

3

6

5

9

Input Output

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

LEVEL #1 SORTING NETWORKS

Abstract model for sorting keys.
→ Fixed wiring “paths” for lists with the same # of elements.
→ Efficient to execute on modern CPUs because of limited 

data dependencies and no branches.

13

9

5

3

6

3

6

5

9

5

3
Input Output

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

LEVEL #1 SORTING NETWORKS

Abstract model for sorting keys.
→ Fixed wiring “paths” for lists with the same # of elements.
→ Efficient to execute on modern CPUs because of limited 

data dependencies and no branches.

13

9

5

3

6

3

6

5

9

5

3
Input Output

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

LEVEL #1 SORTING NETWORKS

Abstract model for sorting keys.
→ Fixed wiring “paths” for lists with the same # of elements.
→ Efficient to execute on modern CPUs because of limited 

data dependencies and no branches.

13

9

5

3

6

3

6

5

9

9

6

5

3
Input Output

3

9

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

LEVEL #1 SORTING NETWORKS

Abstract model for sorting keys.
→ Fixed wiring “paths” for lists with the same # of elements.
→ Efficient to execute on modern CPUs because of limited 

data dependencies and no branches.

13

9

5

3

6

3

6

5

9

9

6

5

3

5

6

Input Output
3

5

6

9

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

LEVEL #1 SORTING NETWORKS
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wires = [9,5,3,6]

wires[0] = min(wires[0], wires[1])
wires[1] = max(wires[0], wires[1])
wires[2] = min(wires[2], wires[3])
wires[3] = max(wires[2], wires[3])

wires[0] = min(wires[0], wires[2])
wires[2] = max(wires[0], wires[2])
wires[1] = min(wires[1], wires[3])
wires[3] = max(wires[1], wires[3])

wires[1] = min(wires[1], wires[2])
wires[2] = max(wires[1], wires[2])
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LEVEL #1 SORTING NETWORKS
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LEVEL #1 SORTING NETWORKS
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LEVEL #1 SORTING NETWORKS
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LEVEL #1 SORTING NETWORKS
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LEVEL #2 BITONIC MERGE NETWORK

Like a Sorting Network but it can merge two 
locally-sorted lists into a globally-sorted list.

Can expand network to merge progressively larger 
lists up to ½ LLC size.

Intel’s Measurements
→ 2.25–3.5× speed-up over SISD implementation.
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EFFICIENT IMPLEMENTATION OF SORTING 
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LEVEL #2 BITONIC MERGE NETWORK
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LEVEL #3 MULTI-WAY MERGING 

Use the Bitonic Merge Networks but split the 
process up into tasks.
→ Still one worker thread per core.
→ Link together tasks with a cache-sized FIFO queue.

A task blocks when either its input queue is empty, 
or its output queue is full.

Requires more CPU instructions but brings 
bandwidth and compute into balance.
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Sorted Runs

LEVEL #3 MULTI-WAY MERGING 
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IN-PL ACE SUPERSCAL AR SAMPLESORT

Recursively partition the table by sampling keys to 
determine partition boundaries. 

It copies data into output buffers during the 
partitioning phases.
But when a buffer gets full, it writes it back into 
portions of the input array already distributed 
instead of allocating a new buffer.
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IN-PLACE PARALLEL SUPER SCALAR SAMPLESORT
ESA 2017
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MERGE PHASE

Iterate through the outer table and inner table in 
lockstep and compare join keys.

May need to backtrack if there are duplicates.

Can be done in parallel at the different cores 
without synchronization if there are separate 
output buffers.
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SORT-MERGE JOIN VARIANTS

Multi-Way Sort-Merge (M-WAY)

Multi-Pass Sort-Merge (M-PASS)

Massively Parallel Sort-Merge (MPSM)
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MULTI-WAY SORT-MERGE

Outer Table
→ Each core sorts in parallel on local data (levels #1/#2).
→ Redistribute sorted runs across cores using the multi-

way merge (level #3).

Inner Table
→ Same as outer table.

Merge phase is between matching pairs of chunks 
of outer/inner tables at each core.
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MULTI-CORE, MAIN-MEMORY JOINS: 
SORT VS. HASH REVISITED
VLDB 2013
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MULTI-WAY SORT-MERGE
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MULTI-WAY SORT-MERGE
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MULTI-PASS SORT-MERGE

Outer Table
→ Same level #1/#2 sorting as Multi-Way.
→ But instead of redistributing, it uses a multi-pass naïve 

merge on sorted runs.

Inner Table
→ Same as outer table.

Merge phase is between matching pairs of chunks 
of outer table and inner table.
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MULTI-PASS SORT-MERGE
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MULTI-PASS SORT-MERGE

25

Local-NUMA 
Partitioning Sort

Local-NUMA 
PartitioningSort

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

MULTI-PASS SORT-MERGE
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MULTI-PASS SORT-MERGE
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MASSIVELY PARALLEL SORT-MERGE

Outer Table
→ Range-partition outer table and redistribute to cores.
→ Each core sorts in parallel on their partitions.

Inner Table
→ Not redistributed like outer table.
→ Each core sorts its local data.

Merge phase is between entire sorted run of outer 
table and a segment of inner table.
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MASSIVELY PARALLEL SORT-MERGE JOINS IN 
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MASSIVELY PARALLEL SORT-MERGE
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MASSIVELY PARALLEL SORT-MERGE
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MASSIVELY PARALLEL SORT-MERGE
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HYPER's  RULES FOR PARALLELIZATION

Rule #1: No random writes to non-local 
memory
→ Chunk the data, redistribute, and then each core 

sorts/works on local data.

Rule #2: Only perform sequential reads on 
non-local memory
→ This allows the hardware prefetcher to hide remote 

access latency.

Rule #3: No core should ever wait for another
→ Avoid fine-grained latching or sync barriers.
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EVALUATION

Compare the different join algorithms using a 
synthetic data set.
→ Sort-Merge: M-WAY, M-PASS, MPSM
→ Hash: Radix Partitioning

Hardware:
→ 4 Socket Intel Xeon E4640 @ 2.4GHz
→ 8 Cores with 2 Threads Per Core
→ 512 GB of DRAM
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RAW SORTING PERFORMANCE
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COMPARISON OF SORT-MERGE JOINS

31

0

100

200

300

400

0

5

10

15

20

25

M-WAY M-PASS MPSM

T
hr

ou
gh

pu
t (

M
 T

u
pl

es
/s

ec
)

C
yc

le
s 

/ 
O

u
tp

u
t T

u
pl

e

Partition Sort S-Merge J-Merge Throughput

13.6

Source: Cagri Balkesen

Workload: 1.6B⋈ 128M (8-byte tuples) 

7.6

22.9

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.inf.ethz.ch/personal/cagri.balkesen/


15-721 (Spring 2020)

Hyper-
Threading

M-WAY JOIN VS.  MPSM JOIN
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SORT-MERGE JOIN VS.  HASH JOIN
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SORT-MERGE JOIN VS.  HASH JOIN
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PARTING THOUGHTS

Both join approaches are equally important.

Every serious OLAP DBMS supports both.

We did not consider the impact of queries where 
the output needs to be sorted.
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NEXT CL ASS

Optimizers – The Hardest Topic in Databases
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