
L
e

c
tu

re
 #

1
8

Parallel Join Algorithms
(Sorting)
@Andy_Pavlo // 15-721 // Spring 2020

ADVANCED
DATABASE
SYSTEMS

https://15721.courses.cs.cmu.edu/spring2020/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

15-721 (Spring 2020)

PROJECT #2

This Week
→ Status Meetings

Wednesday April 8th

→ Code Review Submission
→ Update Presentation
→ Design Document

2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PARALLEL JOIN ALGORITHMS

Perform a join between two relations on multiple
threads simultaneously to speed up operation.

Two main approaches:
→ Hash Join
→ Sort-Merge Join

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Background

Sorting Algorithms

Parallel Sort-Merge Join

Evaluation

4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SORT-MERGE JOIN (R⨝S)

Phase #1: Sort
→ Sort the tuples of R and S based on the join key.

Phase #2: Merge
→ Scan the sorted relations and compare tuples.
→ The outer relation R only needs to be scanned once.

5

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SORT-MERGE JOIN (R⨝S)

6

Relation R Relation S

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SORT-MERGE JOIN (R⨝S)

6

Relation R Relation S

SO
RT
! SORT!

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SORT-MERGE JOIN (R⨝S)

6

Relation R Relation S

⨝
SO
RT
! SORT!

MERGE!

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SORT-MERGE JOIN (R⨝S)

6

Relation R Relation S

⨝
SO
RT
! SORT!

MERGE!

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PARALLEL SORT-MERGE JOINS

Sorting is the most expensive part.

Use hardware correctly to speed up the join
algorithm as much as possible.
→ Utilize as many CPU cores as possible.
→ Be mindful of NUMA boundaries.
→ Use SIMD instructions where applicable.

7

MULTI-CORE, MAIN-MEMORY JOINS:
SORT VS. HASH REVISITED
VLDB 2013

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/p85-balkesen.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/p85-balkesen.pdf

15-721 (Spring 2020)

PARALLEL SORT-MERGE JOIN (R⨝S)

Phase #1: Partitioning (optional)
→ Partition R and assign them to workers / cores.

Phase #2: Sort
→ Sort the tuples of R and S based on the join key.

Phase #3: Merge
→ Scan the sorted relations and compare tuples.
→ The outer relation R only needs to be scanned once.

8

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PARTITIONING PHASE

Approach #1: Implicit Partitioning
→ The data was partitioned on the join key when it was

loaded into the database.
→ No extra pass over the data is needed.

Approach #2: Explicit Partitioning
→ Divide only the outer relation and redistribute among the

different CPU cores.
→ Can use the same radix partitioning approach we talked

about last time.

9

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SORT PHASE

Create runs of sorted chunks of tuples for both
input relations.

It used to be that Quicksort was good enough and
it usually still is.

We can explore other methods that try to take
advantage of NUMA and parallel architectures …

10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CACHE-CONSCIOUS SORTING

Level #1: In-Register Sorting
→ Sort runs that fit into CPU registers.

Level #2: In-Cache Sorting
→ Merge Level #1 output into runs that fit into CPU caches.
→ Repeat until sorted runs are ½ cache size.

Level #3: Out-of-Cache Sorting
→ Used when the runs of Level #2 exceed the size of caches.

11

SORT VS. HASH REVISITED: FAST JOIN IMPLEMENTATION
ON MODERN MULTI-CORE CPUS
VLDB 2009

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/kim-vldb2009.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/kim-vldb2009.pdf

15-721 (Spring 2020)

CACHE-CONSCIOUS SORTING

12

Level #1

Level #2

Level #3

SORTED

UNSORTED

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LEVEL #1 SORTING NETWORKS

Abstract model for sorting keys.
→ Fixed wiring “paths” for lists with the same # of elements.
→ Efficient to execute on modern CPUs because of limited

data dependencies and no branches.

13

9

5

3

6

Input Output

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LEVEL #1 SORTING NETWORKS

Abstract model for sorting keys.
→ Fixed wiring “paths” for lists with the same # of elements.
→ Efficient to execute on modern CPUs because of limited

data dependencies and no branches.

13

9

5

3

6

3

6

5

9

Input Output

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LEVEL #1 SORTING NETWORKS

Abstract model for sorting keys.
→ Fixed wiring “paths” for lists with the same # of elements.
→ Efficient to execute on modern CPUs because of limited

data dependencies and no branches.

13

9

5

3

6

3

6

5

9

5

3
Input Output

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LEVEL #1 SORTING NETWORKS

Abstract model for sorting keys.
→ Fixed wiring “paths” for lists with the same # of elements.
→ Efficient to execute on modern CPUs because of limited

data dependencies and no branches.

13

9

5

3

6

3

6

5

9

5

3
Input Output

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LEVEL #1 SORTING NETWORKS

Abstract model for sorting keys.
→ Fixed wiring “paths” for lists with the same # of elements.
→ Efficient to execute on modern CPUs because of limited

data dependencies and no branches.

13

9

5

3

6

3

6

5

9

9

6

5

3
Input Output

3

9

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LEVEL #1 SORTING NETWORKS

Abstract model for sorting keys.
→ Fixed wiring “paths” for lists with the same # of elements.
→ Efficient to execute on modern CPUs because of limited

data dependencies and no branches.

13

9

5

3

6

3

6

5

9

9

6

5

3

5

6

Input Output
3

5

6

9

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LEVEL #1 SORTING NETWORKS

Abstract model for sorting keys.
→ Fixed wiring “paths” for lists with the same # of elements.
→ Efficient to execute on modern CPUs because of limited

data dependencies and no branches.

13

9

5

3

6

3

6

5

9

9

6

5

3

5

6

Input Output
3

5

6

9

wires = [9,5,3,6]

wires[0] = min(wires[0], wires[1])
wires[1] = max(wires[0], wires[1])
wires[2] = min(wires[2], wires[3])
wires[3] = max(wires[2], wires[3])

wires[0] = min(wires[0], wires[2])
wires[2] = max(wires[0], wires[2])
wires[1] = min(wires[1], wires[3])
wires[3] = max(wires[1], wires[3])

wires[1] = min(wires[1], wires[2])
wires[2] = max(wires[1], wires[2])

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LEVEL #1 SORTING NETWORKS

Abstract model for sorting keys.
→ Fixed wiring “paths” for lists with the same # of elements.
→ Efficient to execute on modern CPUs because of limited

data dependencies and no branches.

13

9

5

3

6

3

6

5

9

9

6

5

3

5

6

Input Output
3

5

6

9

wires = [9,5,3,6]

wires[0] = min(wires[0], wires[1])
wires[1] = max(wires[0], wires[1])
wires[2] = min(wires[2], wires[3])
wires[3] = max(wires[2], wires[3])

wires[0] = min(wires[0], wires[2])
wires[2] = max(wires[0], wires[2])
wires[1] = min(wires[1], wires[3])
wires[3] = max(wires[1], wires[3])

wires[1] = min(wires[1], wires[2])
wires[2] = max(wires[1], wires[2])

1
1

2
2

3

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LEVEL #1 SORTING NETWORKS

14

12 21 4 13

9 8 6 7

1 14 3 0

5 11 15 10

<64-bit Join Key, 64-bit Tuple Pointer>

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LEVEL #1 SORTING NETWORKS

14

12 21 4 13

9 8 6 7

1 14 3 0

5 11 15 10

Instructions:
→ 4 LOAD

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LEVEL #1 SORTING NETWORKS

14

12 21 4 13

9 8 6 7

1 14 3 0

5 11 15 10

Sort Across
Registers

Instructions:
→ 4 LOAD

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LEVEL #1 SORTING NETWORKS

14

12 21 4 13

9 8 6 7

1 14 3 0

5 11 15 10

1 8 3 0

5 11 4 7

9 14 6 10

12 21 15 13

Sort Across
Registers

Instructions:
→ 4 LOAD

Instructions:
→ 10 MIN/MAX

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LEVEL #1 SORTING NETWORKS

14

12 21 4 13

9 8 6 7

1 14 3 0

5 11 15 10

1 8 3 0

5 11 4 7

9 14 6 10

12 21 15 13

1 5 9 12

8 11 14 21

3 4 6 15

0 7 10 13

Sort Across
Registers

Transpose
Registers

Instructions:
→ 4 LOAD

Instructions:
→ 10 MIN/MAX

Instructions:
→ 8 SHUFFLE
→ 4 STORE

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LEVEL #2 BITONIC MERGE NETWORK

Like a Sorting Network but it can merge two
locally-sorted lists into a globally-sorted list.

Can expand network to merge progressively larger
lists up to ½ LLC size.

Intel’s Measurements
→ 2.25–3.5× speed-up over SISD implementation.

15

EFFICIENT IMPLEMENTATION OF SORTING
ON MULTI-CORE
VLDB 2008

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.vldb.org/pvldb/1/1454171.pdf
http://www.vldb.org/pvldb/1/1454171.pdf

15-721 (Spring 2020)

LEVEL #2 BITONIC MERGE NETWORK

16

Input Output

b4

b3

b2

b1

Sorted Run

Reverse
Sorted Run

a1

a2

a3

a4

S

H

U

F

F

L

E

S

H

U

F

F

L

E

Sorted Run

min/max min/max min/max

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LEVEL #3 MULTI-WAY MERGING

Use the Bitonic Merge Networks but split the
process up into tasks.
→ Still one worker thread per core.
→ Link together tasks with a cache-sized FIFO queue.

A task blocks when either its input queue is empty,
or its output queue is full.

Requires more CPU instructions but brings
bandwidth and compute into balance.

17

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Sorted Runs

LEVEL #3 MULTI-WAY MERGING

18

MERGE

MERGE

MERGE

MERGE

MERGE

MERGE

MERGE

Cache-Sized
Queue

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

IN-PL ACE SUPERSCAL AR SAMPLESORT

Recursively partition the table by sampling keys to
determine partition boundaries.

It copies data into output buffers during the
partitioning phases.
But when a buffer gets full, it writes it back into
portions of the input array already distributed
instead of allocating a new buffer.

19

IN-PLACE PARALLEL SUPER SCALAR SAMPLESORT
ESA 2017

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://arxiv.org/abs/1705.02257
https://arxiv.org/abs/1705.02257

15-721 (Spring 2020)

MERGE PHASE

Iterate through the outer table and inner table in
lockstep and compare join keys.

May need to backtrack if there are duplicates.

Can be done in parallel at the different cores
without synchronization if there are separate
output buffers.

20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SORT-MERGE JOIN VARIANTS

Multi-Way Sort-Merge (M-WAY)

Multi-Pass Sort-Merge (M-PASS)

Massively Parallel Sort-Merge (MPSM)

21

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MULTI-WAY SORT-MERGE

Outer Table
→ Each core sorts in parallel on local data (levels #1/#2).
→ Redistribute sorted runs across cores using the multi-

way merge (level #3).

Inner Table
→ Same as outer table.

Merge phase is between matching pairs of chunks
of outer/inner tables at each core.

22

MULTI-CORE, MAIN-MEMORY JOINS:
SORT VS. HASH REVISITED
VLDB 2013

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/p85-balkesen.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/p85-balkesen.pdf

15-721 (Spring 2020)

MULTI-WAY SORT-MERGE

23

Local-NUMA
Partitioning

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MULTI-WAY SORT-MERGE

23

Local-NUMA
Partitioning Sort

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MULTI-WAY SORT-MERGE

23

Local-NUMA
Partitioning Sort

Multi-Way
Merge

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MULTI-WAY SORT-MERGE

23

Local-NUMA
Partitioning Sort

Multi-Way
Merge

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MULTI-WAY SORT-MERGE

23

Local-NUMA
Partitioning Sort

Multi-Way
Merge

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MULTI-WAY SORT-MERGE

23

SO
RT
!

SO
RT
!

SO
RT
!

SO
RT
!

Local-NUMA
Partitioning Sort

Multi-Way
Merge

Same steps as
Outer Table

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MULTI-WAY SORT-MERGE

23

SO
RT
!

SO
RT
!

SO
RT
!

SO
RT
!

⨝

⨝

⨝

⨝

Local-NUMA
Partitioning Sort

Multi-Way
Merge

Local Merge
Join

Same steps as
Outer Table

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MULTI-PASS SORT-MERGE

Outer Table
→ Same level #1/#2 sorting as Multi-Way.
→ But instead of redistributing, it uses a multi-pass naïve

merge on sorted runs.

Inner Table
→ Same as outer table.

Merge phase is between matching pairs of chunks
of outer table and inner table.

24

MULTI-CORE, MAIN-MEMORY JOINS:
SORT VS. HASH REVISITED
VLDB 2013

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/p85-balkesen.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/p85-balkesen.pdf

15-721 (Spring 2020)

MULTI-PASS SORT-MERGE

25

Local-NUMA
Partitioning

Local-NUMA
Partitioning

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MULTI-PASS SORT-MERGE

25

Local-NUMA
Partitioning Sort

Local-NUMA
PartitioningSort

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MULTI-PASS SORT-MERGE

25

Local-NUMA
Partitioning Sort

Global Merge
Join

⨝

Local-NUMA
PartitioningSort

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MULTI-PASS SORT-MERGE

25

Local-NUMA
Partitioning Sort

Global Merge
Join

⨝

Local-NUMA
PartitioningSort

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MASSIVELY PARALLEL SORT-MERGE

Outer Table
→ Range-partition outer table and redistribute to cores.
→ Each core sorts in parallel on their partitions.

Inner Table
→ Not redistributed like outer table.
→ Each core sorts its local data.

Merge phase is between entire sorted run of outer
table and a segment of inner table.

26

MASSIVELY PARALLEL SORT-MERGE JOINS IN
MAIN MEMORY MULTI-CORE DATABASE SYSTEMS
VLDB 2012

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/p1064-albutiu.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/p1064-albutiu.pdf

15-721 (Spring 2020)

MASSIVELY PARALLEL SORT-MERGE

27

Cross-NUMA
Partitioning

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MASSIVELY PARALLEL SORT-MERGE

27

Cross-NUMA
Partitioning Sort

Globally Sorted

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MASSIVELY PARALLEL SORT-MERGE

27

Cross-NUMA
Partitioning Sort

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MASSIVELY PARALLEL SORT-MERGE

27

SO
RT
!

SO
RT
!

SO
RT
!

SO
RT
!

Cross-NUMA
Partitioning Sort

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MASSIVELY PARALLEL SORT-MERGE

27

SO
RT
!

SO
RT
!

SO
RT
!

SO
RT
!

⨝

Cross-NUMA
Partitioning Sort

Cross-Partition
Merge Join

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MASSIVELY PARALLEL SORT-MERGE

27

SO
RT
!

SO
RT
!

SO
RT
!

SO
RT
!

⨝

⨝

Cross-NUMA
Partitioning Sort

Cross-Partition
Merge Join

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MASSIVELY PARALLEL SORT-MERGE

27

SO
RT
!

SO
RT
!

SO
RT
!

SO
RT
!

⨝

⨝

⨝

⨝

Cross-NUMA
Partitioning Sort

Cross-Partition
Merge Join

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HYPER's RULES FOR PARALLELIZATION

Rule #1: No random writes to non-local
memory
→ Chunk the data, redistribute, and then each core

sorts/works on local data.

Rule #2: Only perform sequential reads on
non-local memory
→ This allows the hardware prefetcher to hide remote

access latency.

Rule #3: No core should ever wait for another
→ Avoid fine-grained latching or sync barriers.

28

Source: Martina-Cezara Albutiu

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016/papers/p1064-albutiu.pdf

15-721 (Spring 2020)

EVALUATION

Compare the different join algorithms using a
synthetic data set.
→ Sort-Merge: M-WAY, M-PASS, MPSM
→ Hash: Radix Partitioning

Hardware:
→ 4 Socket Intel Xeon E4640 @ 2.4GHz
→ 8 Cores with 2 Threads Per Core
→ 512 GB of DRAM

29

MULTI-CORE, MAIN-MEMORY JOINS:
SORT VS. HASH REVISITED
VLDB 2013

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/p85-balkesen.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/p85-balkesen.pdf

15-721 (Spring 2020)

RAW SORTING PERFORMANCE

30

0

9

18

27

36

1 2 4 8 16 32 64 128 256T
hr

ou
gh

pu
t (

M
 T

u
pl

es
/s

ec
)

Number of Tuples (in 220)

C++ STL Sort SIMD Sort

Source: Cagri Balkesen

Single-threaded sorting performance

2.5–3x Faster

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.inf.ethz.ch/personal/cagri.balkesen/

15-721 (Spring 2020)

COMPARISON OF SORT-MERGE JOINS

31

0

100

200

300

400

0

5

10

15

20

25

M-WAY M-PASS MPSM

T
hr

ou
gh

pu
t (

M
 T

u
pl

es
/s

ec
)

C
yc

le
s

/
O

u
tp

u
t T

u
pl

e

Partition Sort S-Merge J-Merge Throughput

13.6

Source: Cagri Balkesen

Workload: 1.6B⋈ 128M (8-byte tuples)

7.6

22.9

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.inf.ethz.ch/personal/cagri.balkesen/

15-721 (Spring 2020)

Hyper-
Threading

M-WAY JOIN VS. MPSM JOIN

32

0

100

200

300

400

1 2 4 8 16 32 64T
hr

ou
gh

pu
t (

M
 T

u
pl

es
/s

ec
)

Number of Threads

Multi-Way Massively Parallel

108 M/sec

315 M/sec

Source: Cagri Balkesen

Workload: 1.6B⋈ 128M (8-byte tuples)

130 M/sec

54 M/sec

259 M/sec

90 M/sec

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.inf.ethz.ch/personal/cagri.balkesen/

15-721 (Spring 2020)

SORT-MERGE JOIN VS. HASH JOIN

33

0

2

4

6

8

SORT HASH SORT HASH SORT HASH SORT HASH

128M⨝128M 1.6B⨝1.6B 128M⨝512M 1.6B⨝6.4B

C
yc

le
s

/
O

u
tp

u
t T

u
pl

e

Partition Sort S-Merge J-Merge Build+Probe

Source: Cagri Balkesen

Workload: Different Table Sizes (8-byte tuples)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.inf.ethz.ch/personal/cagri.balkesen/

15-721 (Spring 2020)

SORT-MERGE JOIN VS. HASH JOIN

34

0

150

300

450

600

750

128 256 384 512 768 1024 1280 1536 1792 1920T
hr

ou
gh

pu
t (

M
 T

u
pl

es
/s

ec
)

Millions of Tuples

Multi-Way Sort-Merge Join Radix Hash Join

Source: Cagri Balkesen

Varying the size of the input relations

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.inf.ethz.ch/personal/cagri.balkesen/

15-721 (Spring 2020)

PARTING THOUGHTS

Both join approaches are equally important.

Every serious OLAP DBMS supports both.

We did not consider the impact of queries where
the output needs to be sorted.

35

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NEXT CL ASS

Optimizers – The Hardest Topic in Databases

36

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

