
L
e

c
tu

re
 #

1
7

Parallel Join Algorithms
(Hashing)
@Andy_Pavlo // 15-721 // Spring 2020

ADVANCED
DATABASE
SYSTEMS

https://15721.courses.cs.cmu.edu/spring2020/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

15-721 (Spring 2020)

Background

Parallel Hash Join

Hash Functions

Hashing Schemes

Evaluation

2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PARALLEL JOIN ALGORITHMS

Perform a join between two relations on multiple
threads simultaneously to speed up operation.

Two main approaches:
→ Hash Join
→ Sort-Merge Join

We won't discuss nested-loop joins…

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

Many OLTP DBMSs do not implement hash join.

But an index nested-loop join with a small
number of target tuples is at a high-level
equivalent to a hash join.

4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HASHING VS. SORTING

1970s – Sorting

1980s – Hashing

1990s – Equivalent

2000s – Hashing

2010s – Hashing (Partitioned vs. Non-Partitioned)

2020s – ???

5

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PARALLEL JOIN ALGORITHMS

6

→ Hashing is faster than Sort-Merge.
→ Sort-Merge is faster w/ wider SIMD.

SORT VS. HASH REVISITED: FAST
JOIN IMPLEMENTATION ON
MODERN MULTI-CORE CPUS
VLDB 2009

→ Sort-Merge is already faster than
Hashing, even without SIMD.

MASSIVELY PARALLEL SORT-MERGE
JOINS IN MAIN MEMORY MULTI-
CORE DATABASE SYSTEMS
VLDB 2012

→ New optimizations and results for
Radix Hash Join.

MAIN-MEMORY HASH JOINS ON
MULTI-CORE CPUS: TUNING TO THE
UNDERLYING HARDWARE
ICDE 2013

→ Trade-offs between partitioning &
non-partitioning Hash-Join.

DESIGN AND EVALUATION OF MAIN
MEMORY HASH JOIN ALGORITHMS
FOR MULTI-CORE CPUS
SIGMOD 2011

→ Ignore what we said last year.
→ You really want to use Hashing!

MASSIVELY PARALLEL NUMA-AWARE
HASH JOINS
IMDM 2013

→ Hold up everyone! Let's look at
everything more carefully!

AN EXPERIMENTAL COMPARISON OF
THIRTEEN RELATIONAL EQUI-JOINS
IN MAIN MEMORY
SIGMOD 2016

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.vldb.org/pvldb/2/vldb09-257.pdf
http://www.vldb.org/pvldb/2/vldb09-257.pdf
https://dl.acm.org/doi/10.14778/2336664.2336678
https://dl.acm.org/doi/10.14778/2336664.2336678
https://dl.acm.org/doi/10.1109/ICDE.2013.6544839
https://dl.acm.org/doi/10.1109/ICDE.2013.6544839
https://dl.acm.org/doi/10.1145/1989323.1989328
https://dl.acm.org/doi/10.1145/1989323.1989328
http://imdm.ws/2013/papers/Lang.pdf
http://imdm.ws/2013/papers/Lang.pdf
https://dl.acm.org/doi/10.1145/2882903.2882917
https://dl.acm.org/doi/10.1145/2882903.2882917

15-721 (Spring 2020)

JOIN ALGORITHM DESIGN GOALS

Goal #1: Minimize Synchronization
→ Avoid taking latches during execution.

Goal #2: Minimize Memory Access Cost
→ Ensure that data is always local to worker thread.
→ Reuse data while it exists in CPU cache.

7

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

IMPROVING CACHE BEHAVIOR

Factors that affect cache misses in a DBMS:
→ Cache + TLB capacity.
→ Locality (temporal and spatial).

Non-Random Access (Scan):
→ Clustering data to a cache line.
→ Execute more operations per cache line.

Random Access (Lookups):
→ Partition data to fit in cache + TLB.

8

Source: Johannes Gehrke

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.cs.cornell.edu/courses/cs632/2001sp/slides/Main-memory%20database%20systems.ppt

15-721 (Spring 2020)

PARALLEL HASH JOINS

Hash join is the most important operator in a
DBMS for OLAP workloads.

It is important that we speed up our DBMS's join
algorithm by taking advantage of multiple cores.
→ We want to keep all cores busy, without becoming

memory bound.

9

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HASH JOIN (R⨝S)

Phase #1: Partition (optional)
→ Divide the tuples of R and S into sets using a hash on the

join key.

Phase #2: Build
→ Scan relation R and create a hash table on join key.

Phase #3: Probe
→ For each tuple in S, look up its join key in hash table for

R. If a match is found, output combined tuple.

10

AN EXPERIMENTAL COMPARISON OF THIRTEEN
RELATIONAL EQUI-JOINS IN MAIN MEMORY
SIGMOD 2016

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/doi/10.1145/2882903.2882917
https://dl.acm.org/doi/10.1145/2882903.2882917

15-721 (Spring 2020)

PARTITION PHASE

Split the input relations into partitioned buffers by
hashing the tuples’ join key(s).
→ Ideally the cost of partitioning is less than the cost of

cache misses during build phase.
→ Sometimes called hybrid hash join / radix hash join.

Contents of buffers depends on storage model:
→ NSM: Usually the entire tuple.
→ DSM: Only the columns needed for the join + offset.

11

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PARTITION PHASE

Approach #1: Non-Blocking Partitioning
→ Only scan the input relation once.
→ Produce output incrementally.

Approach #2: Blocking Partitioning (Radix)
→ Scan the input relation multiple times.
→ Only materialize results all at once.
→ Sometimes called radix hash join.

12

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NON-BLOCKING PARTITIONING

Scan the input relation only once and generate the
output on-the-fly.

Approach #1: Shared Partitions
→ Single global set of partitions that all threads update.
→ Must use a latch to synchronize threads.

Approach #2: Private Partitions
→ Each thread has its own set of partitions.
→ Must consolidate them after all threads finish.

13

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SHARED PARTITIONS

14

Data Table

A B C
hashP(key)

#p

#p

#p

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Partitions

SHARED PARTITIONS

14

Data Table

A B C
hashP(key)

P1

⋮

P2

Pn

#p

#p

#p

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Partitions

PRIVATE PARTITIONS

15

Data Table

A B C
hashP(key)

#p

#p

#p

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Partitions

PRIVATE PARTITIONS

15

Data Table

A B C
hashP(key)

#p

#p

#p

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Partitions

PRIVATE PARTITIONS

15

Data Table

A B C
hashP(key)

#p

#p

#p

Combined

P1

⋮

P2

Pn

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Partitions

PRIVATE PARTITIONS

15

Data Table

A B C
hashP(key)

#p

#p

#p

Combined

P1

⋮

P2

Pn

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RADIX PARTITIONING

Scan the input relation multiple times to generate
the partitions.

Multi-step pass over the relation:
→ Step #1: Scan R and compute a histogram of the # of

tuples per hash key for the radix at some offset.
→ Step #2: Use this histogram to determine output offsets

by computing the prefix sum.
→ Step #3: Scan R again and partition them according to the

hash key.

16

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RADIX

The radix of a key is the value of an integer at a
position (using its base).

17

89 12 23 08 41 64Keys

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RADIX

The radix of a key is the value of an integer at a
position (using its base).

17

89 12 23 08 41 64

9 2 3 8 1 4

Keys

Radix

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RADIX

The radix of a key is the value of an integer at a
position (using its base).

17

89 12 23 08 41 64Keys

Radix 8 1 2 0 4 6

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PREFIX SUM

The prefix sum of a sequence of numbers
(x0, x1, …, xn)

is a second sequence of numbers
(y0, y1, …, yn)

that is a running total of the input sequence.

18

+ + + + +

1 2 3 4 5 6

1 3 6 10 15 21

Input

Prefix Sum

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RADIX PARTITIONS

19

Step #1: Inspect input,
create histograms

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RADIX PARTITIONS

19

Step #1: Inspect input,
create histograms

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RADIX PARTITIONS

19

Step #1: Inspect input,
create histograms

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RADIX PARTITIONS

19

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

Partition 0

Partition 0, CPU 1

Partition 1

Partition 1, CPU 1

Step #2: Compute output
offsets

, CPU 0

, CPU 0

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RADIX PARTITIONS

19

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

Partition 0

Partition 0, CPU 1

Partition 1

Partition 1, CPU 1

Step #2: Compute output
offsets

, CPU 0

, CPU 0

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RADIX PARTITIONS

19

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

Partition 0

Partition 0, CPU 1

Partition 1

Partition 1, CPU 1

Step #3: Read input
and partition

0 7

0 3

, CPU 0

, CPU 0

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RADIX PARTITIONS

19

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

Partition 0

Partition 0, CPU 1

Partition 1

Partition 1, CPU 1

Step #3: Read input
and partition

0 7

0 7

0 3

1 8

1 9

1 1

1 5

1 0

, CPU 0

, CPU 0

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RADIX PARTITIONS

19

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

Partition 0

Partition 1

0 7

0 7

0 3

1 8

1 9

1 1

1 5

1 0

Recursively repeat until target number of
partitions have been created

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RADIX PARTITIONS

19

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

0 7

0 7

0 3

1 8

1 9

1 1

1 5

1 0

Recursively repeat until target number of
partitions have been created

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RADIX PARTITIONS

19

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

0 7

0 7

0 3

1 8

1 9

1 1

1 5

1 0

Recursively repeat until target number of
partitions have been created

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BUILD PHASE

The threads are then to scan either the tuples (or
partitions) of R.

For each tuple, hash the join key attribute for that
tuple and add it to the appropriate bucket in the
hash table.
→ The buckets should only be a few cache lines in size.

20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HASH TABLE

Design Decision #1: Hash Function
→ How to map a large key space into a smaller domain.
→ Trade-off between being fast vs. collision rate.

Design Decision #2: Hashing Scheme
→ How to handle key collisions after hashing.
→ Trade-off between allocating a large hash table vs.

additional instructions to find/insert keys.

21

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HASH FUNCTIONS

We do not want to use a cryptographic hash
function for our join algorithm.

We want something that is fast and will have a
low collision rate.
→ Best Speed: Always return '1'
→ Best Collision Rate: Perfect hashing

See SMHasher for a comprehensive hash function
benchmark suite.

22

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/aappleby/smhasher

15-721 (Spring 2020)

HASH FUNCTIONS

CRC-64 (1975)
→ Used in networking for error detection.

MurmurHash (2008)
→ Designed to a fast, general purpose hash function.

Google CityHash (2011)
→ Designed to be faster for short keys (<64 bytes).

Facebook XXHash (2012)
→ From the creator of zstd compression.

Google FarmHash (2014)
→ Newer version of CityHash with better collision rates.

23

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://create.stephan-brumme.com/crc32/
https://github.com/aappleby/smhasher
https://github.com/google/cityhash
http://cyan4973.github.io/xxHash/
https://github.com/google/farmhash

15-721 (Spring 2020)

HASH FUNCTION BENCHMARK

24

0

7000

14000

21000

28000

1 51 101 151 201 251

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Key Size (bytes)

crc64 std::hash MurmurHash3 CityHash FarmHash XXHash3

Source: Fredrik Widlund

Intel Core i7-8700K @ 3.70GHz

32

64
128

192

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/apavlo/hash-function-benchmark

15-721 (Spring 2020)

HASHING SCHEMES

Approach #1: Chained Hashing

Approach #2: Linear Probe Hashing

Approach #3: Robin Hood Hashing

Approach #4: Hopscotch Hashing

Approach #5: Cuckoo Hashing

25

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CHAINED HASHING

Maintain a linked list of buckets for each slot in
the hash table.

Resolve collisions by placing all elements with the
same hash key into the same bucket.
→ To determine whether an element is present, hash to its

bucket and scan for it.
→ Insertions and deletions are generalizations of lookups.

26

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CHAINED HASHING

27

A
B
C
D

hash(key)

E
F

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CHAINED HASHING

27

A
B
C
D

hash(key)

E
F

| Ahash(A)
Buckets

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CHAINED HASHING

27

A
B
C
D

hash(key)

E
F

| Ahash(A)

| Bhash(B)

Buckets

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CHAINED HASHING

27

A
B
C
D

hash(key)

E
F

| Ahash(A)

| Bhash(B)

Buckets
| Chash(C)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CHAINED HASHING

27

A
B
C
D

hash(key)

E
F

| Ahash(A)

| Bhash(B)

Buckets
| Chash(C)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CHAINED HASHING

27

A
B
C
D

hash(key)

E
F

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CHAINED HASHING

27

A
B
C
D

hash(key)

E
F

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

| Ehash(E)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CHAINED HASHING

27

A
B
C
D

hash(key)

E
F

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

| Ehash(E)

| Fhash(F)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CHAINED HASHING

27

A
B
C
D

hash(key)

E
F

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

| Ehash(E)

| Fhash(F)

64-bit Bucket Pointers

16-bit Bloom Filter

48-bit Pointer¤

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LINEAR PROBE HASHING

Single giant table of slots.

Resolve collisions by linearly searching for the
next free slot in the table.
→ To determine whether an element is present, hash to a

location in the table and scan for it.
→ Must store the key in the table to know when to stop

scanning.
→ Insertions and deletions are generalizations of lookups.

28

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LINEAR PROBE HASHING

29

A
B
C
D

hash(key)

| Ahash(A)

E
F

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LINEAR PROBE HASHING

29

A
B
C
D

hash(key)

| Ahash(A)

| Bhash(B)

E
F

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LINEAR PROBE HASHING

29

A
B
C
D

hash(key)

| Ahash(A)

| Bhash(B)

E
F

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LINEAR PROBE HASHING

29

A
B
C
D

hash(key)

| Ahash(A)

| Bhash(B)

| Chash(C)

E
F

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LINEAR PROBE HASHING

29

A
B
C
D

hash(key)

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)E
F

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LINEAR PROBE HASHING

29

A
B
C
D

hash(key)

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)E
F

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LINEAR PROBE HASHING

29

A
B
C
D

hash(key)

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)E

| Ehash(E)F

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LINEAR PROBE HASHING

29

A
B
C
D

hash(key)

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)E

| Ehash(E)F

| Fhash(F)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

To reduce the # of wasteful comparisons during
the join, it is important to avoid collisions of
hashed keys.

This requires a chained hash table with ~2× the
number of slots as the # of elements in R.

30

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ROBIN HOOD HASHING

Variant of linear probe hashing that steals slots
from "rich" keys and give them to "poor" keys.
→ Each key tracks the number of positions they are from

where its optimal position in the table.
→ On insert, a key takes the slot of another key if the first

key is farther away from its optimal position than the
second key.

31

ROBIN HOOD HASHING
FOUNDATIONS OF COMPUTER SCIENCE 1985

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://ieeexplore.ieee.org/document/4568152/
http://ieeexplore.ieee.org/document/4568152/

15-721 (Spring 2020)

ROBIN HOOD HASHING

32

A
B
C
D

hash(key)

| A [0]hash(A)

E

of "Jumps" From First Position

F

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ROBIN HOOD HASHING

32

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

E
F

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ROBIN HOOD HASHING

32

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

E
F

A[0] == C[0]

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ROBIN HOOD HASHING

32

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

E
F

A[0] == C[0]

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ROBIN HOOD HASHING

32

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

E
F

C[1] > D[0]

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ROBIN HOOD HASHING

32

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

| D [1]hash(D)E
F

C[1] > D[0]

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ROBIN HOOD HASHING

32

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

| D [1]hash(D)E

A[0] == E[0]

F

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ROBIN HOOD HASHING

32

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

| D [1]hash(D)E

A[0] == E[0]

C[1] == E[1]

F

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ROBIN HOOD HASHING

32

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

| D [1]hash(D)E

A[0] == E[0]

C[1] == E[1]

D[1] < E[2]

F

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ROBIN HOOD HASHING

32

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

E | E [2]hash(E)

A[0] == E[0]

C[1] == E[1]

D[1] < E[2]

F | D [2]hash(D)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ROBIN HOOD HASHING

32

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

E | E [2]hash(E)

F | D [2]hash(D)

| F [1]hash(F)

D[2] > F[0]

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

Variant of linear probe hashing where keys can
move between positions in a neighborhood.
→ A neighborhood is contiguous range of slots in the table.
→ The size of a neighborhood is a configurable constant.

A key is guaranteed to be in its neighborhood or
not exist in the table.

33

HOPSCOTCH HASHING
SYMPOSIUM ON DISTRIBUTED COMPUTING 2008

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://doi.org/10.1007/978-3-540-87779-0_24
https://doi.org/10.1007/978-3-540-87779-0_24

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #1

Neighborhood #2

Neighborhood #3

⋮

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #3| Ahash(A)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #1

| Ahash(A)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #1

| Ahash(A)

| Bhash(B)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #3| Ahash(A)

| Bhash(B)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #3| Ahash(A)

| Bhash(B)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #3| Ahash(A)

| Bhash(B)

| Chash(C)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

| Ahash(A)

| Bhash(B)

| Chash(C)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

| Ahash(A)

| Bhash(B)

| Chash(C)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #3| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #3| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #3| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #3| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

| Ehash(E)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #6

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

| Ehash(E)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOPSCOTCH HASHING

34

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #6

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

| Ehash(E)

| Fhash(F)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CUCKOO HASHING

Use multiple tables with different hash functions.
→ On insert, check every table and pick anyone that has a

free slot.
→ If no table has a free slot, evict the element from one of

them and then re-hash it find a new location.

Look-ups are always O(1) because only one
location per hash table is checked.

35

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CUCKOO HASHING

36

Hash Table #1

⋮

Hash Table #2

⋮

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CUCKOO HASHING

36

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CUCKOO HASHING

36

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

hash1(X) | X

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CUCKOO HASHING

36

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

hash1(X) | X

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CUCKOO HASHING

36

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

hash1(X) | X
hash2(Y) | Y

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CUCKOO HASHING

36

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

hash1(X) | X
hash2(Y) | Y

Insert Z
hash1(Z) hash2(Z)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CUCKOO HASHING

36

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

hash1(X) | X
hash2(Y) | Y

Insert Z
hash1(Z) hash2(Z)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CUCKOO HASHING

36

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

hash1(X) | X

Insert Z
hash1(Z) hash2(Z)

hash2(Z) | Z

hash1(Y)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CUCKOO HASHING

36

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

hash1(X) | X

Insert Z
hash1(Z) hash2(Z)

hash2(Z) | Z

hash1(Y)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CUCKOO HASHING

36

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

Insert Z
hash1(Z) hash2(Z)

hash2(Z) | Z

hash1(Y)

hash1(Y) | Y

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CUCKOO HASHING

36

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

Insert Z
hash1(Z) hash2(Z)

hash2(Z) | Z

hash1(Y)

hash1(Y) | Y

hash2(X)

hash2(X) | X

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CUCKOO HASHING

Threads have to make sure that they don’t get
stuck in an infinite loop when moving keys.

If we find a cycle, then we can rebuild the entire
hash tables with new hash functions.
→ With two hash functions, we (probably) won’t need to

rebuild the table until it is at about 50% full.
→ With three hash functions, we (probably) won’t need to

rebuild the table until it is at about 90% full.

37

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROBE PHASE

For each tuple in S, hash its join key and check to
see whether there is a match for each tuple in
corresponding bucket in the hash table constructed
for R.
→ If inputs were partitioned, then assign each thread a

unique partition.
→ Otherwise, synchronize their access to the cursor on S.

38

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROBE PHASE BLOOM FILTER

Create a Bloom Filter during the build phase when
the key is likely to not exist in the hash table.
→ Threads check the filter before probing the hash table.

This will be faster since the filter will fit in CPU caches.
→ Sometimes called sideways information passing.

39

A B

⨝

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2020)

PROBE PHASE BLOOM FILTER

Create a Bloom Filter during the build phase when
the key is likely to not exist in the hash table.
→ Threads check the filter before probing the hash table.

This will be faster since the filter will fit in CPU caches.
→ Sometimes called sideways information passing.

39

A B

⨝
Bloom Filter

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2020)

PROBE PHASE BLOOM FILTER

Create a Bloom Filter during the build phase when
the key is likely to not exist in the hash table.
→ Threads check the filter before probing the hash table.

This will be faster since the filter will fit in CPU caches.
→ Sometimes called sideways information passing.

39

A B

⨝ Bloom Filter

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2020)

PROBE PHASE BLOOM FILTER

Create a Bloom Filter during the build phase when
the key is likely to not exist in the hash table.
→ Threads check the filter before probing the hash table.

This will be faster since the filter will fit in CPU caches.
→ Sometimes called sideways information passing.

39

A B

⨝ Bloom Filter

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2020)

HASH JOIN VARIANTS

40

No-P Shared-P Private-P Radix

Partitioning No Yes Yes Yes

Input scans 0 1 1 2

Sync during
partitioning

– Spinlock
per tuple

Barrier,
once at end

Barrier,
4 · #passes

Hash table Shared Private Private Private

Sync during
build phase

Yes No No No

Sync during
probe phase

No No No No

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BENCHMARKS

Primary key – foreign key join
→ Outer Relation (Build): 16M tuples, 16 bytes each
→ Inner Relation (Probe): 256M tuples, 16 bytes each

Uniform and highly skewed (Zipf; s=1.25)

No output materialization

41

DESIGN AND EVALUATION OF MAIN MEMORY HASH JOIN
ALGORITHMS FOR MULTI-CORE CPUS
SIGMOD 2011

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2020/papers/17-hashjoins/p37-blanas.pdf
http://15721.courses.cs.cmu.edu/spring2020/papers/17-hashjoins/p37-blanas.pdf

15-721 (Spring 2020)

HASH JOIN UNIFORM DATA SET

42

0

40

80

120

160

No Partitioning Shared
Partitioning

Private
Partitioning

Radix

C
yc

le
s /

 O
u

tp
u

t T
u

pl
e

Partition Build Probe

Intel Xeon CPU X5650 @ 2.66GHz
6 Cores with 2 Threads Per Core

60.2 67.6
76.8

47.3

24% faster than
No Partitioning

3.3x cache misses
70x TLB misses

Source: Spyros Blanas

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.cse.ohio-state.edu/~sblanas/

15-721 (Spring 2020)

HASH JOIN SKEWED DATA SET

43

0

40

80

120

160

No Partitioning Shared
Partitioning

Private
Partitioning

Radix

C
yc

le
s /

 O
u

tp
u

t T
u

pl
e

Partition Build Probe

Intel Xeon CPU X5650 @ 2.66GHz
6 Cores with 2 Threads Per Core

25.2

167.1

56.5 50.7

Source: Spyros Blanas

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.cse.ohio-state.edu/~sblanas/

15-721 (Spring 2020)

OBSERVATION

We have ignored a lot of important parameters for
all these algorithms so far.
→ Whether to use partitioning or not?
→ How many partitions to use?
→ How many passes to take in partitioning phase?

In a real DBMS, the optimizer will select what it
thinks are good values based on what it knows
about the data (and maybe hardware).

44

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RADIX HASH JOIN UNIFORM DATA SET

45

0

40

80

120

64 25
6

51
2

10
24

40
96

81
92

32
76

8

13
10

72 64 25
6

51
2

10
24

40
96

81
92

32
76

8

13
10

72

Radix / 1-Pass Radix / 2-Pass

C
yc

le
s /

 O
u

tp
u

t T
u

pl
e

Partition Build Probe

Intel Xeon CPU X5650 @ 2.66GHz
Varying the # of Partitions

▼No Partitioning
+24% -5%

Source: Spyros Blanas

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.cse.ohio-state.edu/~sblanas/

15-721 (Spring 2020)

RADIX HASH JOIN UNIFORM DATA SET

46

0

40

80

120

64 25
6

51
2

10
24

40
96

81
92

32
76

8

13
10

72 64 25
6

51
2

10
24

40
96

81
92

32
76

8

13
10

72

Radix / 1-Pass Radix / 2-Pass

C
yc

le
s /

 O
u

tp
u

t T
u

pl
e

Partition Build Probe

Intel Xeon CPU X5650 @ 2.66GHz
Varying the # of Partitions

▼No Partitioning

Source: Spyros Blanas

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.cse.ohio-state.edu/~sblanas/

15-721 (Spring 2020)

EFFECTS OF HYPER-THREADING

Radix join has fewer cache & TLB
misses but this has marginal
benefit.

Non-partitioned join relies on
multi-threading for high
performance.

47

Intel Xeon CPU X5650 @ 2.66GHz
Uniform Data Set

1

3

5

7

9

11

1 3 5 7 9 11

Sp
ee

du
p

Threads

No Partitioning Radix Ideal

Source: Spyros Blanas

Hyper-Threading

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.cse.ohio-state.edu/~sblanas/

15-721 (Spring 2020)

TPC-H Q19

48

250 279
301 285

0

100

200

300

400

No-Part
(Linear)

No-Part
(Array)

Radix
(Linear)

Radix
(Array)

R
u

n
ti

m
e

(m
s)

Join Remaining Query

4× Intel Xeon CPU E7-4870v4
Scale Factor 100

Source: Stefan Schuh

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://bigdata.uni-saarland.de/people/schuh.php

15-721 (Spring 2020)

PARTING THOUGHTS

Partitioned-based joins outperform no-
partitioning algorithms is most settings, but it is
non-trivial to tune it correctly.

AFAIK, every DBMS vendor picks one hash join
implementation and does not try to be adaptive.

49

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NEXT CL ASS

Parallel Sort-Merge Joins

50

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

