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PARALLEL JOIN ALGORITHMS

Perform a join between two relations on multiple 
threads simultaneously to speed up operation. 

Two main approaches:
→ Hash Join
→ Sort-Merge Join

We won't discuss nested-loop joins…
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OBSERVATION

Many OLTP DBMSs do not implement hash join.

But an index nested-loop join with a small 
number of target tuples is at a high-level 
equivalent to a hash join.
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HASHING VS.  SORTING

1970s – Sorting

1980s – Hashing

1990s – Equivalent

2000s – Hashing

2010s – Hashing (Partitioned vs. Non-Partitioned)

2020s – ??? 
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PARALLEL JOIN ALGORITHMS

6

→ Hashing is faster than Sort-Merge.
→ Sort-Merge is faster w/ wider SIMD.

SORT VS. HASH REVISITED: FAST 
JOIN IMPLEMENTATION ON 
MODERN MULTI-CORE CPUS
VLDB 2009

→ Sort-Merge is already faster than 
Hashing, even without SIMD.

MASSIVELY PARALLEL SORT-MERGE 
JOINS IN MAIN MEMORY MULTI-
CORE DATABASE SYSTEMS
VLDB 2012

→ New optimizations and results for 
Radix Hash Join.

MAIN-MEMORY HASH JOINS ON 
MULTI-CORE CPUS: TUNING TO THE 
UNDERLYING HARDWARE
ICDE 2013

→ Trade-offs between partitioning & 
non-partitioning Hash-Join.

DESIGN AND EVALUATION OF MAIN 
MEMORY HASH JOIN ALGORITHMS 
FOR MULTI-CORE CPUS
SIGMOD 2011

→ Ignore what we said last year.
→ You really want to use Hashing!

MASSIVELY PARALLEL NUMA-AWARE 
HASH JOINS
IMDM 2013

→ Hold up everyone! Let's look at 
everything more carefully!

AN EXPERIMENTAL COMPARISON OF 
THIRTEEN RELATIONAL EQUI-JOINS 
IN MAIN MEMORY
SIGMOD 2016

https://db.cs.cmu.edu/
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https://dl.acm.org/doi/10.1145/1989323.1989328
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JOIN ALGORITHM DESIGN GOALS

Goal #1: Minimize Synchronization
→ Avoid taking latches during execution.

Goal #2: Minimize Memory Access Cost
→ Ensure that data is always local to worker thread.
→ Reuse data while it exists in CPU cache.
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IMPROVING CACHE BEHAVIOR

Factors that affect cache misses in a DBMS:
→ Cache + TLB capacity.
→ Locality (temporal and spatial).

Non-Random Access (Scan):
→ Clustering data to a cache line.
→ Execute more operations per cache line.

Random Access (Lookups):
→ Partition data to fit in cache + TLB. 
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PARALLEL HASH JOINS

Hash join is the most important operator in a 
DBMS for OLAP workloads.

It is important that we speed up our DBMS's join 
algorithm by taking advantage of multiple cores.
→ We want to keep all cores busy, without becoming 

memory bound.
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HASH JOIN (R⨝S)

Phase #1: Partition (optional)
→ Divide the tuples of R and S into sets using a hash on the 

join key.

Phase #2: Build
→ Scan relation R and create a hash table on join key.

Phase #3: Probe
→ For each tuple in S, look up its join key in hash table for 

R. If a match is found, output combined tuple.
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AN EXPERIMENTAL COMPARISON OF THIRTEEN 
RELATIONAL EQUI-JOINS IN MAIN MEMORY
SIGMOD 2016
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PARTITION PHASE

Split the input relations into partitioned buffers by 
hashing the tuples’ join key(s).
→ Ideally the cost of partitioning is less than the cost of 

cache misses during build phase.
→ Sometimes called hybrid hash join / radix hash join.

Contents of buffers depends on storage model:
→ NSM: Usually the entire tuple.
→ DSM: Only the columns needed for the join + offset.
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PARTITION PHASE

Approach #1: Non-Blocking Partitioning
→ Only scan the input relation once.
→ Produce output incrementally.

Approach #2: Blocking Partitioning (Radix)
→ Scan the input relation multiple times.
→ Only materialize results all at once.
→ Sometimes called radix hash join.
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NON-BLOCKING PARTITIONING

Scan the input relation only once and generate the 
output on-the-fly.

Approach #1: Shared Partitions
→ Single global set of partitions that all threads update.
→ Must use a latch to synchronize threads.

Approach #2: Private Partitions
→ Each thread has its own set of partitions.
→ Must consolidate them after all threads finish.
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SHARED PARTITIONS

14
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Partitions

SHARED PARTITIONS
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Partitions

PRIVATE PARTITIONS
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Partitions

PRIVATE PARTITIONS
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Partitions

PRIVATE PARTITIONS
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Partitions

PRIVATE PARTITIONS
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RADIX PARTITIONING

Scan the input relation multiple times to generate 
the partitions.

Multi-step pass over the relation:
→ Step #1: Scan R and compute a histogram of the # of 

tuples per hash key for the radix at some offset.
→ Step #2: Use this histogram to determine output offsets 

by computing the prefix sum.
→ Step #3: Scan R again and partition them according to the 

hash key.
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RADIX

The radix of a key is the value of an integer at a 
position (using its base).
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RADIX

The radix of a key is the value of an integer at a 
position (using its base).
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RADIX

The radix of a key is the value of an integer at a 
position (using its base).
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PREFIX SUM

The prefix sum of a sequence of numbers
(x0, x1, …, xn)

is a second sequence of numbers
(y0, y1, …, yn)

that is a running total of the input sequence.
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RADIX PARTITIONS

19
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create histograms
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RADIX PARTITIONS
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RADIX PARTITIONS

19

Step #1: Inspect input, 
create histograms
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RADIX PARTITIONS
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RADIX PARTITIONS
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RADIX PARTITIONS
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RADIX PARTITIONS
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RADIX PARTITIONS

19

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

Partition 0

Partition 1

0 7

0 7

0 3

1 8

1 9

1 1

1 5

1 0

Recursively repeat until target number of 
partitions have been created

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

RADIX PARTITIONS
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RADIX PARTITIONS
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BUILD PHASE

The threads are then to scan either the tuples (or 
partitions) of R.

For each tuple, hash the join key attribute for that 
tuple and add it to the appropriate bucket in the 
hash table.
→ The buckets should only be a few cache lines in size.
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HASH TABLE

Design Decision #1: Hash Function
→ How to map a large key space into a smaller domain.
→ Trade-off between being fast vs. collision rate.

Design Decision #2: Hashing Scheme
→ How to handle key collisions after hashing.
→ Trade-off between allocating a large hash table vs. 

additional instructions to find/insert keys.
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HASH FUNCTIONS

We do not want to use a cryptographic hash 
function for our join algorithm.

We want something that is fast and will have a 
low collision rate.
→ Best Speed: Always return '1'
→ Best Collision Rate: Perfect hashing

See SMHasher for a comprehensive hash function 
benchmark suite.

22

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/aappleby/smhasher


15-721 (Spring 2020)

HASH FUNCTIONS

CRC-64 (1975)
→ Used in networking for error detection.

MurmurHash (2008)
→ Designed to a fast, general purpose hash function.

Google CityHash (2011)
→ Designed to be faster for short keys (<64 bytes).

Facebook XXHash (2012)
→ From the creator of zstd compression.

Google FarmHash (2014)
→ Newer version of CityHash with better collision rates.

23

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://create.stephan-brumme.com/crc32/
https://github.com/aappleby/smhasher
https://github.com/google/cityhash
http://cyan4973.github.io/xxHash/
https://github.com/google/farmhash


15-721 (Spring 2020)

HASH FUNCTION BENCHMARK
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HASHING SCHEMES

Approach #1: Chained Hashing

Approach #2: Linear Probe Hashing

Approach #3: Robin Hood Hashing

Approach #4: Hopscotch Hashing

Approach #5: Cuckoo Hashing
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CHAINED HASHING

Maintain a linked list of buckets for each slot in 
the hash table.

Resolve collisions by placing all elements with the 
same hash key into the same bucket.
→ To determine whether an element is present, hash to its 

bucket and scan for it.
→ Insertions and deletions are generalizations of lookups.
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CHAINED HASHING
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CHAINED HASHING
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CHAINED HASHING
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CHAINED HASHING
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CHAINED HASHING
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CHAINED HASHING
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CHAINED HASHING

27

A
B
C
D

hash(key)

E
F

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

| Ehash(E)

| Fhash(F)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

CHAINED HASHING
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LINEAR PROBE HASHING

Single giant table of slots.

Resolve collisions by linearly searching for the 
next free slot in the table.
→ To determine whether an element is present, hash to a 

location in the table and scan for it.
→ Must store the key in the table to know when to stop 

scanning.
→ Insertions and deletions are generalizations of lookups.
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LINEAR PROBE HASHING
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LINEAR PROBE HASHING
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LINEAR PROBE HASHING
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LINEAR PROBE HASHING
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LINEAR PROBE HASHING
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LINEAR PROBE HASHING
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OBSERVATION

To reduce the # of wasteful comparisons during 
the join, it is important to avoid collisions of 
hashed keys.

This requires a chained hash table with ~2× the 
number of slots as the # of elements in R.
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ROBIN HOOD HASHING

Variant of linear probe hashing that steals slots 
from "rich" keys and give them to "poor" keys.
→ Each key tracks the number of positions they are from 

where its optimal position in the table.
→ On insert, a key takes the slot of another key if the first 

key is farther away from its optimal position than the 
second key.
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ROBIN HOOD HASHING

32
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ROBIN HOOD HASHING
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ROBIN HOOD HASHING
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ROBIN HOOD HASHING
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ROBIN HOOD HASHING
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ROBIN HOOD HASHING
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ROBIN HOOD HASHING

32

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

E | E [2]hash(E)

A[0] == E[0]

C[1] == E[1]

D[1] < E[2]

F | D [2]hash(D)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

ROBIN HOOD HASHING
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HOPSCOTCH HASHING

Variant of linear probe hashing where keys can 
move between positions in a neighborhood.
→ A neighborhood is contiguous range of slots in the table.
→ The size of a neighborhood is a configurable constant.

A key is guaranteed to be in its neighborhood or 
not exist in the table.
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HOPSCOTCH HASHING
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HOPSCOTCH HASHING
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HOPSCOTCH HASHING
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HOPSCOTCH HASHING
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HOPSCOTCH HASHING
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HOPSCOTCH HASHING
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HOPSCOTCH HASHING
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HOPSCOTCH HASHING
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HOPSCOTCH HASHING
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CUCKOO HASHING

Use multiple tables with different hash functions.
→ On insert, check every table and pick anyone that has a 

free slot.
→ If no table has a free slot, evict the element from one of 

them and then re-hash it find a new location.

Look-ups are always O(1) because only one 
location per hash table is checked.
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CUCKOO HASHING
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CUCKOO HASHING
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CUCKOO HASHING
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CUCKOO HASHING

Threads have to make sure that they don’t get 
stuck in an infinite loop when moving keys.

If we find a cycle, then we can rebuild the entire 
hash tables with new hash functions.
→ With two hash functions, we (probably) won’t need to 

rebuild the table until it is at about 50% full.
→ With three hash functions, we (probably) won’t need to 

rebuild the table until it is at about 90% full.

37

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

PROBE PHASE

For each tuple in S, hash its join key and check to 
see whether there is a match for each tuple in 
corresponding bucket in the hash table constructed 
for R.
→ If inputs were partitioned, then assign each thread a 

unique partition.
→ Otherwise, synchronize their access to the cursor on S.

38
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PROBE PHASE BLOOM FILTER

Create a Bloom Filter during the build phase when 
the key is likely to not exist in the hash table.
→ Threads check the filter before probing the hash table. 

This will be faster since the filter will fit in CPU caches.
→ Sometimes called sideways information passing.
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PROBE PHASE BLOOM FILTER
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HASH JOIN VARIANTS
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No-P Shared-P Private-P Radix

Partitioning No Yes Yes Yes

Input scans 0 1 1 2

Sync during 
partitioning

– Spinlock 
per tuple

Barrier, 
once at end

Barrier, 
4 · #passes

Hash table Shared Private Private Private

Sync during 
build phase

Yes No No No

Sync during 
probe phase

No No No No
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BENCHMARKS

Primary key – foreign key join
→ Outer Relation (Build): 16M tuples, 16 bytes each
→ Inner Relation (Probe): 256M tuples, 16 bytes each

Uniform and highly skewed (Zipf; s=1.25)

No output materialization

41

DESIGN AND EVALUATION OF MAIN MEMORY HASH JOIN 
ALGORITHMS FOR MULTI-CORE CPUS
SIGMOD 2011

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2020/papers/17-hashjoins/p37-blanas.pdf
http://15721.courses.cs.cmu.edu/spring2020/papers/17-hashjoins/p37-blanas.pdf


15-721 (Spring 2020)

HASH JOIN UNIFORM DATA SET
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HASH JOIN SKEWED DATA SET
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OBSERVATION

We have ignored a lot of important parameters for 
all these algorithms so far.
→ Whether to use partitioning or not?
→ How many partitions to use?
→ How many passes to take in partitioning phase?

In a real DBMS, the optimizer will select what it 
thinks are good values based on what it knows 
about the data (and maybe hardware).
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RADIX HASH JOIN UNIFORM DATA SET
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RADIX HASH JOIN UNIFORM DATA SET
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EFFECTS OF HYPER-THREADING

Radix join has fewer cache & TLB 
misses but this has marginal 
benefit.

Non-partitioned join relies on 
multi-threading for high 
performance.
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TPC-H Q19
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PARTING THOUGHTS

Partitioned-based joins outperform no-
partitioning algorithms is most settings, but it is 
non-trivial to tune it correctly.

AFAIK, every DBMS vendor picks one hash join 
implementation and does not try to be adaptive.
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NEXT CL ASS

Parallel Sort-Merge Joins
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