
L
e

c
tu

re
 #

1
3

Query Execution &
Processing
@Andy_Pavlo // 15-721 // Spring 2020

ADVANCED
DATABASE
SYSTEMS

https://15721.courses.cs.cmu.edu/spring2020/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

15-721 (Spring 2020)

Scheduling / Placement
Concurrency Control

Indexes
Operator Execution

ARCHITECTURE OVERVIEW

2

SQL Query

Networking Layer

Planner

Compiler

Execution Engine

Storage Manager

SQL Parser
Binder

Optimizer / Cost Models
Rewriter

Storage Models
Logging / Checkpoints

We Are Here

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

EXECUTION OPTIMIZATION

We are now going to start discussing ways to
improve the DBMS's query execution performance
for data sets that fit entirely in memory.

There are other bottlenecks to target when we
remove the disk.

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OPTIMIZATION GOALS

Approach #1: Reduce Instruction Count
→ Use fewer instructions to do the same amount of work.

Approach #2: Reduce Cycles per Instruction
→ Execute more CPU instructions in fewer cycles.

Approach #3: Parallelize Execution
→ Use multiple threads to compute each query in parallel.

4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ACCESS PATH SELECTION

One major decision in query planning is whether
to perform a sequential scan or index scan to
retrieve data from table.

This decision depends on the selectivity of
predicates as well as hardware performance and
concurrency.

5

ACCESS PATH SELECTION IN MAIN-MEMORY OPTIMIZED
DATA SYSTEMS: SHOULD I SCAN OR SHOULD I PROBE?
SIGMOD 2017

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/13-execution/kester-sigmod17.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/13-execution/kester-sigmod17.pdf

15-721 (Spring 2020)

OPERATOR EXECUTION

Query Plan Processing

Scan Sharing

Materialized Views

Query Compilation

Vectorized Operators

Parallel Algorithms

Application Logic Execution (UDFs)

6

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MonetDB/X100 Analysis

Processing Models

Parallel Execution

8

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MONETDB /X100 (2005)

Low-level analysis of execution bottlenecks for in-
memory DBMSs on OLAP workloads.
→ Show how DBMS are designed incorrectly for modern

CPU architectures.

Based on these findings, they proposed a new
DBMS called MonetDB/X100.
→ Renamed to Vectorwise and acquired by Actian in 2010.
→ Rebranded as Vector and Avalanche.

9

MONETDB/X100: HYPER-PIPELINING
QUERY EXECUTION
CIDR 2005

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.informationweek.com/database/ingres-unveils-vectorwise-database-engine/d/d-id/1089785
https://www.actian.com/analytic-database/avalanche/
https://15721.courses.cs.cmu.edu/spring2020/papers/13-execution/boncz-cidr2005.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/13-execution/boncz-cidr2005.pdf

15-721 (Spring 2020)

CPU OVERVIEW

CPUs organize instructions into pipeline stages.

The goal is to keep all parts of the processor busy
at each cycle by masking delays from instructions
that cannot complete in a single cycle.

Super-scalar CPUs support multiple pipelines.
→ Execute multiple instructions in parallel in a single cycle

if they are independent (out-of-order execution).

Everything is fast until there is a mistake…

10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DBMS / CPU PROBLEMS

Problem #1: Dependencies
→ If one instruction depends on another instruction, then it

cannot be pushed immediately into the same pipeline.

Problem #2: Branch Prediction
→ The CPU tries to predict what branch the program will

take and fill in the pipeline with its instructions.
→ If it gets it wrong, it must throw away any speculative

work and flush the pipeline.

11

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BRANCH MISPREDICTION

Because of long pipelines, CPUs will speculatively
execute branches. This potentially hides the long
stalls between dependent instructions.

The most executed branching code in a DBMS is
the filter operation during a sequential scan.
But this is (nearly) impossible to predict correctly.

12

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BRANCH MISPREDICTION

Because of long pipelines, CPUs will speculatively
execute branches. This potentially hides the long
stalls between dependent instructions.

The most executed branching code in a DBMS is
the filter operation during a sequential scan.
But this is (nearly) impossible to predict correctly.

12

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.cppreference.com/w/cpp/language/attributes/likely

15-721 (Spring 2020)

SELECT * FROM table
WHERE key >= $(low)
AND key <= $(high)

SELECTION SCANS

13

Source: Bogdan Raducanu

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2020)

SELECTION SCANS

13

Scalar (Branching)

i = 0
for t in table:

key = t.key
if (key≥low) && (key≤high):
copy(t, output[i])
i = i + 1

Scalar (Branchless)

i = 0
for t in table:

copy(t, output[i])
key = t.key
m = (key≥low ? 1 : 0) &&
⮱(key≤high ? 1 : 0)

i = i + m

Source: Bogdan Raducanu

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2020)

SELECTION SCANS

14

Source: Bogdan Raducanu

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2020)

EXCESSIV E INSTRUCTIONS

The DBMS needs to support different data types,
so it must check a values type before it performs
any operation on that value.
→ This is usually implemented as giant switch statements.
→ Also creates more branches that can be difficult for the

CPU to predict reliably.

Example: Postgres' addition for NUMERIC types.

15

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

EXCESSIV E INSTRUCTIONS

The DBMS needs to support different data types,
so it must check a values type before it performs
any operation on that value.
→ This is usually implemented as giant switch statements.
→ Also creates more branches that can be difficult for the

CPU to predict reliably.

Example: Postgres' addition for NUMERIC types.

15

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://doxygen.postgresql.org/interfaces_2ecpg_2pgtypeslib_2numeric_8c_source.html#l00722

15-721 (Spring 2020)

PROCESSING MODEL

A DBMS's processing model defines how the
system executes a query plan.
→ Different trade-offs for workloads (OLTP vs. OLAP).

Approach #1: Iterator Model

Approach #2: Materialization Model

Approach #3: Vectorized / Batch Model

16

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ITERATOR MODEL

Each query plan operator implements a next
function.
→ On each invocation, the operator returns either a single

tuple or a null marker if there are no more tuples.
→ The operator implements a loop that calls next on its

children to retrieve their tuples and then process them.

Also called Volcano or Pipeline Model.

17

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

ITERATOR MODEL

18

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

for t in R:
emit(t)

for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): emit(t1⨝t2)

for t in child.Next():
emit(projection(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in S:
emit(t)

Next()

Next()

Next() Next()

Next()

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

ITERATOR MODEL

18

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

for t in R:
emit(t)

for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): emit(t1⨝t2)

for t in child.Next():
emit(projection(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in S:
emit(t)

1

2

3

Single Tuple

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

ITERATOR MODEL

18

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

for t in R:
emit(t)

for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): emit(t1⨝t2)

for t in child.Next():
emit(projection(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in S:
emit(t)

1

2

3 5

4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ITERATOR MODEL

This is used in almost every DBMS. Allows for
tuple pipelining.

Some operators must block until their children
emit all their tuples.
→ Joins, Subqueries, Order By

Output control works easily with this approach.

19

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MATERIALIZATION MODEL

Each operator processes its input all at once and
then emits its output all at once.
→ The operator "materializes" it output as a single result.
→ The DBMS can push down hints into to avoid scanning

too many tuples.
→ Can send either a materialized row or a single column.

The output can be either whole tuples (NSM) or
subsets of columns (DSM)

20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MATERIALIZATION MODEL

21

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

out = []
for t in R:
out.add(t)

return out

out = []
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)

return out

out = []
for t in child.Output():
out.add(projection(t))

return out

out = []
for t in child.Output():
if evalPred(t): out.add(t)

return out

out = []
for t in S:

out.add(t)
return out

1

2

3

All Tuples

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MATERIALIZATION MODEL

21

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

out = []
for t in R:
out.add(t)

return out

out = []
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)

return out

out = []
for t in child.Output():
out.add(projection(t))

return out

out = []
for t in child.Output():
if evalPred(t): out.add(t)

return out

out = []
for t in S:

out.add(t)
return out

1

2

3 5

4

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MATERIALIZATION MODEL

21

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

out = []
for t in R:
out.add(t)

return out

out = []
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)

return out

out = []
for t in child.Output():
out.add(projection(t))

return out
1

2

3

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

out = []
for t in S:
if evalPred(t): out.add(t)

return out

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MATERIALIZATION MODEL

Better for OLTP workloads because queries only
access a small number of tuples at a time.
→ Lower execution / coordination overhead.
→ Fewer function calls.

Not good for OLAP queries with large
intermediate results.

22

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

VECTORIZATION MODEL

Like the Iterator Model where each operator
implements a next function.

But each operator emits a batch of tuples instead
of a single tuple.
→ The operator's internal loop processes multiple tuples at a

time.
→ The size of the batch can vary based on hardware or

query properties.

23

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

VECTORIZATION MODEL

24

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

out = []
for t in R:
out.add(t)
if |out|>n: emit(out)

out = []
for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): out.add(t1⨝t2)
if |out|>n: emit(out)

out = []
for t in child.Next():

out.add(projection(t))
if |out|>n: emit(out)

out = []
for t in child.Next():

if evalPred(t): out.add(t)
if |out|>n: emit(out)

1

2

3
out = []
for t in S:
out.add(t)
if |out|>n: emit(out)

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

Tuple Batch

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

VECTORIZATION MODEL

24

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

out = []
for t in R:
out.add(t)
if |out|>n: emit(out)

out = []
for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): out.add(t1⨝t2)
if |out|>n: emit(out)

out = []
for t in child.Next():

out.add(projection(t))
if |out|>n: emit(out)

out = []
for t in child.Next():

if evalPred(t): out.add(t)
if |out|>n: emit(out)

1

2

3
out = []
for t in S:
out.add(t)
if |out|>n: emit(out)

5

4

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

Tuple Batch

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

VECTORIZATION MODEL

Ideal for OLAP queries because it greatly reduces
the number of invocations per operator.

Allows for operators to use vectorized (SIMD)
instructions to process batches of tuples.

25

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PL AN PROCESSING DIRECTION

Approach #1: Top-to-Bottom
→ Start with the root and "pull" data up from its children.
→ Tuples are always passed with function calls.

Approach #2: Bottom-to-Top
→ Start with leaf nodes and "push" data to their parents.
→ Allows for tighter control of caches/registers in pipelines.
→ We will see this later in HyPer and Peloton ROF.

26

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/19-compilation/p539-neumann.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/21-vectorization2/menon-vldb2017.pdf

15-721 (Spring 2020)

INTER-QUERY PARALLELISM

Improve overall performance by allowing multiple
queries to execute simultaneously.
→ Provide the illusion of isolation through concurrency

control scheme.

The difficulty of implementing a concurrency
control scheme is not significantly affected by the
DBMS’s process model.

28

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

INTRA-QUERY PARALLELISM

Improve the performance of a single query by
executing its operators in parallel.

Approach #1: Intra-Operator (Horizontal)

Approach #2: Inter-Operator (Vertical)

These techniques are not mutually exclusive.

There are parallel algorithms for every relational
operator.

29

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

INTRA-OPERATOR PARALLELISM

Approach #1: Intra-Operator (Horizontal)
→ Operators are decomposed into independent instances

that perform the same function on different subsets of
data.

The DBMS inserts an exchange operator into the
query plan to coalesce results from children
operators.

30

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

31

A2A1 A3
1 2 3

A B

⨝
s

p

s

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

31

A2A1 A3
1 2 3

A B

⨝
s

p

s
s s s

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

31

A2A1 A3
1 2 3

A B

⨝
s

p

s
s s s
p p p

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

31

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

⨝

p p p

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

31

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

⨝

p p p

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

31

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

s s s

⨝

p p p p p p

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

31

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

s s s

Probe HT Probe HT Probe HT

⨝

p p p p p p

Exchange

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

INTER-OPERATOR PARALLELISM

Approach #2: Inter-Operator (Vertical)
→ Operations are overlapped in order to pipeline data from

one stage to the next without materialization.
→ Workers execute multiple operators from different

segments of a query plan at the same time.
→ Still need exchange operators to combine intermediate

results from segments.

Also called pipelined parallelism.

32

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECT *
FROM A
JOIN B
JOIN C
JOIN D

INTRA-OPERATOR PARALLELISM

33

A B

⨝

C D

⨝

⨝

A

⨝
B

⨝
C D

⨝

Exchange Exchange

Exchange

⨝

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECT *
FROM A
JOIN B
JOIN C
JOIN D

INTRA-OPERATOR PARALLELISM

33

A B

⨝

C D

⨝

⨝

A

⨝
B

⨝
C D

⨝

Exchange Exchange

Exchange

⨝

3 4

1 2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

Determining the right number of workers to use
for a query plan depends on the number of CPU
cores, the size of the data, and functionality of the
operators.

35

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WORKER ALLOCATION

Approach #1: One Worker per Core
→ Each core is assigned one thread that is pinned to that

core in the OS.
→ See sched_setaffinity

Approach #2: Multiple Workers per Core
→ Use a pool of workers per core (or per socket).
→ Allows CPU cores to be fully utilized in case one worker

at a core blocks.

36

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://man7.org/linux/man-pages/man2/sched_setaffinity.2.html

15-721 (Spring 2020)

TASK ASSIGNMENT

Approach #1: Push
→ A centralized dispatcher assigns tasks to workers and

monitors their progress.
→ When the worker notifies the dispatcher that it is

finished, it is given a new task.

Approach #1: Pull
→ Workers pull the next task from a queue, process it, and

then return to get the next task.

37

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PARTING THOUGHTS

The easiest way to implement something is not
going to always produce the most efficient
execution strategy for modern CPUs.

We will see that vectorized / bottom-up execution
will be the better way to execute OLAP queries.

38

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NEXT CL ASS

Query Compilation

39

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

