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EXECUTION OPTIMIZATION

We are now going to start discussing ways to 
improve the DBMS's query execution performance 
for data sets that fit entirely in memory.

There are other bottlenecks to target when we 
remove the disk.
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OPTIMIZATION GOALS

Approach #1: Reduce Instruction Count
→ Use fewer instructions to do the same amount of work.

Approach #2: Reduce Cycles per Instruction
→ Execute more CPU instructions in fewer cycles.

Approach #3: Parallelize Execution
→ Use multiple threads to compute each query in parallel.
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ACCESS PATH SELECTION

One major decision in query planning is whether 
to perform a sequential scan or index scan to 
retrieve data from table.

This decision depends on the selectivity of 
predicates as well as hardware performance and 
concurrency.
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ACCESS PATH SELECTION IN MAIN-MEMORY OPTIMIZED 
DATA SYSTEMS: SHOULD I SCAN OR SHOULD I PROBE?
SIGMOD 2017
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OPERATOR EXECUTION

Query Plan Processing

Scan Sharing

Materialized Views

Query Compilation

Vectorized Operators

Parallel Algorithms

Application Logic Execution (UDFs)
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MonetDB/X100 Analysis

Processing Models

Parallel Execution
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MONETDB /X100 (2005)

Low-level analysis of execution bottlenecks for in-
memory DBMSs on OLAP workloads.
→ Show how DBMS are designed incorrectly for modern 

CPU architectures.

Based on these findings, they proposed a new 
DBMS called MonetDB/X100.
→ Renamed to Vectorwise and acquired by Actian in 2010.
→ Rebranded as Vector and Avalanche.
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MONETDB/X100: HYPER-PIPELINING 
QUERY EXECUTION
CIDR 2005
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CPU OVERVIEW

CPUs organize instructions into pipeline stages.

The goal is to keep all parts of the processor busy 
at each cycle by masking delays from instructions 
that cannot complete in a single cycle.

Super-scalar CPUs support multiple pipelines.
→ Execute multiple instructions in parallel in a single cycle 

if they are independent (out-of-order execution).

Everything is fast until there is a mistake…
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DBMS /  CPU PROBLEMS

Problem #1: Dependencies
→ If one instruction depends on another instruction, then it 

cannot be pushed immediately into the same pipeline.

Problem #2: Branch Prediction
→ The CPU tries to predict what branch the program will 

take and fill in the pipeline with its instructions.
→ If it gets it wrong, it must throw away any speculative 

work and flush the pipeline.
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BRANCH MISPREDICTION

Because of long pipelines, CPUs will speculatively 
execute branches. This potentially hides the long 
stalls between dependent instructions.

The most executed branching code in a DBMS is 
the filter operation during a sequential scan.
But this is (nearly) impossible to predict correctly.

12
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SELECT * FROM table
WHERE key >= $(low)
AND key <= $(high)

SELECTION SCANS
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Source: Bogdan Raducanu
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SELECTION SCANS

13

Scalar (Branching)

i = 0
for t in table:

key = t.key
if (key≥low) && (key≤high):
copy(t, output[i])
i = i + 1

Scalar (Branchless)

i = 0
for t in table:

copy(t, output[i])
key = t.key
m = (key≥low ? 1 : 0) &&
⮱(key≤high ? 1 : 0)

i = i + m

Source: Bogdan Raducanu
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SELECTION SCANS
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EXCESSIV E INSTRUCTIONS

The DBMS needs to support different data types, 
so it must check a values type before it performs 
any operation on that value.
→ This is usually implemented as giant switch statements.
→ Also creates more branches that can be difficult for the 

CPU to predict reliably.

Example: Postgres' addition for NUMERIC types.

15
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PROCESSING MODEL

A DBMS's processing model defines how the 
system executes a query plan.
→ Different trade-offs for workloads (OLTP vs. OLAP).

Approach #1: Iterator Model

Approach #2: Materialization Model

Approach #3: Vectorized / Batch Model

16
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ITERATOR MODEL

Each query plan operator implements a next
function.
→ On each invocation, the operator returns either a single 

tuple or a null marker if there are no more tuples.
→ The operator implements a loop that calls next on its 

children to retrieve their tuples and then process them.

Also called Volcano or Pipeline Model.
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SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

ITERATOR MODEL

18

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

for t in R:
emit(t)

for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): emit(t1⨝t2)

for t in child.Next():
emit(projection(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in S:
emit(t)

Next()

Next()

Next() Next()

Next()
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ITERATOR MODEL
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ITERATOR MODEL

This is used in almost every DBMS. Allows for 
tuple pipelining.

Some operators must block until their children 
emit all their tuples.
→ Joins, Subqueries, Order By

Output control works easily with this approach.
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MATERIALIZATION MODEL

Each operator processes its input all at once and 
then emits its output all at once.
→ The operator "materializes" it output as a single result.
→ The DBMS can push down hints into to avoid scanning 

too many tuples.
→ Can send either a materialized row or a single column.

The output can be either whole tuples (NSM) or 
subsets of columns (DSM)

20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

MATERIALIZATION MODEL

21

R S

R.id=S.id

value>100

R.id, S.value

⨝
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out = [ ]
for t in R:
out.add(t)

return out

out = [ ]
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)

return out

out = [ ]
for t in child.Output():
out.add(projection(t))

return out

out = [ ]
for t in child.Output():
if evalPred(t): out.add(t)

return out

out = [ ]
for t in S:

out.add(t)
return out

1

2
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All Tuples
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MATERIALIZATION MODEL
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MATERIALIZATION MODEL

Better for OLTP workloads because queries only 
access a small number of tuples at a time.
→ Lower execution / coordination overhead.
→ Fewer function calls.

Not good for OLAP queries with large 
intermediate results.
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VECTORIZATION MODEL

Like the Iterator Model where each operator 
implements a next function.

But each operator emits a batch of tuples instead 
of a single tuple.
→ The operator's internal loop processes multiple tuples at a 

time.
→ The size of the batch can vary based on hardware or 

query properties.

23

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

VECTORIZATION MODEL
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out = [ ]
for t in R:
out.add(t)
if |out|>n: emit(out)
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for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): out.add(t1⨝t2)
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out = [ ]
for t in child.Next():
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out = [ ]
for t in child.Next():

if evalPred(t): out.add(t)
if |out|>n: emit(out)
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out = [ ]
for t in S:
out.add(t)
if |out|>n: emit(out)

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

Tuple Batch
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VECTORIZATION MODEL

Ideal for OLAP queries because it greatly reduces 
the number of invocations per operator.

Allows for operators to use vectorized (SIMD) 
instructions to process batches of tuples.

25
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PL AN PROCESSING DIRECTION

Approach #1: Top-to-Bottom
→ Start with the root and "pull" data up from its children.
→ Tuples are always passed with function calls.

Approach #2: Bottom-to-Top
→ Start with leaf nodes and "push" data to their parents.
→ Allows for tighter control of caches/registers in pipelines.
→ We will see this later in HyPer and Peloton ROF.
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INTER-QUERY PARALLELISM

Improve overall performance by allowing multiple 
queries to execute simultaneously.
→ Provide the illusion of isolation through concurrency 

control scheme.

The difficulty of implementing a concurrency 
control scheme is not significantly affected by the 
DBMS’s process model.

28
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INTRA-QUERY PARALLELISM

Improve the performance of a single query by 
executing its operators in parallel.

Approach #1: Intra-Operator (Horizontal)

Approach #2: Inter-Operator (Vertical)

These techniques are not mutually exclusive.

There are parallel algorithms for every relational 
operator.

29
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INTRA-OPERATOR PARALLELISM

Approach #1: Intra-Operator (Horizontal)
→ Operators are decomposed into independent instances 

that perform the same function on different subsets of 
data.

The DBMS inserts an exchange operator into the 
query plan to coalesce results from children 
operators.

30
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SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

31
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INTER-OPERATOR PARALLELISM

Approach #2: Inter-Operator (Vertical)
→ Operations are overlapped in order to pipeline data from 

one stage to the next without materialization.
→ Workers execute multiple operators from different 

segments of a query plan at the same time.
→ Still need exchange operators to combine intermediate 

results from segments.

Also called pipelined parallelism.

32
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INTRA-OPERATOR PARALLELISM

33

A B

⨝

C D

⨝

⨝

A

⨝
B

⨝
C D

⨝

Exchange Exchange

Exchange

⨝

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

SELECT *
FROM A
JOIN B
JOIN C
JOIN D

INTRA-OPERATOR PARALLELISM

33

A B

⨝

C D

⨝

⨝

A

⨝
B

⨝
C D

⨝

Exchange Exchange

Exchange

⨝

3 4

1 2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

OBSERVATION

Determining the right number of workers to use 
for a query plan depends on the number of CPU 
cores, the size of the data, and functionality of the 
operators.

35
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WORKER ALLOCATION

Approach #1: One Worker per Core
→ Each core is assigned one thread that is pinned to that 

core in the OS.
→ See sched_setaffinity

Approach #2: Multiple Workers per Core
→ Use a pool of workers per core (or per socket).
→ Allows CPU cores to be fully utilized in case one worker 

at a core blocks.

36
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TASK ASSIGNMENT

Approach #1: Push
→ A centralized dispatcher assigns tasks to workers and 

monitors their progress.
→ When the worker notifies the dispatcher that it is 

finished, it is given a new task.

Approach #1: Pull
→ Workers pull the next task from a queue, process it, and 

then return to get the next task.

37
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PARTING THOUGHTS

The easiest way to implement something is not 
going to always produce the most efficient 
execution strategy for modern CPUs.

We will see that vectorized / bottom-up execution 
will be the better way to execute OLAP queries.
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NEXT CL ASS

Query Compilation
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