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QUERY EXECUTION

A query plan is comprised of 
operators.

An operator instance is an 
invocation of an operator on some 
segment of data.

A task is the execution of a 
sequence of one or more operator 
instances (also sometimes referred 
to as a pipeline).
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SCHEDULING

For each query plan, the DBMS must decide 
where, when, and how to execute it.
→ How many tasks should it use?
→ How many CPU cores should it use?
→ What CPU core should the tasks execute on?
→ Where should a task store its output?

The DBMS always knows more than the OS.
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Process Models

Data Placement

Scheduling
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PROCESS MODEL

A DBMS’s process model defines how the system 
is architected to support concurrent requests from 
a multi-user application.

A worker is the DBMS component that is 
responsible for executing tasks on behalf of the 
client and returning the results.
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PROCESS MODELS

Approach #1: Process per DBMS Worker

Approach #2: Process Pool

Approach #3: Thread per DBMS Worker
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PROCESS PER WORKER

Each worker is a separate OS process.
→ Relies on OS scheduler.
→ Use shared-memory for global data structures.
→ A process crash doesn’t take down entire system.
→ Examples: IBM DB2, Postgres, Oracle
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PROCESS POOL

A worker uses any process that is free in a pool
→ Still relies on OS scheduler and shared memory.
→ Bad for CPU cache locality.
→ Examples: IBM DB2, Postgres (2015)
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THREAD PER WORKER

Single process with multiple worker threads.
→ DBMS manages its own scheduling.
→ May or may not use a dispatcher thread.
→ Thread crash (may) kill the entire system.
→ Examples: IBM DB2, MSSQL, MySQL, Oracle (2014)
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PROCESS MODELS

Using a multi-threaded architecture has several 
advantages:
→ Less overhead per context switch.
→ Do not have to manage shared memory.

The thread per worker model does not mean that 
the DBMS supports intra-query parallelism.

Andy is not aware of any new DBMS from last 10 
years that doesn’t use threads unless they are 
Postgres forks.
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OBSERVATION

Regardless of what worker allocation or task 
assignment policy the DBMS uses, it’s important 
that workers operate on local data.

The DBMS’s scheduler must be aware of its 
hardware memory layout.
→ Uniform vs. Non-Uniform Memory Access 
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UNIFORM MEMORY ACCESS
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NON-UNIFORM MEMORY ACCESS
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Intel (2008): QuickPath Interconnect
Intel (2017): UltraPath Interconnect

AMD (??): HyperTransport
AMD (2017): Infinity Fabric
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DATA PL ACEMENT

The DBMS can partition memory for a database 
and assign each partition to a CPU.

By controlling and tracking the location of 
partitions, it can schedule operators to execute on 
workers at the closest CPU core.

See Linux’s move_pages and numactl
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MEMORY ALLOCATION

What happens when the DBMS calls malloc?
→ Assume that the allocator doesn't already have a chunk of 

memory that it can give out.

Almost nothing:
→ The allocator will extend the process' data segment.
→ But this new virtual memory is not immediately backed 

by physical memory.
→ The OS only allocates physical memory when there is a 

page fault on access.

Now after a page fault, where does the OS allocate 
physical memory in a NUMA system?
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MEMORY ALLOCATION LOCATION

Approach #1: Interleaving
→ Distribute allocated memory uniformly across CPUs.

Approach #2: First-Touch
→ At the CPU of the thread that accessed the memory 

location that caused the page fault.

The OS can try to move memory to another 
NUMA region from observed access patterns.
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DATA PL ACEMENT OLTP
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DATA PL ACEMENT OL AP
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PARTITIONING VS.  PL ACEMENT

A partitioning scheme is used to split the 
database based on some policy.
→ Round-robin
→ Attribute Ranges
→ Hashing 
→ Partial/Full Replication

A placement scheme then tells the DBMS where 
to put those partitions.
→ Round-robin
→ Interleave across cores
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OBSERVATION

We have the following so far:
→ Process Model
→ Task Assignment Model
→ Data Placement Policy

But how do we decide how to create a set of tasks 
from a logical query plan?
→ This is relatively easy for OLTP queries.
→ Much harder for OLAP queries…
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STATIC SCHEDULING

The DBMS decides how many threads to use to 
execute the query when it generates the plan.
It does not change while the query executes.
→ The easiest approach is to just use the same # of tasks as 

the # of cores.
→ Can still assign tasks to threads based on data location to 

maximize local data processing.
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MORSEL-DRIVEN SCHEDULING

Dynamic scheduling of tasks that operate over 
horizontal partitions called “morsels” that are 
distributed across cores.
→ One worker per core
→ Pull-based task assignment
→ Round-robin data placement

Supports parallel, NUMA-aware operator 
implementations.
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MORSEL-DRIVEN PARALLELISM: A NUMA-AWARE QUERY 
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SIGMOD 2014
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HYPER ARCHITECTURE

No separate dispatcher thread.

The workers perform cooperative scheduling for 
each query plan using a single task queue.
→ Each worker tries to select tasks that will execute on 

morsels that are local to it.
→ If there are no local tasks, then the worker just pulls the 

next task from the global work queue.
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Data Table

HYPER DATA PARTITIONING
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FROM A, B
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Global Task Queue

HYPER EXECUTION EXAMPLE
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SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
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MORSEL-DRIVEN SCHEDULING

Because there is only one worker per core, HyPer
must use work stealing because otherwise threads 
could sit idle waiting for stragglers.

The DBMS uses a lock-free hash table to maintain 
the global work queues.
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SAP HANA NUMA-AWARE SCHEDULER

Pull-based scheduling with multiple worker 
threads that are organized into groups (pools).
→ Each CPU can have multiple groups.
→ Each group has a soft and hard priority queue.

Uses a separate “watchdog” thread to check 
whether groups are saturated and can reassign 
tasks dynamically.

27

SCALING UP CONCURRENT MAIN-MEMORY COLUMN-STORE SCANS: 
TOWARDS ADAPTIVE NUMA-AWARE DATA AND TASK PLACEMENT
VLDB 2015

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2824043
http://dl.acm.org/citation.cfm?id=2824043


15-721 (Spring 2020)

SAP HANA THREAD GROUPS

Each thread group has a soft and hard priority 
task queues.
→ Threads can steal tasks from other groups’ soft queues.

Four different pools of thread per group:
→ Working: Actively executing a task.
→ Inactive: Blocked inside of the kernel due to a latch.
→ Free: Sleeps for a little, wake up to see whether there is a 

new task to execute.
→ Parked: Like free but doesn’t wake up on its own.
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SAP HANA NUMA-AWARE SCHEDULER

Dynamically adjust thread pinning based on 
whether a task is CPU or memory bound.

Found that work stealing was not as beneficial for 
systems with a larger number of sockets.

Using thread groups allows cores to execute other 
tasks instead of just only queries.
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Tasks

SAP HANA NUMA-AWARE SCHEDULER
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SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
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SQL SERVER SQLOS

SQLOS is a user-mode NUMA-aware OS layer 
that runs inside of the DBMS and manages 
provisioned hardware resources.
→ Determines which tasks are scheduled onto which 

threads.
→ Also manages I/O scheduling and higher-level concepts 

like logical database locks.

Non-preemptive thread scheduling through 
instrumented DBMS code.
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SQL SERVER SQLOS

SQLOS quantum is 4 ms but the 
scheduler cannot enforce that.

DBMS developers must add 
explicit yield calls in various 
locations in the source code.
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SELECT * FROM A WHERE A.val = ?

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

Approximate Planlast = now()
for t in range(table.num_tuples):

tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)
if now() – last > 4ms:

yield
last = now()
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OBSERVATION

If requests arrive at the DBMS faster than it can 
execute them, then the system becomes 
overloaded.

The OS cannot help us here because it does not 
know what threads are doing:
→ CPU Bound: Do nothing
→ Memory Bound: OOM

Easiest DBMS Solution: Crash
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FLOW CONTROL

Approach #2: Admission Control
→ Abort new requests when the system believes that it will 

not have enough resources to execute that request.

Approach #1: Throttling
→ Delay the responses to clients to increase the amount of 

time between requests.
→ This assumes a synchronous submission scheme.
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PARTING THOUGHTS

A DBMS is a beautiful, strong-willed independent 
piece of software.

But it must use hardware correctly.
→ Data location is an important aspect of this.
→ Tracking memory location in a single-node DBMS is the 

same as tracking shards in a distributed DBMS

Don’t let the OS ruin your life.
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NEXT CL ASS

Query Execution
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