
L
e

c
tu

re
 #

1
2

Scheduling

@Andy_Pavlo // 15-721 // Spring 2020

ADVANCED
DATABASE
SYSTEMS

https://15721.courses.cs.cmu.edu/spring2020/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

15-721 (Spring 2020)

QUERY EXECUTION

A query plan is comprised of
operators.

An operator instance is an
invocation of an operator on some
segment of data.

A task is the execution of a
sequence of one or more operator
instances (also sometimes referred
to as a pipeline).

2

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

A B

⨝
s

p

s

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SCHEDULING

For each query plan, the DBMS must decide
where, when, and how to execute it.
→ How many tasks should it use?
→ How many CPU cores should it use?
→ What CPU core should the tasks execute on?
→ Where should a task store its output?

The DBMS always knows more than the OS.

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Process Models

Data Placement

Scheduling

4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROCESS MODEL

A DBMS’s process model defines how the system
is architected to support concurrent requests from
a multi-user application.

A worker is the DBMS component that is
responsible for executing tasks on behalf of the
client and returning the results.

5

ARCHITECTURE OF A DATABASE SYSTEM
FOUNDATIONS AND TRENDS IN DATABASES 2007

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://db.cs.berkeley.edu/papers/fntdb07-architecture.pdf
http://db.cs.berkeley.edu/papers/fntdb07-architecture.pdf

15-721 (Spring 2020)

PROCESS MODELS

Approach #1: Process per DBMS Worker

Approach #2: Process Pool

Approach #3: Thread per DBMS Worker

6

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROCESS PER WORKER

Each worker is a separate OS process.
→ Relies on OS scheduler.
→ Use shared-memory for global data structures.
→ A process crash doesn’t take down entire system.
→ Examples: IBM DB2, Postgres, Oracle

7

Dispatcher Worker

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROCESS POOL

A worker uses any process that is free in a pool
→ Still relies on OS scheduler and shared memory.
→ Bad for CPU cache locality.
→ Examples: IBM DB2, Postgres (2015)

8

Worker PoolDispatcher

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

THREAD PER WORKER

Single process with multiple worker threads.
→ DBMS manages its own scheduling.
→ May or may not use a dispatcher thread.
→ Thread crash (may) kill the entire system.
→ Examples: IBM DB2, MSSQL, MySQL, Oracle (2014)

9

Worker Threads

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROCESS MODELS

Using a multi-threaded architecture has several
advantages:
→ Less overhead per context switch.
→ Do not have to manage shared memory.

The thread per worker model does not mean that
the DBMS supports intra-query parallelism.

Andy is not aware of any new DBMS from last 10
years that doesn’t use threads unless they are
Postgres forks.

10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

Regardless of what worker allocation or task
assignment policy the DBMS uses, it’s important
that workers operate on local data.

The DBMS’s scheduler must be aware of its
hardware memory layout.
→ Uniform vs. Non-Uniform Memory Access

11

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

UNIFORM MEMORY ACCESS

12

System Bus

Cache Cache Cache Cache

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NON-UNIFORM MEMORY ACCESS

13

C
ac

he
C

ac
he

C
ache

C
ache

Intel (2008): QuickPath Interconnect
Intel (2017): UltraPath Interconnect

AMD (??): HyperTransport
AMD (2017): Infinity Fabric

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DATA PL ACEMENT

The DBMS can partition memory for a database
and assign each partition to a CPU.

By controlling and tracking the location of
partitions, it can schedule operators to execute on
workers at the closest CPU core.

See Linux’s move_pages and numactl

14

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://man7.org/linux/man-pages/man2/move_pages.2.html
https://linux.die.net/man/8/numactl

15-721 (Spring 2020)

MEMORY ALLOCATION

What happens when the DBMS calls malloc?
→ Assume that the allocator doesn't already have a chunk of

memory that it can give out.

Almost nothing:
→ The allocator will extend the process' data segment.
→ But this new virtual memory is not immediately backed

by physical memory.
→ The OS only allocates physical memory when there is a

page fault on access.

Now after a page fault, where does the OS allocate
physical memory in a NUMA system?

15

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MEMORY ALLOCATION LOCATION

Approach #1: Interleaving
→ Distribute allocated memory uniformly across CPUs.

Approach #2: First-Touch
→ At the CPU of the thread that accessed the memory

location that caused the page fault.

The OS can try to move memory to another
NUMA region from observed access patterns.

16

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DATA PL ACEMENT OLTP

17

Source: Danica Porobic

0

4000

8000

12000

Spread Group Mix OS

T
hr

ou
gh

pu
t (

tx
n

/s
ec

)
Workload: TPC-C Payment using 4 Workers

Processor: NUMA with 4 sockets (6 cores each)

? ?

? ?

30% improvement over OS

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016/papers/p1447-porobic.pdf

15-721 (Spring 2020)

DATA PL ACEMENT OL AP

18

0

10000

20000

30000

 8 24 40 56 72 88 104 120 136 152

T
u

pl
es

 R
ea

d
P

er
 S

ec
on

d
(M

)

Threads

Random Partition Local Partition Only

Source: Haibin Lin

Sequential Scan on 10m tuples
Processor: 8 sockets, 10 cores per node (2x HT)

Hyper-Threading

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.linhaibin.com/

15-721 (Spring 2020)

PARTITIONING VS. PL ACEMENT

A partitioning scheme is used to split the
database based on some policy.
→ Round-robin
→ Attribute Ranges
→ Hashing
→ Partial/Full Replication

A placement scheme then tells the DBMS where
to put those partitions.
→ Round-robin
→ Interleave across cores

19

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

We have the following so far:
→ Process Model
→ Task Assignment Model
→ Data Placement Policy

But how do we decide how to create a set of tasks
from a logical query plan?
→ This is relatively easy for OLTP queries.
→ Much harder for OLAP queries…

20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

STATIC SCHEDULING

The DBMS decides how many threads to use to
execute the query when it generates the plan.
It does not change while the query executes.
→ The easiest approach is to just use the same # of tasks as

the # of cores.
→ Can still assign tasks to threads based on data location to

maximize local data processing.

21

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MORSEL-DRIVEN SCHEDULING

Dynamic scheduling of tasks that operate over
horizontal partitions called “morsels” that are
distributed across cores.
→ One worker per core
→ Pull-based task assignment
→ Round-robin data placement

Supports parallel, NUMA-aware operator
implementations.

22

MORSEL-DRIVEN PARALLELISM: A NUMA-AWARE QUERY
EVALUATION FRAMEWORK FOR THE MANY-CORE AGE
SIGMOD 2014

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=1287407
http://dl.acm.org/citation.cfm?id=1287407

15-721 (Spring 2020)

HYPER ARCHITECTURE

No separate dispatcher thread.

The workers perform cooperative scheduling for
each query plan using a single task queue.
→ Each worker tries to select tasks that will execute on

morsels that are local to it.
→ If there are no local tasks, then the worker just pulls the

next task from the global work queue.

23

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Data Table

HYPER DATA PARTITIONING

24

1

2

3

id a1 a2 a3

A2

A1

A3

Morsels

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

A B

⨝
s

p

s

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Global Task Queue

HYPER EXECUTION EXAMPLE

25

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

A B

⨝
s

p

s 1

Morsels

Buffer

2

Morsels

Buffer

3

Morsels

Buffer

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MORSEL-DRIVEN SCHEDULING

Because there is only one worker per core, HyPer
must use work stealing because otherwise threads
could sit idle waiting for stragglers.

The DBMS uses a lock-free hash table to maintain
the global work queues.

26

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SAP HANA NUMA-AWARE SCHEDULER

Pull-based scheduling with multiple worker
threads that are organized into groups (pools).
→ Each CPU can have multiple groups.
→ Each group has a soft and hard priority queue.

Uses a separate “watchdog” thread to check
whether groups are saturated and can reassign
tasks dynamically.

27

SCALING UP CONCURRENT MAIN-MEMORY COLUMN-STORE SCANS:
TOWARDS ADAPTIVE NUMA-AWARE DATA AND TASK PLACEMENT
VLDB 2015

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2824043
http://dl.acm.org/citation.cfm?id=2824043

15-721 (Spring 2020)

SAP HANA THREAD GROUPS

Each thread group has a soft and hard priority
task queues.
→ Threads can steal tasks from other groups’ soft queues.

Four different pools of thread per group:
→ Working: Actively executing a task.
→ Inactive: Blocked inside of the kernel due to a latch.
→ Free: Sleeps for a little, wake up to see whether there is a

new task to execute.
→ Parked: Like free but doesn’t wake up on its own.

28

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SAP HANA NUMA-AWARE SCHEDULER

Dynamically adjust thread pinning based on
whether a task is CPU or memory bound.

Found that work stealing was not as beneficial for
systems with a larger number of sockets.

Using thread groups allows cores to execute other
tasks instead of just only queries.

29

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Tasks

SAP HANA NUMA-AWARE SCHEDULER

30

Thread Group
Soft
Queue

Hard
Queue Working Inactive Free Parked

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

A B

⨝
s

p

s

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SQL SERVER SQLOS

SQLOS is a user-mode NUMA-aware OS layer
that runs inside of the DBMS and manages
provisioned hardware resources.
→ Determines which tasks are scheduled onto which

threads.
→ Also manages I/O scheduling and higher-level concepts

like logical database locks.

Non-preemptive thread scheduling through
instrumented DBMS code.

31

MICROSOFT SQL SERVER 2012 INTERNALS
PEARSON 2013

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.microsoftpressstore.com/store/microsoft-sql-server-2012-internals-9780735658561
https://www.microsoftpressstore.com/store/microsoft-sql-server-2012-internals-9780735658561
https://techcrunch.com/2017/07/17/how-microsoft-brought-sql-server-to-linux/

15-721 (Spring 2020)

SQL SERVER SQLOS

SQLOS quantum is 4 ms but the
scheduler cannot enforce that.

DBMS developers must add
explicit yield calls in various
locations in the source code.

32

SELECT * FROM A WHERE A.val = ?

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

Approximate Planlast = now()
for t in range(table.num_tuples):

tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)
if now() – last > 4ms:

yield
last = now()

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

If requests arrive at the DBMS faster than it can
execute them, then the system becomes
overloaded.

The OS cannot help us here because it does not
know what threads are doing:
→ CPU Bound: Do nothing
→ Memory Bound: OOM

Easiest DBMS Solution: Crash

34

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FLOW CONTROL

Approach #2: Admission Control
→ Abort new requests when the system believes that it will

not have enough resources to execute that request.

Approach #1: Throttling
→ Delay the responses to clients to increase the amount of

time between requests.
→ This assumes a synchronous submission scheme.

35

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PARTING THOUGHTS

A DBMS is a beautiful, strong-willed independent
piece of software.

But it must use hardware correctly.
→ Data location is an important aspect of this.
→ Tracking memory location in a single-node DBMS is the

same as tracking shards in a distributed DBMS

Don’t let the OS ruin your life.

36

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NEXT CL ASS

Query Execution

37

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

39

B

GC

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

