
L
e

c
tu

re
 #

0
8

Storage Models &
Data Layout
@Andy_Pavlo // 15-721 // Spring 2020

ADVANCED
DATABASE
SYSTEMS

https://15721.courses.cs.cmu.edu/spring2019/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

15-721 (Spring 2020)

DATA ORGANIZATION

2

Fixed-Length
Data BlocksIndex

Block Id +
Offset

Variable-Length
Data Blocks

44-bits 20-bits

C++11 alignas

OffsetBlock Pointer

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DATA ORGANIZATION

One can think of an in-memory database as just a
large array of bytes.
→ The schema tells the DBMS how to convert the bytes

into the appropriate type.
→ Each tuple is prefixed with a header that contains its

meta-data.

Storing tuples with as fixed-length data makes it
easy to compute the starting point of any tuple.

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Type Representation

Data Layout / Alignment

Storage Models

System Catalogs

4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT
→ C/C++ Representation

FLOAT/REAL vs. NUMERIC/DECIMAL
→ IEEE-754 Standard / Fixed-point Decimals

TIME/DATE/TIMESTAMP
→ 32/64-bit int of (micro/milli)seconds since Unix epoch

VARCHAR/VARBINARY/TEXT/BLOB
→ Pointer to other location if type is ≥64-bits
→ Header with length and address to next location (if

segmented), followed by data bytes.

5

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

VARIABLE PRECISION NUMBERS

Inexact, variable-precision numeric type that uses
the “native” C/C++ types.

Store directly as specified by IEEE-754.

Typically faster than arbitrary precision numbers.
→ Example: FLOAT, REAL/DOUBLE

6

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/IEEE-754

15-721 (Spring 2020)

VARIABLE PRECISION NUMBERS

7

#include <stdio.h>

int main(int argc, char* argv[]) {

float x = 0.1;

float y = 0.2;

printf("x+y = %.20f\n", x+y);

printf("0.3 = %.20f\n", 0.3);

}

Rounding Example

x+y = 0.30000001192092895508

0.3 = 0.29999999999999998890

Output

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FIXED PRECISION NUMBERS

Numeric data types with arbitrary precision and
scale. Used when round errors are unacceptable.
→ Example: NUMERIC, DECIMAL

Typically stored in an exact, variable-length binary
representation with additional meta-data.
→ Like a VARCHAR but not stored as a string

8

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DATA L AYOUT

9

CREATE TABLE AndySux (

id INT PRIMARY KEY,

value BIGINT

);

header id value

char[]

reinterpret_cast<int32_t*>(address)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

header id

VARIABLE-LENGTH FIELDS

10

CREATE TABLE AndySux (

value VARCHAR(1024)

);

64-BIT POINTER

char[]

Variable-Length Data Blocks

Andy|64-BIT POINTER

Andy has the worst

hygiene that I have ever seen. I hate

LENGTH NEXT

him so much.NEXTLENGTH

INSERT INTO AndySux

VALUES ("Andy has the worst

hygiene that I have ever seen. I

hate him so much.");

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NULL DATA T YPES

Choice #1: Special Values
→ Designate a value to represent NULL for a data type (e.g.,

INT32_MIN).

Choice #2: Null Column Bitmap Header
→ Store a bitmap in the tuple header that specifies what

attributes are null.

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Have to use more space than just a single bit because this

messes up with word alignment.

11

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://docs.memsql.com/sql-reference/v6.0/datatypes/

15-721 (Spring 2020)

DISCL AIMER

The truth is that you only need to worry about
word-alignment for cache lines (e.g., 64 bytes).

I’m going to show you the basic idea using 64-bit
words since it’s easier to see…

12

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any
unexpected behavior or additional work.

13

CREATE TABLE AndySux (

id INT PRIMARY KEY,

cdate TIMESTAMP,

color CHAR(2),

zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdate c zipc

char[]

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WORD-ALIGNED TUPLES

Approach #1: Perform Extra Reads

→Execute two reads to load the appropriate parts
of the data word and reassemble them.

Approach #2: Random Reads

→Read some unexpected combination of bytes
assembled into a 64-bit word.

Approach #3: Reject

→Throw an exception and hope app handles it.

14

Source: Levente Kurusa

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://medium.com/@iLevex/the-curious-case-of-unaligned-access-on-arm-5dd0ebe24965

15-721 (Spring 2020)

CREATE TABLE AndySux (

id INT PRIMARY KEY,

cdate TIMESTAMP,

color CHAR(2),

zipcode INT

);

WORD-ALIGNMENT: PADDING

Add empty bits after attributes to ensure that tuple
is word aligned.

15

64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdate zipc
00000000
00000000
00000000
00000000

00000
000
00000
000

char[]32-bits

64-bits

16-bits

32-bits

c

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CREATE TABLE AndySux (

id INT PRIMARY KEY,

cdate TIMESTAMP,

color CHAR(2),

zipcode INT

);

WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples'
physical layout to make sure they are aligned.
→ May still have to use padding.

16

64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdatezipc
000000000000
000000000000
000000000000
000000000000

char[]32-bits

64-bits

16-bits

32-bits

c

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CMU-DB ALIGNMENT EXPERIMENT

17

Avg. Throughput

No Alignment 0.523 MB/sec

Padding 11.7 MB/sec

Padding + Sorting 814.8 MB/sec

Processor: 1 socket, 4 cores w/ 2×HT
Workload: Insert Microbenchmark

Source: Tianyu Li

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.linkedin.com/in/tianyu-li-28608366/

15-721 (Spring 2020)

STORAGE MODELS

N-ary Storage Model (NSM)

Decomposition Storage Model (DSM)

Hybrid Storage Model

18

COLUMN-STORES VS. ROW-STORES: HOW
DIFFERENT ARE THEY REALLY?
SIGMOD 2008

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/09-storage/p967-abadi.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/09-storage/p967-abadi.pdf

15-721 (Spring 2020)

N-ARY STORAGE MODEL (NSM)

The DBMS stores all of the attributes for a single
tuple contiguously.

Ideal for OLTP workloads where txns tend to
operate only on an individual entity and insert-
heavy workloads.

Use the tuple-at-a-time iterator model.

19

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

N-ARY STORAGE MODEL (NSM)

Advantages
→ Fast inserts, updates, and deletes.
→ Good for queries that need the entire tuple.
→ Can use index-oriented physical storage.

Disadvantages
→ Not good for scanning large portions of the table and/or

a subset of the attributes.

20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores a single attribute for all tuples
contiguously in a block of data.

Ideal for OLAP workloads where read-only
queries perform large scans over a subset of the
table’s attributes.

21

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DECOMPOSITION STORAGE MODEL (DSM)

Advantages
→ Reduces the amount wasted work because the DBMS

only reads the data that it needs.
→ Better compression.

Disadvantages
→ Slow for point queries, inserts, updates, and deletes

because of tuple splitting/stitching.

22

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DSM SYSTEM HISTORY

1970s: Cantor DBMS

1980s: DSM Proposal

1990s: SybaseIQ (in-memory only)

2000s: Vertica, VectorWise, MonetDB

2010s: Everyone

23

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=655555

15-721 (Spring 2020)

DSM: DESIGN DECISIONS

Tuple Identification

Data Organization

Update Policy

Buffering Location

24

OPTIMAL COLUMN LAYOUT FOR
HYBRID WORKLOADS
VLDB 2019

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/08-storage/p2393-athanassoulis.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/08-storage/p2393-athanassoulis.pdf

15-721 (Spring 2020)

DSM: TUPLE IDENTIFICATION

Choice #1: Fixed-length Offsets
→ Each value is the same length for an attribute.

Choice #2: Embedded Tuple Ids
→ Each value is stored with its tuple id in a column.

25

Offsets

0
1
2
3

A B C D

Embedded Ids

A

0
1
2
3

B

0
1
2
3

C

0
1
2
3

D

0
1
2
3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DSM: DATA ORGANIZATION

Choice #1: Insertion Order
→ Tuples are inserted into any free slot that is available in

existing blocks.

Choice #2: Sorted Order
→ Tuples are inserted based into a slot according to some

ordering scheme.

Choice #3: Partitioned
→ Assign tuples to blocks according to their attribute values

and some partitioning scheme (e.g., hashing, range).

26

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Sorted Table

DSM: DATA ORGANIZATION

27

INSERT INTO xxx
VALUES (a2, b1, c5);

Sort Order: (A↑, B↓, C↑)

Data Table

A
a1

a3

a1

a2

a3

a1

a3

B
b1

b2

b2

b2

b1

b2

b1

C
c1

c9

c8

c7

c6

c9

c1

0
1
2
3
4
5
6
7 a2 b1 c5

A
a1

a1

a1

a2

a3

a3

a3

B
b2

b2

b1

b2

b2

b1

b1

C
c8

c9

c1

c7

c9

c1

c6

2
5
0
3
1
6
4
7

a3

a3

a3

b2

b1

b1

c9

c1

c6

a2 b1 c5

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASPER DELTA STORE

Range-partitioned column store with a "shallow"
order-preserving index above it.
→ Shallow index maps value ranges to partitions.
→ Index keys are sorted but the individual columns are not.

DBMS runs an offline optimization algorithm to
determine the optimal partitioning of data.

28

OPTIMAL COLUMN LAYOUT FOR
HYBRID WORKLOADS
VLDB 2019

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/08-storage/p2393-athanassoulis.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/08-storage/p2393-athanassoulis.pdf

15-721 (Spring 2020)

CASPER DELTA STORE

29

Shallow Index
key→partition

INSERT INTO xxx
VALUES (a2, b1, c5);

Data Table

A
a1

a1

a1

a2

a3

a3

a3

B
b2

b2

b1

b2

b1

b1

b2

C
c8

c9

c1

c7

c6

c1

c9

0
1
2
3
4
5
6
7
8
9

a2 b1 c5INSERT INTO xxx
VALUES (a2, b2, c6);

a3 b1 c6

a2 b2 c6

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

Data is “hot” when it enters the database
→ A newly inserted tuple is more likely to be updated again

the near future.

As a tuple ages, it is updated less frequently.
→ At some point, a tuple is only accessed in read-only

queries along with other tuples.

30

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HYBRID STORAGE MODEL

Single logical database instance that uses different
storage models for hot and cold data.

Store new data in NSM for fast OLTP
Migrate data to DSM for more efficient OLAP

31

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HYBRID STORAGE MODEL

Choice #1: Separate Execution Engines
→ Use separate execution engines that are optimized for

either NSM or DSM databases.

Choice #2: Single, Flexible Architecture
→ Use single execution engine that can efficiently operate

on both NSM and DSM databases.

32

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SEPARATE EXECUTION ENGINES

Run separate “internal” DBMSs that each only
operate on DSM or NSM data.
→ Need to combine query results from both engines to

appear as a single logical database to the application.
→ Must use a synchronization method (e.g., 2PC) if a txn

spans execution engines.

Two approaches to do this:
→ Fractured Mirrors (Oracle, IBM)
→ Delta Store (SAP HANA)

33

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FRACTURED MIRRORS

Store a second copy of the database in a DSM
layout that is automatically updated.
→ All updates are first entered in NSM then eventually

copied into DSM mirror.

34

A CASE FOR FRACTURED MIRRORS
VLDB 2002

NSM
(Primary)

DSM
(Mirror)

Transactions
Analytical
Queries

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=1287407
http://dl.acm.org/citation.cfm?id=1287407

15-721 (Spring 2020)

DELTA STORE

Stage updates to the database in an NSM table.

A background thread migrates updates from delta
store and applies them to DSM data.

35

NSM
Delta Store

DSM
Historical Data

Transactions

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PELOTON ADAPTIVE STORAGE

Employ a single execution engine architecture that
can operate on both NSM and DSM data.
→ Don’t need to store two copies of the database.
→ Don’t need to sync multiple database segments.

Note that a DBMS can still use the delta-store
approach with this single-engine architecture.

36

BRIDGING THE ARCHIPELAGO BETWEEN ROW-STORES AND
COLUMN-STORES FOR HYBRID WORKLOADS
SIGMOD 2016

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://db.cs.cmu.edu/papers/2016/arulraj-sigmod2016.pdf
http://db.cs.cmu.edu/papers/2016/arulraj-sigmod2016.pdf

15-721 (Spring 2020)

PELOTON ADAPTIVE STORAGE

37

Original Data Adapted Data

SELECT AVG(B)
FROM AndySux
WHERE C = “yyy”

UPDATE AndySux
SET A = 123,

B = 456,
C = 789

WHERE D = “xxx” A B C D

A B C D A B C D

Cold

Hot

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PELOTON ADAPTIVE STORAGE

39

0

400

800

1200

1600

Row Layout Column Layout Adaptive Layout

Sep-15
Scan Insert Scan Insert Scan Insert Scan Insert Scan Insert Scan Insert

E
xe

cu
ti

on
 T

im
e

(m
s)

Sep-16 Sep-17 Sep-18 Sep-19 Sep-20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SYSTEM CATALOGS

Almost every DBMS stores their database's
catalogs the same way that they store regular data.
→ Wrap object abstraction around tuples.
→ Specialized code for "bootstrapping" catalog tables.

The entire DBMS should be aware of transactions
in order to automatically provide ACID guarantees
for DDL commands and concurrent transactions.

40

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SCHEMA CHANGES

ADD COLUMN:
→ NSM: Copy tuples into new region in memory.
→ DSM: Just create the new column segment

DROP COLUMN:
→ NSM #1: Copy tuples into new region of memory.
→ NSM #2: Mark column as "deprecated", clean up later.
→ DSM: Just drop the column and free memory.

CHANGE COLUMN:
→ Check whether the conversion can happen. Depends on

default values.

41

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

INDEXES

CREATE INDEX:
→ Scan the entire table and populate the index.
→ Must record changes made by txns that modified the table

while another txn was building the index.
→ When the scan completes, lock the table and resolve

changes that were missed after the scan started.

DROP INDEX:
→ Just drop the index logically from the catalog.
→ It only becomes "invisible" when the txn that dropped it

commits. All existing txns will still have to update it.

42

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SEQUENCES

Typically stored in the catalog. Used for
maintaining a global counter
→ Also called "auto-increment" or "serial" keys

Sequences are not maintained with the same
isolation protection as regular catalog entries.
→ Rolling back a txn that incremented a sequence does not

rollback the change to that sequence.
→ All INSERT queries would incur write-write conflicts.

43

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PARTING THOUGHTS

We abandoned the hybrid storage model
→ Significant engineering overhead.
→ Delta version storage + column store is almost

equivalent.

Catalogs are hard.

44

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

