Lecture #07

Carnegie Mellon University

ADVANCED
| DATABASE

SYSTEMS

OLTP Indexes -~ :
(Trie Data Stmcturgs)
@ANdy Pavlo // 15-721 // SprngOZO

https://15721.courses.cs.cmu.edu/spring2019/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

$2CMU-DB

Latches
B+Trees
Judy Array
ART

Masstree

TODAY'S AGENDA

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATION GOALS

Small memory footprint.

Fast execution path when no contention.

Deschedule thread when it has been waiting for
too long to avoid burning cycles.

Each latch should not have to implement their
own queue to track waiting threads.

Source: Filip Pizlo

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://webkit.org/blog/6161/locking-in-webkit/

it! i i Ces related to thejr implementations:
L A I ‘ H I I\/I The whole Post seems to he Just wrong, and is Measuring something completely different than what the author thinks ang claims it js

Mmeasuring.

First off, spinlocks can only be used if You actual
rmplementing his own spinlocks in
claimed "lock not held” timing is co,

Y know you're not being scheduled while using them. But the blog post author seems fo be
user space with no regard for whether the Jock user might pe scheduled or not. And the code used for the
mplete garbage.

me difference s
That's pure garbage. What happens is that

(a} since you're Spinning, you're using CPy time

b (b) at a random time, the scheduler will schedule yoy oyt
10
Fast execut

(c) that random time might ne inst afte,

me" yoy

ou
= i ser Spaces unless y it's still
: t use spinlocks in u re that the s
| repeat: do no 're doing. And be awa _ ,
ou re . 1 nII' [to your
alftll'lr?"gdkt'rlwzrvyg: i’;gw what you are doing is basically
likeliho

n

e S are CPU-boung, and I'm Measuring random points of how |

Source: Eilip Pizlo
$=CMU-DB

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://webkit.org/blog/6161/locking-in-webkit/
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723

LATCH IMPLEMENTATIONS

Test-and-Set Spinlock
Blocking OS Mutex
Adaptive Spinlock
Queue-based Spinlock
Reader-WTriter Locks

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$=CMU-DB

LATCH IMPLEMENTATIONS

Choice #1: Test-and-Set Spinlock (TaS)

— Very efficient (single instruction to lock/unlock)
— Non-scalable, not cache friendly, not OS friendly.
— Example: std: :atomic<T>

std::atomic_flag latch;

while (latch.test_and_set(..)) {
// Yield? Abort? Retry?

}

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

Choice #1: Test-and-Set Spinlock (TaS)

— Very efficient (single instruction to lock/unlock)
— Non-scalable, not cache friendly, not OS friendly.
— Example: std: :atomic<T>

std::atomic_flag latch;

I

while (latch.test_and_set(..)) {
// Yield? Abort? Retry?

}

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

Choice #2: Blocking OS Mutex

— Simple to use
— Non-scalable (about 25ns per lock/unlock invocation)
— Example: std: :mutex

std: :mutex m;

m.lock();
// Do something special. ..
m.unlock();

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

LATCH IMPLEMENTATIONS

Choice #2: Blocking OS Mutex

— Simple to use
— Non-scalable (about 25ns per lock/unlock invocation)
— Example: std: :mutex

std: :mutex m;—pthread_mutex_t

: 4
m.lock(); futex
// Do something special. ..
m.unlock();

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

$=CMU-DB

LATCH IMPLEMENTATIONS

Choice #2: Blocking OS Mutex

— Simple to use
— Non-scalable (about 25ns per lock/unlock invocation)
— Example: std: :mutex

B OS Latch
std: :mutex m;—pthread_mutex_t @ Userspace Latch

: 4
m.lock(); futex
// Do something special. ..
m.unlock();

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

LATCH IMPLEMENTATIONS

Choice #2: Blocking OS Mutex

— Simple to use
— Non-scalable (about 25ns per lock/unlock invocation)
— Example: std: :mutex

B OS Latch
std: :mutex m;—pthread_mutex_t @ Userspace Latch

: 4
m.lock(); futex ﬁ
// Do something special. ..
m.unlock();

X

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

$=CMU-DB

LATCH IMPLEMENTATIONS

Choice #3: Adaptive Spinlock

— Thread spins on a userspace lock for a brief time.

— If they cannot acquire the lock, they then get descheduled
and stored in a global "parking lot".

— Threads check to see whether other threads are "parked"
before spinning and then park themselves.

— Example: Apple's WTF: : ParkingLot

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/WebKit/webkit/blob/master/Source/WTF/wtf/ParkingLot.h

LATCH IMPLEMENTATIONS

— More efficient than mutex, better cache locality
— Non-trivial memory management
— Example: std: :atomic<Latch*>

Base Latch

a next

S=CMU-DB CPU1 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

— More efficient than mutex, better cache locality
— Non-trivial memory management
— Example: std: :atomic<Latch*>

Base Latch CPUI1 Latch

a next a next

S=CMU-DB CPU1 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

— More efficient than mutex, better cache locality
— Non-trivial memory management
— Example: std: :atomic<Latch*>

Base Latch CPUI1 Latch

a next e——— a next

S=CMU-DB CPU1 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

— More efficient than mutex, better cache locality
— Non-trivial memory management
— Example: std: :atomic<Latch*>

Base Latch CPUI1 Latch

a next e——— a next

S=CMU-DB CPU1 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

— More efficient than mutex, better cache locality
— Non-trivial memory management
— Example: std: :atomic<Latch*>

Base Latch CPUI1 Latch CPU?2 Latch

a next e——— a next a next

S=CMU-DB CPU1 15-721 (Spring 2020) CPU2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

— More efficient than mutex, better cache locality
— Non-trivial memory management
— Example: std: :atomic<Latch*>

Base Latch CPUI1 Latch CPU?2 Latch

a next e——— a next a next

S=CMU-DB CPU1 15-721 (Spring 2020) CPU2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

— More efficient than mutex, better cache locality
— Non-trivial memory management
— Example: std: :atomic<Latch*>

Base Latch CPUI1 Latch CPU?2 Latch

ﬂnext .ﬁat < ﬂt
afF =

S=CMU-DB CPU1 15-721 (Spring 2020) CPU2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

— More efficient than mutex, better cache locality
— Non-trivial memory management
— Example: std: :atomic<Latch*>

Base Latch CPU1 Latch CPU?2 Latch CPU3 Latch

a next e——— a next e————— a next ﬂ next

S=CMU-DB CPU1 15-721 (Spring 2020) CPU2 CPU3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

— More efficient than mutex, better cache locality
— Non-trivial memory management
— Example: std: :atomic<Latch*>

Base Latch CPU1 Latch CPU?2 Latch CPU3 Latch

o SR~ WY - SN » W
~
af¥ =L¥ o

S=CMU-DB CPU1 15-721 (Spring 2020) CPU2 CPU3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

Crumme
. . Yand S, it
Choice #4: Queue-based Spinlock (MdS) 0
— More efficient than mutex, better cache locality
— Non-trivial memory management
— Example: std: :atomic<Latch*>
Base Latch CPU1 Latch CPU2 Latch CPU3 Latch

o W Y < Q- <ﬁ
ald T L}

S=CMU-DB CPU1 15-721 (Spring 2020) CPU2 CPU3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

Choice #5: Reader-Writer Locks

— Allows for concurrent readers.
— Must manage read/write queues to avoid starvation.
— Can be implemented on top of spinlocks.

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

Choice #5: Reader-Writer Locks

— Allows for concurrent readers.
— Must manage read/write queues to avoid starvation.
— Can be implemented on top of spinlocks.

Latch

o

read wrlte

L¥-0 L¥-0

X =0 X =0

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

Choice #5: Reader-Writer Locks

— Allows for concurrent readers.
— Must manage read/write queues to avoid starvation.
— Can be implemented on top of spinlocks.

Latch

o

read wrlte

L¥-1 L¥-0

X =0 X =0

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

Choice #5: Reader-Writer Locks

— Allows for concurrent readers.
— Must manage read/write queues to avoid starvation.
— Can be implemented on top of spinlocks.

Latch

o

read wrlte

ﬁ L¥-0

£-43

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

Choice #5: Reader-Writer Locks

— Allows for concurrent readers.
— Must manage read/write queues to avoid starvation.
— Can be implemented on top of spinlocks.

Latch

o

read wrlte

ﬁ L¥-0

£5-43

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

Choice #5: Reader-Writer Locks

— Allows for concurrent readers.
— Must manage read/write queues to avoid starvation.
— Can be implemented on top of spinlocks.

ﬂ—ﬂ:jﬁ 8 o

read wrlte
S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

Choice #5: Reader-Writer Locks

— Allows for concurrent readers.
— Must manage read/write queues to avoid starvation.
— Can be implemented on top of spinlocks.

ﬂ—ﬂ:jﬁ ﬂ—ﬁ

read wrlte
S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

Choice #5: Reader-Writer Locks

— Allows for concurrent readers.
— Must manage read/write queues to avoid starvation.
— Can be implemented on top of spinlocks.

066880

read wrlte
S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LATCH IMPLEMENTATIONS

Choice #5: Reader-Writer Locks

— Allows for concurrent readers.
— Must manage read/write queues to avoid starvation.
— Can be implemented on top of spinlocks.

g a ﬁ Latch
ﬁ

ti-t4-a ﬂ—ﬁ

read wrlte
S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

{H

B+TREE

A B+Tree is a self-balancing tree

data structure that keeps data
sorted and allows searches,

sequential access, insertions, and

deletions in O(log n).

— Generalization of a binary search tree

in that a node can have more than two

children.

— Optimized for systems that read and

CMU-DB

write large blocks of data.

15-721 (Spring 2020)

The Ubiquitous B-Tree
DOUGLAS COMER

Computer Seience Department, Purdue University, West Lafayette, Indiana 47907

B-treea have become, de facto, & standard for file organization. File indexes of users,
d

methods have all been propased

and umplemented using B-trees 'nu-p-p:r reviews B.trees and shows why they have
been so successful [t discusses the major variations of the B-tree, especially the B*-tree,
contrasting the relative merits and costs of each implomentation, It illustrates general
purpose access method which uses a Btree.

Keywords and Phrases: B-tree, B*-tree, B tree, file organization, index

CR Categorwes: 873 3.74 433 4 34

INTRODUCTION

The secondary storage facilities available
on large computer systems allow users to
store, update, and recall data from large
collections of information called files. A
computer must retrieve an item and place
it in main memory before it can be pro-
cessed. In order to make good use of the
computer resources, one must organize files
intelligently, making the retrieval process
efficient.

The choice of a good file organization
depends on the kinds of retrieval to be
performed. There are two broad classes of
retrieval commands which can be illus-
trated by the following examples:
Sequential: “From our employee file, pre-

pare a list of all employees’
names and addresses,” and
Random: “From our employee file, ex-
tract the information about
employee J. Smith”.
We can imagine a filing cabinet with three
drawers of folders, one folder for each em-
ployee. The drawers might be labeled “A-
G,"” “H-R," and “S-Z," while the folders

might be labeled with the employees’ last
names. A sequential request requires the
searcher to examine the entire file, one
folder at a time. On the other hand, a
random request implies that the searcher,
guided by the labels on the drawers and
folders, need only extract one folder.

Associated with a large, randomly ac-
cessed file in a computer system is an index
which, like the labels on the drawers and
folders of the file cabinet, speeds retrieval
by directing the searcher to the small part
of the file containing the desired item. Fig-
ure 1 depicts a file and its index. An index
may be physically integrated with the file,
like the labels on employee folders, or phys-
ically separate, like the labels on the draw-
ers. Usually the index itself is a file. If the
index file is large, another index may be
built on top of it to speed retrieval further,
and so on. The resulting hierarchy is similar
to the employee file, where the topmaost
index consists of labels on drawers, and the
;wxl level of index consists of labels on

ers,

Natural hierarchies, like the one formed
by considering last names as index entries,
do not always produce the best perform-

Permusion to copy without fee ll or part of this material is granted provided that the copies are not made

distributed for direct commereial advantage, the ACM

copyright notice and the title of the publ mation mnd

tave appear, and icsw iven thet copying i by perminton of the Asmocision for Computing Machinery. To
, or to republish, roquires a fee nd,or specific permission,

copy othe
©1579 ACM 00 ww-mmmm-um 0075

Computing Surveys, Vol 11, No 3, Juss 1970

10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?doid=356770.356776

$2CMU-DB

11

LATCH CRABBING /COUPLING

Acquire and release latches on B+Tree nodes when
traversing the data structure.

A thread can release latch on a parent node if its

child node considered safe.

— Any node that won't split or merge when updated.
— Not full (on insertion)

— More than half-full (on deletion)

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

LATCH CRABBING

Search: Start at root and go down; repeatedly,
— Acquire read (R) latch on child
— Then unlock the parent node.

Insert/Delete: Start at root and go down,

obtaining write (W) latches as needed.
Once child is locked, check if it is safe:

— If child is safe, release all locks on ancestors.

15-721 (Spring 2020)

12

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

EXAMPLE #1: SEARCH 23

20

A

$2CMU-DB

12

35 C

)

AN

23

¢ N\
E
N

44

F 38
N

15-721 (Spring 2020)

13

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

EXAMPLE #1: SEARCH 23

$2CMU-DB

15-721 (Spring 2020)

| 35 C
E 23 F 38 || 44
N N

13

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

13

EXAMPLE #1: SEARCH 23

$=CMU-DB

12

15-721 (Spring 2020)

W e can release the latch on A as
soon as we acquire the latch for C.

44 || G

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

13

EXAMPLE #1: SEARCH 23

20

A

$=CMU-DB

W e can release the latch on A as
soon as we acquire the latch for C.

C

15-721 (Spring 2020)

\

38 || 44 || G

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

13

EXAMPLE #1: SEARCH 23

20

A

$=CMU-DB

W e can release the latch on A as
soon as we acquire the latch for C.

C

15-721 (Spring 2020)

\

38 || 44 || G

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

EXAMPLE #2: DELETE 44

$2CMU-DB

15-721 (Spring 2020)

| 35 C
E 23 F 38 || 44
N N

14

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

14

EXAMPLE #2: DELETE 44

We may need to coalesce C, so we
— can't release the latch on A.

10 B

/ /\\‘

6 D 12 24 || G
NG

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

14

EXAMPLE #2: DELETE 44

20

$=CMU-DB

12

We may need to coalesce C, so we
can't release the latch on A.

G will not merge with F, so we can
release latches on A and C.

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

14

EXAMPLE #2: DELETE 44

20

$=CMU-DB

12

We may need to coalesce C, so we
can't release the latch on A.

G will not merge with F, so we can
release latches on A and C.

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

EXAMPLE #3: INSERT 40

$2CMU-DB

15-721 (Spring 2020)

| 35 C
E 23 F 38 || 44
N N

15

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15

EXAMPLE #3: INSERT 40

$=CMU-DB

12

15-721 (Spring 2020)

C has room if its child has to split, so
we can release the latch on A.

44 || G

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15

EXAMPLE #3: INSERT 40

$=CMU-DB

12

15-721 (Spring 2020)

C has room if its child has to split, so
we can release the latch on A.

44 || G

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15

EXAMPLE #3: INSERT 40

20

12

$=CMU-DB

C has room if its child has to split, so
we can release the latch on A.

G must split, so we can’t release the
latch on C.

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15

EXAMPLE #3: INSERT 40

20

A

C has room if its child has to split, so
we can release the latch on A.

G must split, so we can’t release the
latch on C.

44 || C

/G

12

23

| F

$=CMU-DB

'
E
N

15-721 (Spring 2020)

38 || 40 || G 44 H

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15

EXAMPLE #3: INSERT 40

20

A

C has room if its child has to split, so
we can release the latch on A.

G must split, so we can’t release the
latch on C.

35

44 || C

"\

12

23

$=CMU-DB

'
E
N

15-721 (Spring 2020)

F
~— N

38 |40 || G 44 H

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

BETTER LATCH CRABBING

The basic latch crabbing algorithm always takes a

write latch on the root for any update.
— This makes the index essentially single threaded.

A better approach is to optimistically assume that

the target leaf node is safe.
— Take R latches as you traverse the tree to reach it and

verify.

— If leaf is not safe, then do previous algorithm.

| CONCURRENCY OF OPERATIONS ON B-TREES
ACTA INFORMATICA 1977

S=CMU-DB 15-721 (Spring 2020)

17

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2699553
http://dl.acm.org/citation.cfm?id=2699553

EXAMPLE #4: DELETE 44

$2CMU-DB

15-721 (Spring 2020)

| 35 C
E 23 F 38 || 44
N N

18

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

18

EXAMPLE #4: DELETE 44

We assume that C is safe, so we can
release the latch on A.

10 B

/ /\\‘

6 D 12 24 || G
NG

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

18

EXAMPLE #4: DELETE 44

20

A

$=CMU-DB

12

We assume that C is safe, so we can
release the latch on A.

Acquire an exclusive latch on G.

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

18

EXAMPLE #4: DELETE 44

20

A

$=CMU-DB

12

We assume that C is safe, so we can
release the latch on A.

Acquire an exclusive latch on G.

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

VERSIONED LATCH COUPLING

Optimistic crabbing scheme where writers are not
blocked on readers.

Every node now has a version number (counter).

— Writers increment counter when they acquire latch.

— Readers proceed if a node’s latch is available but then do
not acquire it.

— It then checks whether the latch’s counter has changed
from when it checked the latch.

Relies on epoch GC to ensure pointers are valid.

- - | THE ART OF PRACTICAL SYNCHRONIZATION
DAMON 2016

Ww

"

CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/leis-damon2016.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/leis-damon2016.pdf

VERSIONED LATCHES: SEARCH 44

v4

v3]| 20 A
10 B [v5]| 35 C
M 12 EL6]| 23 Flﬁ 38 || 44
N N4 N

15-721 (Spring 2020)

20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

VERSIONED LATCHES: SEARCH 44

v4

@AA:Readv3
31| 20 [] A«
10 B [v5]| 35 C
Dlv4]| 12 ELv6{| 23 F Lvol| 38 || 44 ||G
N N4 N

15-721 (Spring 2020)

20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

20

VERSIONED LATCHES: SEARCH 44

v4

@A ﬁ %}?:Snyﬂ%e Node
V_3 20 7 A ...
@B
= B [v5]| 35 c@
M 12 EV_ 23 F v 2o | G

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

20

VERSIONED LATCHES: SEARCH 44

v4

@A ﬁ %}?:Snyﬁ%e Node
V3] 20 [] A B
@B
= + v5]| 35 c@
M 12 ELv6]| 23 F v 33 a2 G

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

20

VERSIONED LATCHES: SEARCH 44

v4

@A ﬁ %}?:Snyﬁ%e Node
V3] 20 [] A B
@B A: Recheck v3
= B [v5]| 35 c@
M 12 ELv6]| 23 F v 33 a2 G

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

20

VERSIONED LATCHES: SEARCH 44

v4

A: Read v3
@A A: Examine Node

B: Read v5
@B A: Recheck v3

B: Examine Node

v3]| 20 A
10 B [v5]| 35 C«
Dlv4]| 12 ELv6{| 23 F Lvol| 38 || 44 ||G
NG N N

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

20

VERSIONED LATCHES: SEARCH 44

v4

A: Read v3
@A A: Examine Node
—1T2 , A BReadVS
@B A: Recheck v3
B: Examine Node
................ CReadv9
10|, B [v5]| 35 C @C
Dlv4]| 12 ELv6{| 23 F Lvof| 35 || 44 G«

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

20

VERSIONED LATCHES: SEARCH 44

v4

v3

20

C

b

)

A: Read v3
@A A: Examine Node

e
: Recheck v3
@B B: Examine Node

T
: Recheck v5
@C C: Examine Node

12

23

38

44 G«

¢ N
ELv6
N

15-721 (Spring 2020)

(B

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

20

VERSIONED LATCHES: SEARCH 44

v4

v3

20

C

b

)

A: Read v3
@A A: Examine Node

e
: Recheck v3
@B B: Examine Node

T
: Recheck v5
@C C: Examine Node

12

23

38

44 G«

¢ N
ELv6
N

15-721 (Spring 2020)

(B

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

20

VERSIONED LATCHES: SEARCH 44

v4

v3

20

A: Read v3

@A A: Examine Node

B: Read v5

@B A: Recheck v3

10 B »v_s
/\\‘ N

Dlv4l| 12 E 23
N N

15-721 (Spring 2020)

C@C
A
F Lval| 38 [| 44
N

B: Examine Node

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

20

VERSIONED LATCHES: SEARCH 44

v4

v3

20

A: Read v3

@A A: Examine Node

@B

10 B »v_s
/\\‘ N

Dlv4l| 12 E 23
N N

15-721 (Spring 2020)

C@C
A
F Lval| 38 [| 44
N

B: Read v5
A: Recheck v3
B: Examine Node

G 4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

20

VERSIONED LATCHES: SEARCH 44

v4

v3

20 || A

B

)

A: Read v3

@A A: Examine Node

@B

10 B |
/\\‘ N

Dlv4l| 12 ELu6]] 53
N N

15-721 (Spring 2020)

38

44

(B

B: Read v5
A: Recheck v3
B: Examine Node

C: Read v9

G 4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

20

VERSIONED LATCHES: SEARCH 44

v4

v3

20 || A

3

B

C

N\

A: Read v3
@A A: Examine Node

B: Read v5
@B A: Recheck v3

B: Examine Node

C: Read v9
@C B: Recheck v5

44 G«

N\ N\
Dlv4}] 12 ELv6]| 23 F Lva}| 38
N N N

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

20

VERSIONED LATCHES: SEARCH 44

v4

A

B

A: Read v3
@A A: Examine Node

B: Read v5
@B A: Recheck v3

B: Examine Node

31| 20 []
10 B
/\\‘ N
Dlv4l| 12 ELv6
NG N

e

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

OBSERVATION

The inner node keys in a B+tree cannot tell you
whether a key exists in the index. You always must
traverse to the leaf node.

This means that you could have (at least) one
cache miss per level in the tree.

15-721 (Spring 2020)

21

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

22

TRIE INDEX
Keys: HELLO, HAT, HAVE

Use a digital representation of keys

to examine prefixes one-by-one
’_AAJE instead of comparing entire key.

— Also known as Digital Search Tree,

.
L Prefix Tree.
v
L
v
0]
v
ol

Bl

]

o € m e

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

22

TRIE INDEX

Keys: [HELLOJ HAT, HAVE
Use a digital representation of keys
to examine prefixes one-by-one

instead of comparing entire key.

— Also known as Digital Search Tree,
Prefix Tree.

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

TRIE INDEX PROPERTIES

Shape only depends on key space and lengths.
— Does not depend on existing keys or insertion order.
— Does not require rebalancing operations.

All operations have O(k) complexity where k is the

length of the key.

— The path to a leaf node represents the key of the leaf

— Keys are stored implicitly and can be reconstructed from
paths.

15-721 (Spring 2020)

23

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

24

TRIE KEY SPAN

The span of a trie level is the number of bits that

each partial key / digit represents.
— If the digit exists in the corpus, then store a pointer to the
next level in the trie branch. Otherwise, store null.

This determines the fan-out of each node and the
physical height of the tree.

— n-way Trie = Fan-Out of n

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TRIE KEY SPAN
1-bit Span Trie

FIRE Keys: K10,K25,K31
-y
Q0| §|1|0| <Repeati0x
K
0 1|3 K10~ 00000000 000010160
B r_
olo|1]5 olol1]5 K25~ 00000000 00011001
—A— —A— K31-»> 00000000 00011111
05|19 0 11§
K K
0|01 [5|/0|g|[1[0|/0|OB|[1]5
L — L
0|g|1|0||0|0[1]|§||0|0|1]|§
! ! !
Tuple Node

Pointer > Pointer >

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TRIE KEY SPAN
1-bit Span Trie

NN Keys: K10,K25,K31
K-_'
Q0| §|1|0| <Repeati0x
K
olgl1]5 K10-[opoooooe 00001010
B r_
olo|1]5 olol1]5 K25-|0p000000 00011001
—A— —A— K31-|0p0000oo 00011111
05|19 0 11§
K K
0|01 [5|/0|g|[1[0|/0|OB|[1]5
L — L
0|g|1|0||0|0[1]|§||0|0|1]|§
! ! !
Tuple Node

Pointer > Pointer >

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TRIE KEY SPAN
1-bit Span Trie

EE Keys: K10,K25,K31
_ 0
0 10| <R t 10.
K:'B epeat 10x ‘
0 1|8 K10-> 00000000 00001010
B r_
olo|1]5 olol1]5 K25~ 00000000 00011001
—A— —A— K31-» 00000000 00011111
olp|1]|0 olg|1/5p
K K
0|01 [5|/0|g|[1[0|/0|OB|[1]5
L — L
olgl1|allelo|1gllold|1]g
! ! !
Tuple Node

Pointer > Pointer >

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TRIE KEY SPAN
1-bit Span Trie

EE Keys: K10,K25,K31
_ 0
0 10| <R t 10.
K:'B epeat 10x ‘
0 1|8 K10-> 00000000 00001010
B r_
olo|1]5 olol1]5 K25~ 00000000 00011001
—A— —A— K31-» 00000000 00011111
olp|1]|0 olg|1/5p
K K
0|01 [5|/0|g|[1[0|/0|OB|[1]5
L — L
olgl1|allelo|1gllold|1]g
! ! !
Tuple Node

Pointer > Pointer >

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TRIE KEY SPAN
1-bit Span Trie

FIRE Keys: K10,K25,K31
-y
Q0| §|1|0| <Repeati0x
K
olg|1]5 K10-> 00000000 00de)o10
=
010] 15 ACIEr K25~ 00000000 0od1leo1
—A— —A— K31-»> 00000000 004d1j111
05|19 0 11§
K K
0|01 [5|/0|g|[1[0|/0|OB|[1]5
L — L
0|g|1|0||0|0[1]|§||0|0|1]|§
! ! !
Tuple Node

Pointer > Pointer >

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TRIE KEY SPAN
1-bit Span Trie

PR Keys: K10,K25,K31
-y
Q0| §|1|0| <Repeati0x
r_
olg|1]5 K10~ 00000000 000010
r_
olo|1]5 olol1]5 K25~ 00000000 00011001
K31-» 00000000 00011111
05|19 0 118
K K
10| 1|B||o|g|1|0)||0[0|1]58
K
0 1100|001]|g||0[0|1]§
: ' !
Tuple Node

Pointer ® > pointer >

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TRIE KEY SPAN
1-bit Span Trie

FIRE Keys: K10,K25,K31
-y
Q0| §|1|0| <Repeati0x
K
0 115 K10~ 00000000 000010160
e .
010] 15 01013 K25~ 00000000 000 1
—A— —A— K31-»> 00000000 0001111j11
05|19 0 1
[S
0|01 [5|/0|g|[1[0|/0|OB|[1]5
L — L
0|g|1|0||0|0[1]|§||0|0|1]|§
! ! !
Tuple Node

Pointer > Pointer >

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TRIE KEY SPAN
1-bit Span Trie

= Keys: K10,K25,K31

\ 4

§ | O | <Repeat 10x

ir K10+ 00000000 00001010
Y |
ar ar K25-> 00000000 00011001
ot Lt K31-> 00000000 00011111
g0 Fir
Y |
olg| lulo] |2l

4 =

§ 0 AR’ AR
v v '
Tuple Node

Pointer ® > Pointer ® >

S=CMU-DB 15-721 (Spring 2020)

25

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TRIE KEY SPAN
1-bit Span Trie

o Keys: K10,K25,K31
§ | @ | <Repeat 10x
v
B8 K10~ 00000000 00001010
g 75 § K25- 00000000 00011001
T4 aE K31+ 00000000 00011111
; FIF
olglllslollllols
\ 4 K
0 0% o) %

v

y
Tuple Node
Pointer ® » Pointer >

P
<«

S=CMU-DB 15-721 (Spring 2020)

25

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

RADIX TREE

1-bit Span Radix Tree

4
@ | Repeat 10x

<+ <+ e

<+
<+

Tuple Node
Pointer ® > Pointer ® >

$2CMU-DB

Omit all nodes with only a single

child.

— Also known as Patricia Tree.

Can produce false positives, so the
DBMS always checks the original

tuple to see whether a key matches.

15-721 (Spring 2020)

26

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

TRIE VARIANTS

Judy Arrays (HP)
ART Index (HyPer)
Masstree (Silo)

15-721 (Spring 2020)

27

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$=CMU-DB

28

JUDY ARRAYS

Variant of a 256-way radix tree. First known radix
tree that supports adaptive node representation.

Three array types

— Judy1: Bit array that maps integer keys to true/false.
— JudyL: Map integer keys to integer values.

— JudySL: Map variable-length keys to integer values.

Open-Source Implementation (LGPL).
Patented by HP in 2000. Expires in 2022.

— Not an issue according to authors.
— http://judy.sourceforge.net/

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://patents.google.com/patent/US6735595B2/en
http://comments.gmane.org/gmane.comp.lib.judy.devel/244
http://judy.sourceforge.net/

JUDY ARRAYS

Do not store meta-data about node in its header.

— This could lead to additional cache misses.

Pack meta-data about a node in 128-bit "Judy

Pointers" stored in its parent node.

— Node Type

— Population Count

— Child Key Prefix / Value (if only one child below)
— 64-bit Child Pointer

~_|ACOMPARISON OF ADAPTIVE RADIX TREES
AND HASH TABLES
ICDE 2015

S=CMU-DB 15-721 (Spring 2020)

29

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/alverez-icde2015.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/alverez-icde2015.pdf

JUDY ARRAYS: NODE TYPES

Every node can store up to 256 digits.
Not all nodes will be 100% full though.

Adapt node's organization based on its keys.
— Linear Node: Sparse Populations

— Bitmap Node: Typical Populations

— Uncompressed Node: Dense Population

~_|ACOMPARISON OF ADAPTIVE RADIX TREES
AND HASH TABLES
ICDE 2015

S=CMU-DB 15-721 (Spring 2020)

30

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/alverez-icde2015.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/alverez-icde2015.pdf

31

JUDY ARRAYS: LINEAR NODES

Linear Node . .
0 1 5 0 1 5 Store sorted list of partial prefixes
o | k2| +|ke| = | o[|m up to two cache lines.

— Original spec was one cache line

Store separate array of pointers to
children ordered according to
prefix sorted.

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

31

JUDY ARRAYS: LINEAR NODES

Linear Node . .
: 5 Store sorted list of partial prefixes

0 1 5 0
gl || up to two cache lines.

Sorted Digits — Original spec was one cache line

Store separate array of pointers to
children ordered according to
prefix sorted.

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

31

JUDY ARRAYS: LINEAR NODES

Linear Node . .
0 1 Store sorted list of partial prefixes

5 0 1 5
ko | k2| |kef = | = || n| up to two cache lines.

Sorted Digits Child Pointers — Original spec was one cache line

Store separate array of pointers to
children ordered according to
prefix sorted.

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$=CMU-DB

31

JUDY ARRAYS: LINEAR NODES

Linear Node

0

1

5

0

1

5

Ko

K2 o o o

K8

o]

o]

jof

Sorted Digits

6 x 1-byte =
6 bytes

Child Pointers

~—~—

6 X 16-bytes =
96 bytes

v

102 bytes
128 bytes (padded)

Store sorted list of partial prefixes

up to two cache lines.
— Original spec was one cache line

Store separate array of pointers to
children ordered according to
prefix sorted.

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

JUDY ARRAYS: BITMAP NODES

Bitmap Node
0-7 8-15 248-255
01000110 00000000 *| 00100100

$2CMU-DB

256-bit map to mark whether a
prefix is present in node.

Bitmap is divided into eight
segments, each with a pointer to a
sub-array with pointers to child
nodes.

15-721 (Spring 2020)

32

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

JUDY ARRAYS: BITMAP NODES

Bitmap Node

Prefix Bitmaps

0-7 8-15 248-255
o] = [psoren] = |-+ fiwreoa] =

Digit
. 0>00000000 4->00000100
Ji 100000001 5-00000101
S 2~00000010 600000110
3-00000011 7-00000111

\ 4

0

CMUDB

i

256-bit map to mark whether a
prefix is present in node.

Bitmap is divided into eight
segments, each with a pointer to a
sub-array with pointers to child
nodes.

15-721 (Spring 2020)

32

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

JUDY ARRAYS: BITMAP NODES

Bitmap Node .

Prefix Bitmaps Sub-Array Pointers 256-bit map to mark whether a

0-7 8-15 248-255 prefix is present in node.

01000110 n ﬂ *° | 00100100
Bitmap is divided into eight
segments, each with a pointer to a

o] o] o] o] o] o] o] o o . . .

sub-array with pointers to child

nodes.

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

JUDY ARRAYS: BITMAP NODES

Bitmap Node
Prefix Bitmaps Sub-Array Pointers
0-7 8-15 248-255
01000110 | i | 00000000 | g |***| 00100100 | §

Child Pointers

$2CMU-DB

256-bit map to mark whether a
prefix is present in node.

Bitmap is divided into eight
segments, each with a pointer to a
sub-array with pointers to child
nodes.

15-721 (Spring 2020)

32

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

ADAPATIVE RADIX TREE (ART)

Developed for TUM HyPer DBMS in 2013.

256-way radix tree that supports different node

types based on its population.
— Stores meta-data about each node in its header.

Concurrency support was added in 2015.

THE ADAPTIVE RADIX TREE: ARTFUL INDEXING FOR
,\ééIENZ—A\fEMORY DATABASES

S=CMU-DB 15-721 (Spring 2020)

33

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/leis-icde2013.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/07-oltpindexes2/leis-icde2013.pdf

$2CMU-DB

34

ART vs. JUDY

Difference #1: Node Types

— Judy has three node types with different organizations.

— ART has four nodes types that (mostly) vary in the
maximum number of children.

Difference #2: Purpose

— Judy is a general-purpose associative array. It "owns" the
keys and values.

— ART is a table index and does not need to cover the full
keys. Values are pointers to tuples.

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

35

ART: INNER NODE TYPES (1)

Node4
Store only the 8-bit digits that exist

at a given node in a sorted array.

KO | K2 | K3 | K8| & | & | & | @

The offset in sorted digit array
corresponds to offset in value

Nodelo array.
0 1 15 0 1 15
KO | K2 |*""| K8 | & | & || &

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$=CMU-DB

ART:

35

INNER NODE TYPES (1)

Node4 - |

s 1 o a1 o s Store.only the 8.—b1t digits that exist

N B N at a given node in a sorted array.
Sorted Digits . o
¢ The offset in sorted digit array
corresponds to offset in value

Nodelo array.

0 1 15 0 1 15

KO | K2 || K8| & | & || &

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

35

ART: INNER NODE TYPES (1)

Node4

e 1 2 3 0 1 2 3
o s [ws [= Lo Lo L=
Sorted Digits Child Pointers
Nodelo

0 1 15 0 1 15
KO |K2 [=-| K8 | & | - o

Store only the 8-bit digits that exist
at a given node in a sorted array.

The offset in sorted digit array

corresponds to offset in value
array.

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

ART: INNER NODE TYPES (2)

Node48 . o
Instead of storing 1-byte digits,
KO K1 K2 K255 0 1 47 maintain an array of 1—byte offsets
a|g|ml||m|a|n||a| toachildpointer array that is

indexed on the digit bits.

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

ART: INNER NODE TYPES (2)

Node48

Pointer Array Offsets
Ko K1 K2 K255 0 1

47

QEIEEE B
~

$2CMU-DB

Instead of storing 1-byte digits,
maintain an array of 1-byte offsets
to a child pointer array that is
indexed on the digit bits.

15-721 (Spring 2020)

36

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

ART: INNER NODE TYPES (2)

Node48

Pointer Array Offsets
Ko K1 K2 K255 0 1

47

ENEIEDEED BN

$2CMU-DB

Instead of storing 1-byte digits,
maintain an array of 1-byte offsets
to a child pointer array that is
indexed on the digit bits.

15-721 (Spring 2020)

36

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

ART: INNER NODE TYPES (2)

Node48

Pointer Array Offsets
Ko K1 K2 K255 0

1

47

o @ o e o e

jof

o]

n o o o

jof

vv

48 x 8-bytes =

256 x 1-byte =
256 bytes

384 bytes

v

640 bytes

$2CMU-DB

Instead of storing 1-byte digits,
maintain an array of 1-byte offsets
to a child pointer array that is
indexed on the digit bits.

15-721 (Spring 2020)

36

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

37

ART: INNER NODE TYPES (3)

Node256
Store an array of 256 pointers to

child nodes. This covers all
possible values in 8-bit digits.

Ko K1 K2 K3 K4 K5 K6 K255

g ||l ||| a|@ || -

Same as the Judy Array's
Uncompressed Node.

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

37

ART: INNER NODE TYPES (3)

Node256
Store an array of 256 pointers to

Ko K1 K2 K5 Ke K6 K6 K2 child nodes. This covers all

il I Ml Il I possible values in 8-bit digits.
256 x 8-byte = Same as the Judy Array's
2048 bytes Uncompressed Node.

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

ART: BINARY COMPARABLE KEYS

Not all attribute types can be decomposed into

binary comparable digits for a radix tree.

— Unsigned Integers: Byte order must be flipped for little
endian machines.

— Signed Integers: Flip two’s-complement so that negative
numbers are smaller than positive.

— Floats: Classify into group (neg vs. pos, normalized vs.
denormalized), then store as unsigned integer.

— Compound: Transform each attribute separately.

15-721 (Spring 2020)

38

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

ART: BINARY COMPARABLE KEYS
8-bit Span Radix Tree

. Int Key: 168496141 oD on
/ ‘ 0C 0B
0B 0C
0B | OF Hex Key: 0A0BOC QD OA oD
— Little Big
@B | oC| 1D o Endian Endian
o 0B | @D o
ol o

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

ART: BINARY COMPARABLE KEYS

8-bit Span Radix Tree

0A

/

0B | OF

$2CMU-DB

Int Key: 168496141

$

Hex Key: 0A 0B 0C 0D

Find: 658205
Hex: 0A0B 1D

15-721 (Spring 2020)

oD
0C
0B

0A

Little
Endian |Endian

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

8-bit Span Radix Tree

ART: BINARY COMPARABLE KEYS

$2CMU-DB

Int Key: 168496141

$

Hex Key: 0A 0B 0C 0D

Find: 658205
Hex: 0A0B 1D

15-721 (Spring 2020)

oD
0C
0B

0A

Little
Endian |Endian

39

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

MASSTREE

Masstree
Instead of using different layouts
Bytes [0-7] . . .
for each trie node based on its size,
(== use an entire B+Tree.
(] CgllH]
4 K — Each B+tree represents 8-byte span.
— Optimized for long keys.
Bytes [8-15] Bytes [8-15] ! .
— Uses a latching protocol that is similar
E%j E%j to versioned latches.

Part of the Harvard Silo project.

~ |CACHE CRAFTINESS FOR FAST MULTICORE
KEY-VALUE STORAGE
EUROSYS 2012

Ww

"

CMu-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dbdb.io/db/silo
https://dl.acm.org/citation.cfm?id=2168855
https://dl.acm.org/citation.cfm?id=2168855

41

IN-MEMORY INDEXES

Processor: 1 socket, 10 cores w/ 2xHT
Workload: 50m Random Integer Keys (64-bit)

B Open Bw-Tree M Skip List B B+Tree M Masstree ART
60

51.5

o
)

44.9 42.9

N
(@)

29 30.5

DO
-

U
)

Operations/sec (M)
(O8]
(@)

0
Source: Zigi Wang Insert-Only Read-Only Read/Update Scan/Insert

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/wangziqi2016/index-microbench

42

IN-MEMORY INDEXES

Processor: 1socket, 10 cores w/ 2xHT
Workload: 50m Keys

B Open Bw-Tree M Skip List B B+Tree M Masstree ART
5

4.22

~

(O8)

[\
|

Memory (GB)

[
|

O _
Source: Zigi Wang Mono Int Rand Int Emails

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/wangziqi2016/index-microbench

$2CMU-DB

PARTING THOUGHTS

Andy was wrong about the Bw-Tree and latch-
free indexes.

Radix trees have interesting properties, but a well-
written B+tree is still a solid design choice.

15-721 (Spring 2020)

43

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

NEXT CLASS

System Catalogs
Data Layout
Storage Models

15-721 (Spring 2020)

44

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

