
Intro to Database Systems

15-445/15-645

Fall 2019

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

26 Final Review +
Systems Potpourri

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

CMU 15-445/645 (Fall 2019)

ADMINISTRIVIA

Project #4: Tuesday Dec 10th @ 11:59pm

Extra Credit: Tuesday Dec 10th @ 11:59pm

Final Exam: Monday Dec 9th @ 5:30pm

2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

FINAL EXAM

Who: You

What: http://cmudb.io/f19-final

When: Monday Dec 9th @ 5:30pm

Where: Porter Hall 100

Why: https://youtu.be/6yOH_FjeSAQ

3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
http://cmudb.io/f19-final
https://youtu.be/6yOH_FjeSAQ

CMU 15-445/645 (Fall 2019)

FINAL EXAM

What to bring:
→ CMU ID
→ One page of handwritten notes (double-sided)
→ Extra Credit Coupon

Optional:
→ Spare change of clothes
→ Food

What not to bring:
→ Your roommate

4

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

COURSE EVALS

Your feedback is strongly needed:
→ https://cmu.smartevals.com

Things that we want feedback on:
→ Homework Assignments
→ Projects
→ Reading Materials
→ Lectures

5

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://cmu.smartevals.com/

CMU 15-445/645 (Fall 2019)

OFFICE HOURS

Andy's hours:
→ Friday Dec 6th @ 3:30-4:30pm
→ Monday Dec 9th @ 1:30-2:30pm

All TAs will have their regular office hours up to
and including Saturday Dec 14th

6

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

STUFF BEFORE MID -TERM

SQL

Buffer Pool Management

Hash Tables

B+Trees

Storage Models

Inter-Query Parallelism

7

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TRANSACTIONS

ACID

Conflict Serializability:
→ How to check?
→ How to ensure?

View Serializability

Recoverable Schedules

Isolation Levels / Anomalies

9

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TRANSACTIONS

Two-Phase Locking
→ Rigorous vs. Non-Rigorous
→ Deadlock Detection & Prevention

Multiple Granularity Locking
→ Intention Locks

10

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TRANSACTIONS

Timestamp Ordering Concurrency Control
→ Thomas Write Rule

Optimistic Concurrency Control
→ Read Phase
→ Validation Phase
→ Write Phase

Multi-Version Concurrency Control
→ Version Storage / Ordering
→ Garbage Collection

11

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CRASH RECOVERY

Buffer Pool Policies:
→ STEAL vs. NO-STEAL
→ FORCE vs. NO-FORCE

Write-Ahead Logging

Logging Schemes

Checkpoints

ARIES Recovery
→ Log Sequence Numbers
→ CLRs

12

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DISTRIBUTED DATABASES

System Architectures

Replication

Partitioning Schemes

Two-Phase Commit

13

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

26

25

24

18

18

17

12

11

10

10

152018
20

19

18

17

17

17

17

16

15

15

2019

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

16

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

FACEBOOK SCUBA

Internal DBMS designed for real-time data
analysis of performance monitoring data.
→ Columnar Storage Model
→ Distributed / Shared-Nothing
→ Tiered-Storage
→ No Joins or Global Sorting
→ Heterogeneous Hierarchical Distributed Architecture

Designed for low-latency ingestion and queries.

Redundant deployments with lossy fault-tolerance.

17

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

FACEBOOK LOG PIPELINE

18

Record
Batcher

Record
Batcher

Record
Batcher

…

Combined Logs
Per Category

Streaming Platform

Scuba

Structured
Debug Logs

…

Columnar
Batch Data

Execution Layer

SQL Queries

Aggregator
Aggregator

Aggregator

Application
Servers

Leaf Node
Leaf Node

Leaf Node

V
a

lid
a

tio
n

 S
e

rv
ice

Insert
Counters

Source: Stavros Harizopoulos

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://engineering.fb.com/data-infrastructure/scribe/
https://atscaleconference.com/videos/systems-scale-2019-scuba-real-time-monitoring-and-log-analytics-at-scale/

CMU 15-445/645 (Fall 2019)

SCUBA ARCHITECTURE

Leaf Nodes:
→ Store columnar data on local SSDs.
→ Leaf nodes may or may not contain data needed for a

query.
→ No indexes. All scanning is done on time ranges.

Aggregator Nodes:
→ Dispatch plan fragments to all its children leaf nodes.
→ Combine the results from children.
→ If a leaf node does not produce results before a timeout,

then they are omitted.

19

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCUBA ARCHITECTURE

20

…
…

SELECT COUNT(*) FROM events
WHERE type = 'crash'
AND time = 'Monday'

Root

Leaf Node Leaf Node Leaf Node Leaf Node Leaf Node Leaf Node

Aggregator Aggregator Aggregator

Query Plan
Fragments

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCUBA ARCHITECTURE

20

…
…

SELECT COUNT(*) FROM events
WHERE type = 'crash'
AND time = 'Monday'

Root

Leaf Node Leaf Node Leaf Node Leaf Node Leaf Node Leaf Node

Aggregator Aggregator Aggregator

Query Plan
Fragments

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCUBA ARCHITECTURE

20

…
…

SELECT COUNT(*) FROM events
WHERE type = 'crash'
AND time = 'Monday'

10 20 25 15 20

Root

Leaf Node Leaf Node Leaf Node Leaf Node Leaf Node Leaf Node

Aggregator Aggregator Aggregator

Query Plan
Fragments

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCUBA ARCHITECTURE

20

…
…

SELECT COUNT(*) FROM events
WHERE type = 'crash'
AND time = 'Monday'

10 20 25 15 20

30+40+20=90
Root

10+20=30 25+15=40 20

Leaf Node Leaf Node Leaf Node Leaf Node Leaf Node Leaf Node

Aggregator Aggregator Aggregator

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

FAULT TOLERANCE

Facebook maintains multiple Scuba clusters that
contain the same databases.

Every query is executed on all the clusters at the
same time.

It compares the amount of missing data each
cluster had when executing the query to determine
which one produced the most accurate result.
→ Track the number of tuples examined vs. number of

tuples inserted via Validation Service.

21

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

22

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MONGODB

Distributed document DBMS started in 2007.
→ Document → Tuple
→ Collection → Table/Relation

Open-source (Server Side Public License)

Centralized shared-nothing architecture.

Concurrency Control:
→ OCC with multi-granular locking

23

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PHYSICAL DENORMALIZATION

A customer has orders and each order
has order items.

24

Customers

Orders

Order Items

R2(orderId,custId,…)

R1(custId,name,…)

R3(itemId,orderId,…)

⨝

⨝

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PHYSICAL DENORMALIZATION

A customer has orders and each order
has order items.

24

Customers

Orders

Order Items

Customer

OrdersOrdersOrder

Order Item

Order Item

⋮

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PHYSICAL DENORMALIZATION

A customer has orders and each order
has order items.

24

Customers

Orders

Order Items

{
"custId": 1234,
"custName": "Andy",
"orders": [
{ "orderId": 9999,

"orderItems": [
{ "itemId": "XXXX",

"price": 19.99 },
{ "itemId": "YYYY",

"price": 29.99 },
] }

]
}

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

QUERY EXECUTION

JSON-only query API

No cost-based query planner / optimizer.
→ Heuristic-based + "random walk" optimization.

JavaScript UDFs (not encouraged).

Supports server-side joins (only left-outer?).

Multi-document transactions.

25

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DISTRIBUTED ARCHITECTURE

Heterogeneous distributed components.
→ Shared nothing architecture
→ Centralized query router.

Master-slave replication.

Auto-sharding:
→ Define 'partitioning' attributes for each collection (hash

or range).
→ When a shard gets too big, the DBMS automatically splits

the shard and rebalances.

26

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MONGODB CLUSTER ARCHITECTURE

27

Router
(mongos)

Shards (mongod)

P3 P4

P1 P2

P1→ID:1-100

P2→ID:101-200

P3→ID:201-300

P4→ID:301-400

Config Server
(mongod)

Router
(mongos)

⋮

⋮

Application
Server

Get Id=101

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

STORAGE ARCHITECTURE

Originally used mmap storage manager
→ No buffer pool.
→ Let the OS decide when to flush pages.
→ Single lock per database.

MongoDB v3 supports pluggable storage backends
→ WiredTiger from BerkeleyDB alumni.

http://cmudb.io/lectures2015-wiredtiger
→ RocksDB from Facebook (“MongoRocks”)

http://cmudb.io/lectures2015-rocksdb

28

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
http://cmudb.io/lectures2015-wiredtiger
http://cmudb.io/lectures2015-rocksdb

CMU 15-445/645 (Fall 2019)

29

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

COCKROACHDB

Started in 2015 by ex-Google employees.

Open-source (BSL – MariaDB)

Decentralized shared-nothing architecture using
range partitioning.

Log-structured on-disk storage (RocksDB)

Concurrency Control:
→ MVCC + OCC
→ Serializable isolation only

30

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DISTRIBUTED ARCHITECTURE

Multi-layer architecture on top of a
replicated key-value store.
→ All tables and indexes are store in a giant

sorted map in the k/v store.

Uses RocksDB as the storage manager
at each node.

Raft protocol (variant of Paxos) for
replication and consensus.

31

SQL Layer

Transactional
Key-Value

Router

Replication

Storage

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CONCURRENCY CONTROL

DBMS uses hybrid clocks (physical + logical) to
order transactions globally.
→ Synchronized wall clock with local counter.

Txns stage writes as "intents" and then checks for
conflicts on commit.

All meta-data about txns state resides in the key-
value store.

32

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
http://www.cse.buffalo.edu/tech-reports/2014-04.pdf

CMU 15-445/645 (Fall 2019)

COCKROACHDB OVERVIEW

33

Node 1 Node 2 Node 3

Application
ID:1-100 →Node1

ID:101-200 →Node2

ID:201-300 →Node3

1-100

101-200

201-300

1-100

101-200

201-300

1-100

101-200

201-300

…

Node n

Id=50

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

COCKROACHDB OVERVIEW

33

Node 1 Node 2 Node 3

Leader

Application

Raft

Raft

ID:1-100 →Node1

ID:101-200 →Node2

ID:201-300 →Node3

1-100

101-200

201-300

1-100

101-200

201-300

1-100

101-200

201-300

Update Id=50

…

Node n

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

COCKROACHDB OVERVIEW

33

Node 1 Node 2 Node 3

Application
ID:1-100 →Node1

ID:101-200 →Node2

ID:201-300 →Node3

1-100

101-200

201-300

1-100

101-200

201-300

1-100

101-200

201-300

…

Node n

Id=150

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

COCKROACHDB OVERVIEW

33

Node 1 Node 2 Node 3

Application
ID:1-100 →Node1

ID:101-200 →Node2

ID:201-300 →Node3

1-100

101-200

201-300

1-100

101-200

201-300

1-100

101-200

201-300

Get Id=150

…

Node n

Leader

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

ANDY'S CONCLUDING REMARKS

Databases are awesome.
→ They cover all facets of computer science.
→ We have barely scratched the surface…

Going forth, you should now have a good
understanding how these systems work.

This will allow you to make informed decisions
throughout your entire career.
→ Avoid premature optimizations.

34

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

