
Intro to Database Systems

15-445/15-645

Fall 2019

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

24 Distributed OLAP
Databases

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

CMU 15-445/645 (Fall 2019)

ADMINISTRIVIA

Homework #5: Monday Dec 3rd @ 11:59pm

Project #4: Monday Dec 10th @ 11:59pm

Extra Credit: Wednesday Dec 10th @ 11:59pm

Final Exam: Monday Dec 9th @ 5:30pm

Systems Potpourri: Wednesday Dec 4th
→ Vote for what system you want me to talk about.
→ https://cmudb.io/f19-systems

2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://cmudb.io/f19-systems

CMU 15-445/645 (Fall 2019)

ADMINISTRIVIA

Monday Dec 2nd – Oracle Lecture
→ Shasank Chavan (VP In-Memory Databases)

Monday Dec 2nd – Oracle Systems Talk
→ 4:30pm in GHC 6115
→ Pizza will be served

Tuesday Dec 3rd – Oracle Research Talk
→ Hideaki Kimura (Oracle Beast)
→ 12:00pm in CIC 4th Floor (Panther Hollow Room)
→ Pizza will be served.

3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://db.cs.cmu.edu/events/db-seminar-fall-2019-db-group-shasank-chavan-oracle/
https://db.cs.cmu.edu/events/pdl-sdi-fall-2019-hideaki-kimura-oracle/

CMU 15-445/645 (Fall 2019)

L AST CL ASS

Atomic Commit Protocols

Replication

Consistency Issues (CAP)

Federated Databases

4

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BIFURCATED ENVIRONMENT

5

Extract
Transform

Load

OLAP DatabaseOLTP Databases

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DECISION SUPPORT SYSTEMS

Applications that serve the management,
operations, and planning levels of an organization
to help people make decisions about future issues
and problems by analyzing historical data.

Star Schema vs. Snowflake Schema

6

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

STAR SCHEMA

7

CATEGORY_NAME
CATEGORY_DESC
PRODUCT_CODE
PRODUCT_NAME
PRODUCT_DESC

PRODUCT_DIM

COUNTRY
STATE_CODE
STATE_NAME
ZIP_CODE
CITY

LOCATION_DIM

ID
FIRST_NAME
LAST_NAME
EMAIL
ZIP_CODE

CUSTOMER_DIM

YEAR
DAY_OF_YEAR
MONTH_NUM
MONTH_NAME
DAY_OF_MONTH

TIME_DIM

SALES_FACT
PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

PRICE
QUANTITY

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SNOWFL AKE SCHEMA

8

CATEGORY_FK
PRODUCT_CODE
PRODUCT_NAME
PRODUCT_DESC

PRODUCT_DIM

COUNTRY
STATE_FK
ZIP_CODE
CITY

LOCATION_DIM

ID
FIRST_NAME
LAST_NAME
EMAIL
ZIP_CODE

CUSTOMER_DIM

YEAR
DAY_OF_YEAR
MONTH_FK
DAY_OF_MONTH

TIME_DIM

SALES_FACT
PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

PRICE
QUANTITY

CATEGORY_ID
CATEGORY_NAME
CATEGORY_DESC

CAT_LOOKUP

STATE_ID
STATE_CODE
STATE_NAME

STATE_LOOKUP
MONTH_NUM
MONTH_NAME
MONTH_SEASON

MONTH_LOOKUP

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

STAR VS. SNOWFL AKE SCHEMA

Issue #1: Normalization
→ Snowflake schemas take up less storage space.
→ Denormalized data models may incur integrity and

consistency violations.

Issue #2: Query Complexity
→ Snowflake schemas require more joins to get the data

needed for a query.
→ Queries on star schemas will (usually) be faster.

9

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

P3 P4

P1 P2

PROBLEM SETUP

10

Application
Server

PartitionsSELECT * FROM R JOIN S
ON R.id = S.id

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

P3 P4

P1 P2

PROBLEM SETUP

10

Application
Server

PartitionsSELECT * FROM R JOIN S
ON R.id = S.id

P2
P4
P3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TODAY'S AGENDA

Execution Models

Query Planning

Distributed Join Algorithms

Cloud Systems

11

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PUSH VS. PULL

Approach #1: Push Query to Data
→ Send the query (or a portion of it) to the node that

contains the data.
→ Perform as much filtering and processing as possible

where data resides before transmitting over network.

Approach #2: Pull Data to Query
→ Bring the data to the node that is executing a query that

needs it for processing.

12

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PUSH QUERY TO DATA

13

Node

Application
Server Node

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

R ⨝ S
IDs [101,200] Result: R ⨝ S

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Storage

PULL DATA TO QUERY

14

Node

Application
Server Node

Page ABC

Page XYZ

R ⨝ S
IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Storage

PULL DATA TO QUERY

14

Node

Application
Server Node

Page ABC

Page XYZ

R ⨝ S
IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Storage

PULL DATA TO QUERY

14

Node

Application
Server Node

R ⨝ S
IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

Result: R ⨝ S

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

OBSERVATION

The data that a node receives from remote sources
are cached in the buffer pool.
→ This allows the DBMS to support intermediate results

that are large than the amount of memory available.
→ Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a
node crashes during execution?

15

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

QUERY FAULT TOLERANCE

Most shared-nothing distributed OLAP DBMSs
are designed to assume that nodes do not fail
during query execution.
→ If one node fails during query execution, then the whole

query fails.

The DBMS could take a snapshot of the
intermediate results for a query during execution
to allow it to recover if nodes fail.

16

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Storage

QUERY FAULT TOLERANCE

17

Node

Application
Server Node

R ⨝ S

SELECT * FROM R JOIN S
ON R.id = S.id

Result: R ⨝ S

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Storage

QUERY FAULT TOLERANCE

17

Node

Application
Server Node

SELECT * FROM R JOIN S
ON R.id = S.id Result: R ⨝ S

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

QUERY PL ANNING

All the optimizations that we talked about before
are still applicable in a distributed environment.
→ Predicate Pushdown
→ Early Projections
→ Optimal Join Orderings

Distributed query optimization is even harder
because it must consider the location of data in the
cluster and data movement costs.

18

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

QUERY PL AN FRAGMENTS

Approach #1: Physical Operators
→ Generate a single query plan and then break it up into

partition-specific fragments.
→ Most systems implement this approach.

Approach #2: SQL
→ Rewrite original query into partition-specific queries.
→ Allows for local optimization at each node.
→ MemSQL is the only system that I know that does this.

19

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

QUERY PL AN FRAGMENTS

20

SELECT * FROM R JOIN S
ON R.id = S.id

Id:1-100

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 1 AND 100

Id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 101 AND 200

Id:201-300

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 201 AND 300

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

QUERY PL AN FRAGMENTS

20

SELECT * FROM R JOIN S
ON R.id = S.id

Id:1-100

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 1 AND 100

Id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 101 AND 200

Id:201-300

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 201 AND 300

Union the output of
each join to produce

final result.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

OBSERVATION

The efficiency of a distributed join depends on the
target tables' partitioning schemes.

One approach is to put entire tables on a single
node and then perform the join.
→ You lose the parallelism of a distributed DBMS.
→ Costly data transfer over the network.

21

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DISTRIBUTED JOIN ALGORITHMS

To join tables R and S, the DBMS needs to get the
proper tuples on the same node.

Once there, it then executes the same join
algorithms that we discussed earlier in the
semester.

22

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCENARIO #1

One table is replicated at every node.
Each node joins its local data and then
sends their results to a coordinating
node.

23

R{Id}

S

Id:1-100

Replicated

R{Id}

S

Id:101-200

Replicated

SELECT * FROM R JOIN S
ON R.id = S.id

P1:R⨝S P2:R⨝S

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCENARIO #1

One table is replicated at every node.
Each node joins its local data and then
sends their results to a coordinating
node.

23

R{Id}

S

Id:1-100

Replicated

R{Id}

S

Id:101-200

Replicated

SELECT * FROM R JOIN S
ON R.id = S.id

P1:R⨝S

P2:R⨝S
R⨝S

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCENARIO #2

Tables are partitioned on the join
attribute. Each node performs the join
on local data and then sends to a node
for coalescing.

24

R{Id}

S{Id}

Id:1-100 R{Id}

S{Id}

Id:101-200

Id:1-100 Id:101-200

P1:R⨝S P2:R⨝S

SELECT * FROM R JOIN S
ON R.id = S.id

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCENARIO #2

Tables are partitioned on the join
attribute. Each node performs the join
on local data and then sends to a node
for coalescing.

24

R{Id}

S{Id}

Id:1-100 R{Id}

S{Id}

Id:101-200

Id:1-100 Id:101-200

P1:R⨝S

P2:R⨝S
R⨝S

SELECT * FROM R JOIN S
ON R.id = S.id

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS broadcasts
that table to all nodes.

25

R{Id}

S{Val}

Id:1-100 R{Id}

S{Val}

Id:101-200

Val:1-50 Val:51-100

SELECT * FROM R JOIN S
ON R.id = S.id

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS broadcasts
that table to all nodes.

25

R{Id}

S{Val}

Id:1-100 R{Id}

S{Val}

Id:101-200

Val:1-50 Val:51-100

S

SELECT * FROM R JOIN S
ON R.id = S.id

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS broadcasts
that table to all nodes.

25

R{Id}

S{Val}

Id:1-100 R{Id}

S{Val}

Id:101-200

Val:1-50 Val:51-100

S S

SELECT * FROM R JOIN S
ON R.id = S.id

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS broadcasts
that table to all nodes.

25

R{Id}

S{Val}

Id:1-100 R{Id}

S{Val}

Id:101-200

Val:1-50 Val:51-100

S S

P1:R⨝S P2:R⨝S

SELECT * FROM R JOIN S
ON R.id = S.id

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS broadcasts
that table to all nodes.

25

R{Id}

S{Val}

Id:1-100 R{Id}

S{Val}

Id:101-200

Val:1-50 Val:51-100

S S

P1:R⨝S

P2:R⨝S
R⨝S

SELECT * FROM R JOIN S
ON R.id = S.id

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCENARIO #4

Both tables are not partitioned on the
join key. The DBMS copies the tables
by reshuffling them across nodes.

26

R{Name}

S{Val}

Name:A-M R{Name}

S{Val}

Name:N-Z

Val:1-50 Val:51-100

SELECT * FROM R JOIN S
ON R.id = S.id

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCENARIO #4

Both tables are not partitioned on the
join key. The DBMS copies the tables
by reshuffling them across nodes.

26

R{Name}

S{Val}

Name:A-M R{Name}

S{Val}

Name:N-Z

Val:1-50 Val:51-100

R{Id} Id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCENARIO #4

Both tables are not partitioned on the
join key. The DBMS copies the tables
by reshuffling them across nodes.

26

R{Name}

S{Val}

Name:A-M R{Name}

S{Val}

Name:N-Z

Val:1-50 Val:51-100

R{Id}Id:1-100 R{Id} Id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCENARIO #4

Both tables are not partitioned on the
join key. The DBMS copies the tables
by reshuffling them across nodes.

26

R{Name}

S{Val}

Name:A-M R{Name}

S{Val}

Name:N-Z

Val:1-50 Val:51-100

Id:101-200S{Id}

R{Id}Id:1-100 R{Id} Id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCENARIO #4

Both tables are not partitioned on the
join key. The DBMS copies the tables
by reshuffling them across nodes.

26

R{Name}

S{Val}

Name:A-M R{Name}

S{Val}

Name:N-Z

Val:1-50 Val:51-100

Id:1-100 S{Id} Id:101-200S{Id}

R{Id}Id:1-100 R{Id} Id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCENARIO #4

Both tables are not partitioned on the
join key. The DBMS copies the tables
by reshuffling them across nodes.

26

R{Name}

S{Val}

Name:A-M R{Name}

S{Val}

Name:N-Z

Val:1-50 Val:51-100

Id:1-100 S{Id} Id:101-200S{Id}

P1:R⨝S P2:R⨝S

R{Id}Id:1-100 R{Id} Id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCENARIO #4

Both tables are not partitioned on the
join key. The DBMS copies the tables
by reshuffling them across nodes.

26

R{Name}

S{Val}

Name:A-M R{Name}

S{Val}

Name:N-Z

Val:1-50 Val:51-100

Id:1-100 S{Id} Id:101-200S{Id}

P1:R⨝S

P2:R⨝S
R⨝S

R{Id}Id:1-100 R{Id} Id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SEMI-JOIN

Join operator where the result only
contains columns from the left table.

Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.
→ This is like a projection pushdown.

Some DBMSs support SEMI JOIN
SQL syntax. Otherwise you fake it
with EXISTS.

27

SELECT R.id FROM R
LEFT OUTER JOIN S
ON R.id = S.id

WHERE R.id IS NOT NULL

R S

S

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SEMI-JOIN

Join operator where the result only
contains columns from the left table.

Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.
→ This is like a projection pushdown.

Some DBMSs support SEMI JOIN
SQL syntax. Otherwise you fake it
with EXISTS.

27

SELECT R.id FROM R
LEFT OUTER JOIN S
ON R.id = S.id

WHERE R.id IS NOT NULL

R S

R

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SEMI-JOIN

Join operator where the result only
contains columns from the left table.

Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.
→ This is like a projection pushdown.

Some DBMSs support SEMI JOIN
SQL syntax. Otherwise you fake it
with EXISTS.

27

SELECT R.id FROM R
LEFT OUTER JOIN S
ON R.id = S.id

WHERE R.id IS NOT NULL

R S

SELECT R.id FROM R
WHERE EXISTS (
SELECT 1 FROM S
WHERE R.id = S.id)

R.id
R.id

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SEMI-JOIN

Join operator where the result only
contains columns from the left table.

Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.
→ This is like a projection pushdown.

Some DBMSs support SEMI JOIN
SQL syntax. Otherwise you fake it
with EXISTS.

27

SELECT R.id FROM R
LEFT OUTER JOIN S
ON R.id = S.id

WHERE R.id IS NOT NULL

R S

SELECT R.id FROM R
WHERE EXISTS (
SELECT 1 FROM S
WHERE R.id = S.id)

R.id

R.id

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

REL ATIONAL ALGEBRA: SEMI -JOIN

Like a natural join except that the
attributes on the right table that are
not used to compute the join are
restricted.

Syntax: (R⋉ S)

28

a_id b_id xxx

a1 101 X1

a2 102 X2

a3 103 X3

R(a_id,b_id,xxx) S(a_id,b_id,yyy)
a_id b_id yyy

a3 103 Y1

a4 104 Y2

a5 105 Y3

(R ⋉ S)
a_id b_id xxx

a3 103 X3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CLOUD SYSTEMS

Vendors provide database-as-a-service (DBaaS)
offerings that are managed DBMS environments.

Newer systems are starting to blur the lines
between shared-nothing and shared-disk.
→ Example: You can do simple filtering on Amazon S3

before copying data to compute nodes.

29

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CLOUD SYSTEMS

Approach #1: Managed DBMSs
→ No significant modification to the DBMS to be "aware"

that it is running in a cloud environment.
→ Examples: Most vendors

Approach #2: Cloud-Native DBMS
→ The system is designed explicitly to run in a cloud

environment.
→ Usually based on a shared-disk architecture.
→ Examples: Snowflake, Google BigQuery, Amazon

Redshift, Microsoft SQL Azure

30

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SERVERLESS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

31

Application
Server

Node

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SERVERLESS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

31

Application
Server

Node

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SERVERLESS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

31

Application
Server

Node

Storage

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SERVERLESS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

31

Application
Server

Node

Storage
Buffer Pool
Page Table

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SERVERLESS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

31

Application
Server

Storage

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SERVERLESS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

31

Application
Server

Node

Storage

Buffer Pool
Page Table

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DISAGGREGATED COMPONENTS

System Catalogs
→ HCatalog, Google Data Catalog, Amazon Glue Data

Catalog

Node Management
→ Kubernetes, Apache YARN, Cloud Vendor Tools

Query Optimizers
→ Greenplum Orca, Apache Calcite

32

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://kubernetes.io/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://github.com/greenplum-db/gporca
https://calcite.apache.org/

CMU 15-445/645 (Fall 2019)

UNIVERSAL FORMATS

Most DBMSs use a proprietary on-disk binary file
format for their databases.
→ Think of the BusTub page types…

The only way to share data between systems is to
convert data into a common text-based format
→ Examples: CSV, JSON, XML

There are new open-source binary file formats
that make it easier to access data across systems.

33

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://github.com/cmu-db/bustub/tree/master/src/include/storage/page

CMU 15-445/645 (Fall 2019)

UNIVERSAL FORMATS

Apache Parquet
→ Compressed columnar storage from

Cloudera/Twitter

Apache ORC
→ Compressed columnar storage from

Apache Hive.

Apache CarbonData
→ Compressed columnar storage with

indexes from Huawei.

34

Apache Iceberg
→ Flexible data format that supports

schema evolution from Netflix.

HDF5
→ Multi-dimensional arrays for

scientific workloads.

Apache Arrow
→ In-memory compressed columnar

storage from Pandas/Dremio.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://www.hdfgroup.org/
https://arrow.apache.org/

CMU 15-445/645 (Fall 2019)

CONCLUSION

More money, more data, more problems…

Cloud OLAP Vendors:

On-Premise OLAP Systems:

35

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://www.duckdb.org/

CMU 15-445/645 (Fall 2019)

NEXT CL ASS

Oracle Guest Speaker

36

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

