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CMU 15-445/645 (Fall 2019)

ADMINISTRIVIA

Homework #5: Monday Dec 3rd @ 11:59pm

Project #4: Monday Dec 10th @ 11:59pm

Extra Credit: Wednesday Dec 10th @ 11:59pm 

Final Exam: Monday Dec 9th @ 5:30pm

Systems Potpourri: Wednesday Dec 4th
→ Vote for what system you want me to talk about.
→ https://cmudb.io/f19-systems
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ADMINISTRIVIA

Monday Dec 2nd – Oracle Lecture
→ Shasank Chavan (VP In-Memory Databases)

Monday Dec 2nd – Oracle Systems Talk
→ 4:30pm in GHC 6115
→ Pizza will be served

Tuesday Dec 3rd – Oracle Research Talk
→ Hideaki Kimura (Oracle Beast)
→ 12:00pm in CIC 4th Floor (Panther Hollow Room)
→ Pizza will be served.

3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://db.cs.cmu.edu/events/db-seminar-fall-2019-db-group-shasank-chavan-oracle/
https://db.cs.cmu.edu/events/pdl-sdi-fall-2019-hideaki-kimura-oracle/


CMU 15-445/645 (Fall 2019)

L AST CL ASS

Atomic Commit Protocols

Replication

Consistency Issues (CAP)

Federated Databases

4

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

BIFURCATED ENVIRONMENT
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Extract
Transform

Load

OLAP DatabaseOLTP Databases
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DECISION SUPPORT SYSTEMS

Applications that serve the management, 
operations, and planning levels of an organization 
to help people make decisions about future issues 
and problems by analyzing historical data.

Star Schema vs. Snowflake Schema
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STAR SCHEMA
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SNOWFL AKE SCHEMA
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STAR VS.  SNOWFL AKE SCHEMA

Issue #1: Normalization
→ Snowflake schemas take up less storage space.
→ Denormalized data models may incur integrity and 

consistency violations.

Issue #2: Query Complexity
→ Snowflake schemas require more joins to get the data 

needed for a query.
→ Queries on star schemas will (usually) be faster.
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P3 P4

P1 P2

PROBLEM SETUP
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P3 P4

P1 P2

PROBLEM SETUP
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TODAY'S  AGENDA

Execution Models

Query Planning

Distributed Join Algorithms

Cloud Systems
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PUSH VS.  PULL

Approach #1: Push Query to Data
→ Send the query (or a portion of it) to the node that 

contains the data.
→ Perform as much filtering and processing as possible 

where data resides before transmitting over network.

Approach #2: Pull Data to Query
→ Bring the data to the node that is executing a query that 

needs it for processing.
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PUSH QUERY TO DATA

13

Node

Application
Server Node

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

R ⨝ S
IDs [101,200] Result: R ⨝ S
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Storage

PULL DATA TO QUERY
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Storage

PULL DATA TO QUERY
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Storage

PULL DATA TO QUERY
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SELECT * FROM R JOIN S
ON R.id = S.id
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OBSERVATION

The data that a node receives from remote sources 
are cached in the buffer pool.
→ This allows the DBMS to support intermediate results 

that are large than the amount of memory available.
→ Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a 
node crashes during execution?
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QUERY FAULT TOLERANCE

Most shared-nothing distributed OLAP DBMSs 
are designed to assume that nodes do not fail 
during query execution. 
→ If one node fails during query execution, then the whole 

query fails.

The DBMS could take a snapshot of the 
intermediate results for a query during execution 
to allow it to recover if nodes fail.
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Storage

QUERY FAULT TOLERANCE
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Storage

QUERY FAULT TOLERANCE
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QUERY PL ANNING

All the optimizations that we talked about before 
are still applicable in a distributed environment.
→ Predicate Pushdown
→ Early Projections
→ Optimal Join Orderings

Distributed query optimization is even harder 
because it must consider the location of data in the 
cluster and data movement costs.
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QUERY PL AN FRAGMENTS

Approach #1: Physical Operators
→ Generate a single query plan and then break it up into 

partition-specific fragments.
→ Most systems implement this approach.

Approach #2: SQL
→ Rewrite original query into partition-specific queries.
→ Allows for local optimization at each node.
→ MemSQL is the only system that I know that does this.
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QUERY PL AN FRAGMENTS
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SELECT * FROM R JOIN S
ON R.id = S.id

Id:1-100

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 1 AND 100

Id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 101 AND 200

Id:201-300

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 201 AND 300
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QUERY PL AN FRAGMENTS
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SELECT * FROM R JOIN S
ON R.id = S.id

Id:1-100

SELECT * FROM R JOIN S
ON R.id = S.id
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SELECT * FROM R JOIN S
ON R.id = S.id
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Union the output of 
each join to produce 

final result.
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OBSERVATION

The efficiency of a distributed join depends on the 
target tables' partitioning schemes.

One approach is to put entire tables on a single 
node and then perform the join.
→ You lose the parallelism of a distributed DBMS.
→ Costly data transfer over the network.
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DISTRIBUTED JOIN ALGORITHMS

To join tables R and S, the DBMS needs to get the 
proper tuples on the same node.

Once there, it then executes the same join 
algorithms that we discussed earlier in the 
semester.
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SCENARIO #1

One table is replicated at every node.
Each node joins its local data and then 
sends their results to a coordinating 
node.

23
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SELECT * FROM R JOIN S
ON R.id = S.id
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SCENARIO #2

Tables are partitioned on the join 
attribute. Each node performs the join 
on local data and then sends to a node 
for coalescing.
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SCENARIO #3

Both tables are partitioned on 
different keys. If one of the tables is 
small, then the DBMS broadcasts
that table to all nodes.
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SCENARIO #4

Both tables are not partitioned on the 
join key. The DBMS copies the tables 
by reshuffling them across nodes.
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SEMI-JOIN

Join operator where the result only 
contains columns from the left table.

Distributed DBMSs use semi-join to 
minimize the amount of data sent 
during joins.
→ This is like a projection pushdown.

Some DBMSs support SEMI JOIN
SQL syntax. Otherwise you fake it 
with EXISTS.

27

SELECT R.id FROM R
LEFT OUTER JOIN S
ON R.id = S.id

WHERE R.id IS NOT NULL

R S

S
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REL ATIONAL ALGEBRA:  SEMI -JOIN

Like a natural join except that the 
attributes on the right table that are 
not used to compute the join are 
restricted.

Syntax: (R⋉ S)

28

a_id b_id xxx

a1 101 X1

a2 102 X2

a3 103 X3

R(a_id,b_id,xxx) S(a_id,b_id,yyy)
a_id b_id yyy

a3 103 Y1

a4 104 Y2

a5 105 Y3

(R ⋉ S)
a_id b_id xxx

a3 103 X3
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CLOUD SYSTEMS

Vendors provide database-as-a-service (DBaaS) 
offerings that are managed DBMS environments.

Newer systems are starting to blur the lines 
between shared-nothing and shared-disk.
→ Example: You can do simple filtering on Amazon S3 

before copying data to compute nodes.

29
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CLOUD SYSTEMS

Approach #1: Managed DBMSs
→ No significant modification to the DBMS to be "aware" 

that it is running in a cloud environment.
→ Examples: Most vendors

Approach #2: Cloud-Native DBMS
→ The system is designed explicitly to run in a cloud 

environment. 
→ Usually based on a shared-disk architecture.
→ Examples: Snowflake, Google BigQuery, Amazon 

Redshift, Microsoft SQL Azure

30
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SERVERLESS DATABASES

Rather than always maintaining compute 
resources for each customer, a "serverless" DBMS 
evicts tenants when they become idle.

31
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DISAGGREGATED COMPONENTS

System Catalogs
→ HCatalog, Google Data Catalog, Amazon Glue Data 

Catalog

Node Management
→ Kubernetes, Apache YARN, Cloud Vendor Tools

Query Optimizers
→ Greenplum Orca, Apache Calcite
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UNIVERSAL FORMATS

Most DBMSs use a proprietary on-disk binary file 
format for their databases.
→ Think of the BusTub page types…

The only way to share data between systems is to 
convert data into a common text-based format
→ Examples: CSV, JSON, XML

There are new open-source binary file formats 
that make it easier to access data across systems.
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UNIVERSAL FORMATS

Apache Parquet
→ Compressed columnar storage from 

Cloudera/Twitter

Apache ORC
→ Compressed columnar storage from 

Apache Hive.

Apache CarbonData
→ Compressed columnar storage with 

indexes from Huawei.
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Apache Iceberg
→ Flexible data format that supports 

schema evolution from Netflix.

HDF5
→ Multi-dimensional arrays for 

scientific workloads.

Apache Arrow
→ In-memory compressed columnar 

storage from Pandas/Dremio.
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CMU 15-445/645 (Fall 2019)

CONCLUSION

More money, more data, more problems…

Cloud OLAP Vendors:

On-Premise OLAP Systems:
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NEXT CL ASS

Oracle Guest Speaker
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