
Intro to Database Systems

15-445/15-645

Fall 2019

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

20 Logging
Schemes

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

CMU 15-445/645 (Fall 2019)

ADMINISTRIVIA

Homework #4 is due Wed Nov 13th @ 11:59pm.

Project #3 is due Sun Nov 17th @ 11:59pm.

Extra Credit Checkpoint is due Sun Nov 24th.

2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

T
IM

E

Schedule

MOTIVATION

6

BEGIN
R(A)
W(A)
⋮

COMMIT

Buffer Pool

A=1

P
a
g

e

A=1A=2

T1

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CRASH RECOVERY

Recovery algorithms are techniques to ensure
database consistency, transaction atomicity, and
durability despite failures.

Recovery algorithms have two parts:
→ Actions during normal txn processing to ensure that the

DBMS can recover from a failure.
→ Actions after a failure to recover the database to a state

that ensures atomicity, consistency, and durability.

7

Today

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Failure Classification

Buffer Pool Policies

Shadow Paging

Write-Ahead Log

Logging Schemes

Checkpoints

8

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CRASH RECOVERY

DBMS is divided into different components based
on the underlying storage device.

We must also classify the different types of failures
that the DBMS needs to handle.

9

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

FAILURE CL ASSIFICATION

Type #1 – Transaction Failures

Type #2 – System Failures

Type #3 – Storage Media Failures

11

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TRANSACTION FAILURES

Logical Errors:
→ Transaction cannot complete due to some internal error

condition (e.g., integrity constraint violation).

Internal State Errors:
→ DBMS must terminate an active transaction due to an

error condition (e.g., deadlock).

12

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SYSTEM FAILURES

Software Failure:
→ Problem with the DBMS implementation (e.g., uncaught

divide-by-zero exception).

Hardware Failure:
→ The computer hosting the DBMS crashes (e.g., power

plug gets pulled).
→ Fail-stop Assumption: Non-volatile storage contents are

assumed to not be corrupted by system crash.

13

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

STORAGE MEDIA FAILURE

Non-Repairable Hardware Failure:
→ A head crash or similar disk failure destroys all or part of

non-volatile storage.
→ Destruction is assumed to be detectable (e.g., disk

controller use checksums to detect failures).

No DBMS can recover from this! Database must
be restored from archived version.

14

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

OBSERVATION

The primary storage location of the database is on
non-volatile storage, but this is much slower than
volatile storage.

Use volatile memory for faster access:
→ First copy target record into memory.
→ Perform the writes in memory.
→ Write dirty records back to disk.

15

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

OBSERVATION

The DBMS needs to ensure the following
guarantees:
→ The changes for any txn are durable once the DBMS has

told somebody that it committed.
→ No partial changes are durable if the txn aborted.

16

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

UNDO VS. REDO

Undo: The process of removing the effects of an
incomplete or aborted txn.

Redo: The process of re-instating the effects of a
committed txn for durability.

How the DBMS supports this functionality
depends on how it manages the buffer pool…

17

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Buffer Pool

T
IM

E

Schedule

T1 T2

BUFFER POOL

18

A=1 B=9 C=7

A=1 B=9 C=7B=8

BEGIN
R(A)
W(A)

⋮
ABORT

BEGIN
R(B)
W(B)
COMMIT

A=3

Do we force T2’s changes to
be written to disk?Is T1 allowed to overwrite A even

though it has not committed?

What happens when we
need to rollback T1?

B=8A=3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

STEAL POLICY

Whether the DBMS allows an uncommitted txn to
overwrite the most recent committed value of an
object in non-volatile storage.

STEAL: Is allowed.

NO-STEAL: Is not allowed.

19

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

FORCE POLICY

Whether the DBMS requires that all updates made
by a txn are reflected on non-volatile storage
before the txn is allowed to commit.

FORCE: Is required.

NO-FORCE: Is not required.

20

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Buffer Pool

T
IM

E

Schedule

T1 T2

NO-STEAL + FORCE

21

A=1 B=9 C=7

A=1 B=9 C=7B=8

BEGIN
R(A)
W(A)

⋮
ABORT

BEGIN
R(B)
W(B)
COMMIT

A=3

FORCE means that T2 changes must be
written to disk at this point.

NO-STEAL means that T1 changes
cannot be written to disk yet.

Now it’s trivial to
rollback T1

B=8

A=1 B=8 C=7

Copy

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

NO-STEAL + FORCE

This approach is the easiest to implement:
→ Never have to undo changes of an aborted txn because

the changes were not written to disk.
→ Never have to redo changes of a committed txn because

all the changes are guaranteed to be written to disk at
commit time (assuming atomic hardware writes).

Previous example cannot support write sets that
exceed the amount of physical memory available.

22

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SHADOW PAGING

Maintain two separate copies of the database:
→ Master: Contains only changes from committed txns.
→ Shadow: Temporary database with changes made from

uncommitted txns.

Txns only make updates in the shadow copy.

When a txn commits, atomically switch the
shadow to become the new master.

Buffer Pool Policy: NO-STEAL + FORCE

23

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SHADOW PAGING

Instead of copying the entire database, the DBMS
copies pages on write.

Organize the database pages in a tree structure
where the root is a single disk page.

There are two copies of the tree, the master and
shadow
→ The root points to the master copy.
→ Updates are applied to the shadow copy.

24

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DiskMemory

SHADOW PAGING EXAMPLE

25

Master
Page Table

1
2
3
4

DB Root

Database Root

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SHADOW PAGING

To install the updates, overwrite the root so it
points to the shadow, thereby swapping the master
and shadow:
→ Before overwriting the root, none of the txn's updates are

part of the disk-resident database
→ After overwriting the root, all the txn's updates are part

of the disk-resident database.

26

Source: The Great Phil Bernstein

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://www.microsoft.com/en-us/research/people/philbe/

CMU 15-445/645 (Fall 2019)

COMMIT

DiskMemory

SHADOW PAGING EXAMPLE

27

Master
Page Table

1
2
3
4

DB Root

Shadow
Page Table

1
2
3
4

Read-only txns access the
current master.

Active modifying txn
updates shadow pages.

X X
X

X
Update

Database Root
Update

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SHADOW PAGING UNDO/REDO

Supporting rollbacks and recovery is easy.

Undo: Remove the shadow pages. Leave the
master and the DB root pointer alone.

Redo: Not needed at all.

28

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SHADOW PAGING DISADVANTAGES

Copying the entire page table is expensive:
→ Use a page table structured like a B+tree.
→ No need to copy entire tree, only need to copy paths in

the tree that lead to updated leaf nodes.

Commit overhead is high:
→ Flush every updated page, page table, and root.
→ Data gets fragmented.
→ Need garbage collection.
→ Only supports one writer txn at a time or txns in a batch.

29

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SQLITE (PRE-2010)

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before
overwriting master version.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

30

Memory

Disk

Page 2Page 2

Page 1

Page 3

Page 5

Page 4

Page 6

Journal File

Page 1 Page 2 Page 3Page 2'

Page 3

Page 3'

Page 2'

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

OBSERVATION

Shadowing page requires the DBMS to perform
writes to random non-contiguous pages on disk.

We need a way for the DBMS convert random
writes into sequential writes.

31

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

WRITE-AHEAD LOG

Maintain a log file separate from data files that
contains the changes that txns make to database.
→ Assume that the log is on stable storage.
→ Log contains enough information to perform the

necessary undo and redo actions to restore the database.

DBMS must write to disk the log file records that
correspond to changes made to a database object
before it can flush that object to disk.

Buffer Pool Policy: STEAL + NO-FORCE

32

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

WAL PROTOCOL

The DBMS stages all a txn's log records in volatile
storage (usually backed by buffer pool).

All log records pertaining to an updated page are
written to non-volatile storage before the page
itself is over-written in non-volatile storage.

A txn is not considered committed until all its log
records have been written to stable storage.

33

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

WAL PROTOCOL

Write a <BEGIN> record to the log for each txn to
mark its starting point.

When a txn finishes, the DBMS will:
→ Write a <COMMIT> record on the log
→ Make sure that all log records are flushed before it

returns an acknowledgement to application.

34

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

WAL PROTOCOL

Each log entry contains information about the
change to a single object:
→ Transaction Id
→ Object Id
→ Before Value (UNDO)
→ After Value (REDO)

35

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Buffer Pool

A=1 B=5 C=7A=8

T
IM

E

Schedule

BEGIN
W(A)
W(B)
⋮

COMMIT

T1
WAL Buffer

WAL EXAMPLE

36

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

⋮

Txn result is now safe to
return to application.

B=9

A=1 B=5 C=7

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

1

2X

X

Everything we need to
restore T1 is in the log!

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

WAL IMPLEMENTATION

When should the DBMS write log entries to disk?
→ When the transaction commits.
→ Can use group commit to batch multiple log flushes

together to amortize overhead.

37

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

WAL Buffers

WAL GROUP COMMIT

38

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

T
IM

E

Schedule

T1 T2
BEGIN
W(A)
W(B)

⋮

COMMIT

BEGIN
W(C)
W(D)

⋮

COMMIT

<T2, D, 3, 4>

<T2, D, 3, 4>

Flush the buffer
when it is full.

Flush after an elapsed
amount of time.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

WAL IMPLEMENTATION

When should the DBMS write log entries to disk?
→ When the transaction commits.
→ Can use group commit to batch multiple log flushes

together to amortize overhead.

When should the DBMS write dirty records to disk?
→ Every time the txn executes an update?
→ Once when the txn commits?

39

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BUFFER POOL POLICIES

Almost every DBMS uses NO-FORCE + STEAL

42

NO-STEAL STEAL

NO-FORCE Fastest

FORCE Slowest

Runtime Performance

NO-STEAL STEAL

NO-FORCE Slowest

FORCE Fastest

Recovery Performance
Undo + Redo

No Undo + No Redo

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LOGGING SCHEMES

Physical Logging
→ Record the changes made to a specific location in the

database.
→ Example: git diff

Logical Logging
→ Record the high-level operations executed by txns.
→ Not necessarily restricted to single page.
→ Example: The UPDATE, DELETE, and INSERT queries

invoked by a txn.

43

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PHYSICAL VS. LOGICAL LOGGING

Logical logging requires less data written in each
log record than physical logging.

Difficult to implement recovery with logical
logging if you have concurrent txns.
→ Hard to determine which parts of the database may have

been modified by a query before crash.
→ Also takes longer to recover because you must re-execute

every txn all over again.

44

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PHYSIOLOGICAL LOGGING

Hybrid approach where log records target a single
page but do not specify data organization of the
page.

This is the most popular approach.

45

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LOGGING SCHEMES

46

UPDATE foo SET val = XYZ WHERE id = 1;

Physical

<T1,
Table=X,
Page=99,
Offset=4,
Before=ABC,
After=XYZ>

<T1,
Index=X_PKEY,
Page=45,
Offset=9,
Key=(1,Record1)>

Logical

<T1,
Query="UPDATE foo

SET val=XYZ
WHERE id=1">

Physiological

<T1,
Table=X,
Page=99,
ObjectId=1,
Before=ABC,
After=XYZ>

<T1,
Index=X_PKEY,
IndexPage=45,
Key=(1,Record1)>

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CHECKPOINTS

The WAL will grow forever.

After a crash, the DBMS has to replay the entire
log which will take a long time.

The DBMS periodically takes a checkpoint where
it flushes all buffers out to disk.

47

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CHECKPOINTS

Output onto stable storage all log records currently
residing in main memory.

Output to the disk all modified blocks.

Write a <CHECKPOINT> entry to the log and flush
to stable storage.

48

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

WAL

<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2 COMMIT>
<T3, A, 3, 4>

⋮
CRASH!

CHECKPOINTS

Any txn that committed before the
checkpoint is ignored (T1).

T2 + T3 did not commit before the last
checkpoint.
→ Need to redo T2 because it committed after

checkpoint.
→ Need to undo T3 because it did not commit

before the crash.

49

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CHECKPOINTS CHALLENGES

We have to stall all txns when take a checkpoint to
ensure a consistent snapshot.

Scanning the log to find uncommitted txns can
take a long time.

Not obvious how often the DBMS should take a
checkpoint…

50

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CHECKPOINTS FREQUENCY

Checkpointing too often causes the runtime
performance to degrade.
→ System spends too much time flushing buffers.

But waiting a long time is just as bad:
→ The checkpoint will be large and slow.
→ Makes recovery time much longer.

51

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CONCLUSION

Write-Ahead Logging is (almost) always the best
approach to handle loss of volatile storage.
→ Use incremental updates (STEAL + NO-FORCE) with

checkpoints.
→ On recovery: undo uncommitted txns + redo committed

txns.

52

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

NEXT CL ASS

Recovery with ARIES.

53

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

