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ADMINISTRIVIA

Project #3 will be released this week.
It is due Sun Nov 17" @ 11:59pm.

Homework #4 will be released next week.
It is due Wed Nov 13% @ 11:59pm.
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QUERY OPTIMIZATION

Heuristics / Rules

— Rewrite the query to remove stupid / inefficient things.

— These techniques may need to examine catalog, but they
do not need to examine data.

Cost-based Search

— Use a model to estimate the cost of executing a plan.

— Evaluate multiple equivalent plans for a query and pick
the one with the lowest cost.
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TODAY'S AGENDA

Plan Cost Estimation
Plan Enumeration

Nested Sub-queries

E-g CMU'DB CMU 15-445/645 (Fall 2019)


https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

COST ESTIMATION

How long will a query take?
— CPU: Small cost; tough to estimate
— Disk: # of block transfers

— Memory: Amount of DRAM used
— Network: # of messages

How many tuples will be read/written?

[t is too expensive to run every possible plan to
determine this information, so the DBMS need a
way to derive this information...
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STATISTICS

The DBMS stores internal statistics about tables,
attributes, and indexes in its internal catalog.

Different systems update them at different times.

Manual invocations:

— Postgres/SQLite: ANALYZE

— Oracle/MySQL: ANALYZE TABLE
— SQL Server: UPDATE STATISTICS
— DB2: RUNSTATS
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STATISTICS

For each relation R, the DBMS maintains the

following information:

—> Ni: Number of tuples in R.
— V(A,R): Number of distinct values for attribute A.
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DERIVABLE STATISTICS

The selection cardinality SC(A,R) is the
average number of records with a value for an

attribute A given N, / V(A,R)

Note that this assumes data uniformity.
— 10,000 students, 10 colleges — how many students in SCS?
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SELECTION STATISTICS

Equality p%"ed1cates on unique keys are CREATE TABLE people (
easy to estimate. id INT PRIMARY KEY,

SELECT * FROM people val INT NOT NULL,
WHERE id = 123 age INT NOT NULL,

status VARCHAR(16)

What about more complex
predicates? What is their selectivity?

SELECT * FROM people SELECT * FROM people
WHERE val > 1000 WHERE age = 30
AND status = 'Lit'
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COMPLEX PREDICATES

The selectivity (sel) of a predicate P is the
fraction of tuples that qualify.

Formula depends on type of predicate:
— Equality

— Range

— Negation

— Conjunction

— Disjunction
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COMPLEX PREDICATES

The selectivity (sel) of a predicate P is the
fraction of tuples that qualify.

Formula depends on type of predicate:
— Equality

— Range

— Negation

— Conjunction

— Disjunction
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SELECTIONS — COMPLEX PREDICATES

Assume that V(age, people) has five
distinct values (0-4) and N, = 5 SELECT * FROM people
Equality Predicate: A=constant WHERE age = 2

— sel(A=constant) = SC(P) / N,
— Example: sel(age=2)=1/5

SC(age=2)=1
s
=3
‘11 Knn
O 1 | 21 3 4

£=CMU-DB
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SELECTIONS — COMPLEX PREDICATES

Range Predicate:

— sel(A>=a) = (A —a) / (Apx ~Anin)

— Example: sel(age>=2) = (4 -2) / (4 -0)
= 1/2

SELECT * FROM people
WHERE age >= 2

age,;, = 0 age,., = 4
Q
2 3 4
age
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SELECTIONS — COMPLEX PREDICATES

Negation Query:
— sel(not P) = 1 - sel(P)
— Example: sel(age != 2)

SELECT * FROM people
WHERE age != 2

= SC(age=2)=1
3
‘Il N

0] 1 2 3 4

age

£=CMU-DB
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SELECTIONS — COMPLEX PREDICATES

Negation Query:
— sel(not P) = 1 - sel(P)
— Example: sel(age !=2) =1 - (1/5) = 4/5 SELECT * FROM people

. . . WHERE age != 2
Observation: Selectivity = Probability

SC(age!=2)=2 SC(age!=2)=2

‘RN E]

0] 1 2 3 4

count

£=CMU-DB
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SELECTIONS — COMPLEX PREDICATES

Conjunction:
— sel(P1 A P2) = sel(P1) « sel(P2)
— sel(age=2 A name LIKE 'A%') SELECT * FROM people

WHERE age = 2
AND name LIKE 'A%’

This assumes that the predicates are
independent.

Py P>
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SELECTIONS — COMPLEX PREDICATES

Conjunction:
— sel(P1 A P2) = sel(P1) « sel(P2)
— sel(age=2 A name LIKE 'A%') SELECT * FROM people

WHERE age = 2
AND name LIKE 'A%’

I:)1 “I} FDZ
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SELECTIONS — COMPLEX PREDICATES

Disjunction:

— sel(P1 V P2)
= sel(P1) +sel(P2) - sel(P1AP2) S it [PRRREE
= sel(P1) +sel(P2) - sel(P1) « sel(P2) OR age TLTKE An!

— sel(age=2 OR name LIKE 'A%') name °

This again assumes that the
selectivities are independent. P
1

P>
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SELECTIONS — COMPLEX PREDICATES

Disjunction:

— sel(P1 V P2)
= sel(P1) +sel(P2) - sel(P1AP2) S it [PRRREE
= sel(P1) +sel(P2) - sel(P1) « sel(P2) oR age TLTKE An!

— sel(age=2 OR name LIKE 'A%') name °

This again assumes that the
selectivities are independent. P
1

P>
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SELECTION CARDINALITY

Assumption #1: Uniform Data

— The distribution of values (except for the heavy hitters) is
the same.

Assumption #2: Independent Predicates
— The predicates on attributes are independent

Assumption #3: Inclusion Principle

— The domain of join keys overlap such that each key in the
inner relation will also exist in the outer table.
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Source: Guy Lohman
E-ECMU-DB

CORRELATED ATTRIBUTES

Consider a database of automobiles:
— # of Makes = 10, # of Models = 100

And the following query:

— (make="Honda" AND model="Accord")
With the independence and uniformity
assumptions, the selectivity is:

— 1/10 x 1/100 = 0.001

But since only Honda makes Accords the real
selectivity is 1/100 = 0.01

17
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COST ESTIMATIONS

Our formulas are nice, but we assume that data
values are uniformly distributed.

Uniform Approximation

# of occurrences L0

~5 -

SLIRRARRANRRARAE)

123456 7 8 9101112131415

Distinct values of attribute

$2CMU-DB

20
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COST ESTIMATIONS

Our formulas are nice, but we assume that data
values are uniformly distributed.

Non-Uniform Approximation

10

5

O_
123456 7 8 9101112131415
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COST ESTIMATIONS

Our formulas are nice, but we assume that data
values are uniformly distributed.

Non-Uniform Approximation

10
5
O _
1 23456 7 8 9101112131415
\ J\ J\ J\ J\ J
Buck'et #1 Buckgt #2 Buckgt #3 Buckgt #4 Buck'et #5
Count=8 Count=4 Count=15 Count=3 Count=14

21
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COST ESTIMATIONS

Our formulas are nice, but we assume that data
values are uniformly distributed.

Non-Uniform Approximation

BucketR%l_-_J I
1-3 46"79"1012 13-15,

\ J\

\
Bucket #1 Bucket #2 Bucket #3 Bucket #H4 Bucket #5
Count=8 Count=4 Count=15 Count=3 Count=14

U
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HISTOGRAMS WITH QUANTILES

Vary the width of buckets so that the total number

of occurrences for each bucket is roughly the same.

Histogram (Quantiles)
10
)
O _
123456 7 8 9101112131415
Bucket #1 Bucket #2 Bucket #3 Bucket H#4
Count=12 Count=12 Count=9 Count=12

22

CMU 15-445/645 (Fall 2019)


https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

22

HISTOGRAMS WITH QUANTILES

Vary the width of buckets so that the total number
of occurrences for each bucket is roughly the same.

Histogram (Quantiles)
15
10 -
-1 in
O _
1-5 6-8 0-13 14-15
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SAMPLING

Modern DBMSs also collect samples
from tables to estimate selectivities.

Update samples when the underlying
tables changes significantly.

S2CMU-DB
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SELECT AVG(age)
FROM people
WHERE age > 50

id name age status
1001 |Obama 58 Rested
1002 |Kanye 41 Weird
1003 |Tupac 25 Dead
1004 |Bieber 25 Crunk
1005 |[Andy 38 Lit

1 billion tuples

CMU 15-445/645 (Fall 2019)


https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

23

SAMPLING

Modern DBMSs also collect samples SELECT AVG(age)

from tables to estimate selectivities. FROM people
WHERE age > 50

Update samples when the underlying id name age status
tables changes significantly. (0L JObeie 20 [fesiet
1002 |Kanye 41 Weird
1003 |Tupac 25 Dead
1004 |[Bieber 25 Crunk

¥y

Table Sample

1005 |Andy 38 Lit
1001 |[Obama 58 Rested .
1003 |Tupac 25 Dead y
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SAMPLING

Modern DBMSs also collect samples SELECT AVG(age)

from tables to estimate selectivities. FROM people
WHERE age > 50

Update samples when the underlying id name age status
tables changes significantly. 1001 |Obama |58 |Rested
1002 |Kanye 41 Weird
1003 |Tupac 25 Dead
1004 |[Bieber 25 Crunk

¥y

Table Sample

1005 |Andy 38 |Lit
1001 |Obama 58 Rested :
sel(age>50) = 1/3 [1003 [Tupac |25 |Dead o
1005 [Andy 38 |Lit 1 billion tuples
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OBSERVATION

Now that we can (roughly) estimate the selectivity
of predicates, what can we actually do with them?
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QUERY OPTIMIZATION

After performing rule-based rewriting, the DBMS
will enumerate different plans for the query and

estimate their costs.
— Single relation.

— Multiple relations.
— Nested sub-queries.

[t chooses the best plan it has seen for the query
after exhausting all plans or some timeout.

25
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SINGLE-RELATION QUERY PLANNING

Pick the best access method.

— Sequential Scan
— Binary Search (clustered indexes)
— Index Scan

Predicate evaluation ordering.

Simple heuristics are often good enough for this.
OLTP queries are especially easy...
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OLTP QUERY PLANNING

Query planning for OLTP queries is easy because

they are sargable (Search Argument Able).

— [t is usually just picking the best index.

— Joins are almost always on foreign key relationships with

a small cardinality.

— Can be implemented with simple heuristics.

CREATE _TABLE people (

id INT PRIMARY KEY,

val INT NOT NULL,
);

N\

SELECT * FROM people

WHERE id = 123;

27
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MULTI-RELATION QUERY PLANNING

As number of joins increases, number of

alternative plans grows rapidly
— We need to restrict search space.

Fundamental decision in System R: only left-deep

join trees are considered.

— Modern DBMSs do not always make this assumption
anymore,
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MULTI-RELATION QUERY PLANNING

Fundamental decision in System R: Only consider
left-deep join trees.

}4}4" c/1><1<:" /M\
A B

G IANA
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MULTI-RELATION QUERY PLANNING

Fundamental decision in System R: Only consider
left-deep join trees.

b
K B
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MULTI-RELATION QUERY PLANNING

Fundamental decision in System R: Only consider
left-deep join trees.

Allows for fully pipelined plans where

intermediate results are not written to temp files.
— Not all left-deep trees are fully pipelined.
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MULTI-RELATION QUERY PLANNING

Enumerate the orderings
— Example: Left-deep tree #1, Left-deep tree #2...

Enumerate the plans for each operator
— Example: Hash, Sort-Merge, Nested Loop...

Enumerate the access paths for each table
— Example: Index #1, Index #2, Seq Scan...

Use dynamic programming to reduce the
number of cost estimations.
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DYNAMIC PROGRAMMING

Hash Join
R.a=S.a T SELECT * FROM R, S, T
T WHERE R.a = S.a

AND S.b = T.b

SortMerge Join

R.a=S.a [
400

W=

RDASDT

SortMerge Join

T.b=S.b JeleX3 &
280

Hash Join

T.b=S.b Lee¥EMR
200
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h DYNAMIC PROGRAMMING
Hash Join

R.a=S.a Cg;;: Sa S SELECT * FROM R, S, T
T WHERE R.a = S.a
AND S.b =T.b

R
S RD]ASXT
T
TS
Hash Join R
T.b=S.b (IR ¢
200 .
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DYNAMIC PROGRAMMING

Hash Join
R.a=S.a (oS3
= RS Hash Join SSIP-IEEE E FROMSR, S, T
= (o C . — )
T S.bT.b ERE K E = E
SortMerge J(\\
R S.b=T.b o
S
T SortMerge Join J RXISKXT
S.a=R.a [Eg3E
300
Hash Join
T M S S.a=R. a (&L
450
Hash Join R -
T.b=S.b Je53M °
200 :
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h DYNAMIC PROGRAMMING
Hash Join

R.a=S.a [eSAH
. RDqS . SELECT * FROM R, S, T
T S.b=T.b WHERE R.a = S.a
AND S.b = T.b

R
S
T SortMerge Join L RXISKXT
S.a=R.a (KL
300
TPAS
Hash Join R
T.b=S.b Je53M °
200 :
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DYNAMIC PROGRAMMING

RD< S SELECT = FROM R, S, T
T WHERE R.a = S.a
AND S.b = T.b

R
S
T SortMerge Join L RXISKXT
S.a=R.a (KL
300
TPAS
Hash Join R
I WY Cost : 5
;
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CANDIDATE PLAN EXAMPLE

SELECT * FROM R, S, T

How to generate plans for search WHERE R.a = S.a

algorithm: AND S.b = T.b

— Enumerate relation orderings
— Enumerate join algorithm choices
— Enumerate access method choices

No real DBMSs does it this way.
[t’s actually more messy...
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Step #1: Enumerate relation orderings

CANDIDATE PLANS

P

%

34

(

P

%

T

P

o

P

a4

T

—

Prune plans with cross-
}%roducts immediately!
X
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CANDIDATE PLANS

Step #1: Enumerate relation orderings

34

P

%

{Prune plans with cross-
products immediately!

—

P

a4

T
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CANDIDATE PLANS

Step #2: Enumerate join algorithm choices

P

%

Do this for the other
plans.

=

NLJ

NLJ

35
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CANDIDATE PLANS

Step #2: Enumerate join algorithm choices

P

%

Do this for the other
plans.

=

NLJ

NLJ

35
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CANDIDATE PLANS

Step #3: Enumerate access method choices

T »
R S ISegScan] [SegScan]

Do this for the other
plans.

|SegScan| |IndexScangS.bz|
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POSTGRES OPTIMIZER

Examines all types of join trees
— Left-deep, Right-deep, bushy

Two optimizer implementations:

— Traditional Dynamic Programming Approach
— Genetic Query Optimizer (GEQO)

Postgres uses the traditional algorithm when # of
tables in query is less than 12 and switches to
GEQO when there are 12 or more.

37
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Ist Generation

T Cost:

300
S

Cost:

200
R

T Cost:

100
R

POSTGRES OPTIMIZER

38
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Ist Generation

300

S | 200

Cost:

Cost:

100

POSTGRES OPTIMIZER

38

Best:100
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Ist Generation

X

Cost:

300

Cost:

200

Cost:

100

POSTGRES OPTIMIZER

2nd Generation
[HJ |
T Cost:
(HJ | 80
S R
(NIL |
Cost:
200
R T
(HJ
S Cost:
110
T R

38

Best:100
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X

Cost:

300

Cost:

200

Cost:

100

POSTGRES OPTIMIZER

2nd Generation
[HJ |
T Cost:
(HJ | 80
S R
(NIL |
Cost:
200
R T
(HJ
S Cost:
110
T R

)] 38

Best: 80
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300

Cost:

200

Cost:

100

POSTGRES OPTIMIZER

2nd Generation

X

T

Imuq!
(HJ

Cost:

80

Cost:

200

Cost:

110

)] 38
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X

Cost:

300

Cost:

200

Cost:

100

2nd Generation

X

Imuq!
(HJ

T R

Cost:

80

Cost:

200

Cost:

110

Ilé'>

POSTGRES OPTIMIZER

)] 38

T
S R

Best: 80

3rd Generation

Cost:
90

Cost:
160

Cost:
120
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NESTED SUB-QUERIES

The DBMS treats nested sub-queries in the where
clause as functions that take parameters and return
a single value or set of values.

Two Approaches:

— Rewrite to de-correlate and/or flatten them

— Decompose nested query and store result to temporary
table

CMU 15-445/645 (Fall 2019)


https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

£=CMU-DB

NESTED SUB-QUERIES: REWRITE

WHERE

SELECT name FROM sailors AS S
WHERE EXISTS (
SELECT * FROM reserves AS R

S.sid = R.sid

AND R.day = '2018-10-15"

40
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NESTED SUB-QUERIES: REWRITE

SELECT name FROM sailors AS S
WHERE EXISTS (
SELECT * FROM reserves AS R
WHERE|S.sid = R.sid
AND R.day = '2018-10-15"

SELECT name

FROM sailors AS S, reserves AS R
WHERE S.sid = R.sid
AND R.day = '2018-10-15"
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NESTED SUB-QUERIES: DECOMPOSE

SELECT S.sid, MIN(R.day)

FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

AND B.color = 'red'

AND S.rating =|(SELECT MAX(S2.rating)
FROM sailors S2)

GROUP BY S.sid
HAVING COUNT(*) > 1

For each sailor with the highest rating (over all sailors) and at
least two reservations for red boats, find the sailor id and the
earliest date on which the sailor has a reservation for a red boat.
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DECOMPOSING QUERIES

For harder queries, the optimizer breaks up
queries into blocks and then concentrates on one
block at a time.

Sub-queries are written to a temporary table that
are discarded after the query finishes.
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DECOMPOSING QUERIES

SELECT S.sid, MIN(R.day)

FROM sailors
WHERE S.sid =
AND R.bid =
AND B.color

AND S.rating =|(SELECT MAX(S2.rating)

GROUP BY S.sid

S, reserves R, boats B
R.sid

B.bid
= 'red'

FROM sailors S2)

HAVING COUNT(*) > 1 /r

Nested' Block
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DECOMPOSING QUERIES

SELECT MAX(rating) FROM sailors

SELECT S.sid, MIN(R.day)

FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

AND B.color = 'red'

AND S.rating =|(SELECT MAX(S2.rating)

FROM sailors S2)

GROUP BY S.sid
HAVING COUNT(*) > 1 /r

Nested' Block
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DECOMPOSING QUERIES

SELECT MAX(rating) FROM sailors

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = $### «

GROUP BY S.sid
HAVING COUNT(*) > 1
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DECOMPOSING QUERIES

SELECT MAX(rating) FROM sailors

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = $### «

GROUP BY S.sid
HAVING COUNT(*) > 1

Outer Block
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CONCLUSION

Filter early as possible.

Selectivity estimations
— Uniformity

— Independence

— Histograms

— Join selectivity

Dynamic programming for join orderings
Rewrite nested queries
Again, query optimization is hard...
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EXTRA CREDIT

Each student can earn extra credit if they write a
encyclopedia article about a DBMS.

— Can be academic/commercial, active/historical.

Each article will use a standard taxonomy.

— For each feature category, you select pre-defined options
for your DBMS.

— You will then need to provide a summary paragraph with
citations for that category.

CMU 15-445/645 (Fall 2019)


https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

|
| Database of Data bases

Most Recent

lllll

aaaaaaa

Search

Database of Databases

Discover and learn about 657 database management systems

Most Viewed

QTiDB e

= levelps LevelDB
-

RocksDB  RocksPB

¢ NeDB NeDB

[MDB s

Most Edited

Apache Derby 9— Derby

REDIT

redit if they write a
DBMS.

Ictive/historical.

d taxonomy.

elect pre-defined options

summary paragraph with

U

CMU-DB

1°
At

45

CMU 15-445/645 (Fall 2019)


https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://dbdb.io/

Database of Databases

Datab:

Discover ¢

Search

Most Recent

M Hyrise
Ly 1
@ TabDB
1oTDB
ThruDB
KarelDB

Refine by

Start Year
End Year

Country
Australia
Austria
Bangladesh

Show more

Compatible with
Access
Caché
Cassandra

Show more

Embeds / Uses
Berkeley DB
BoltDB
Cassandra

Show more

Derived From
Accumulo
Adaptive Server Enterprise
Btrieve

Show more

Inspired By

BigQuery

C-Store

Calvin
Show more
Operating System
AlX
All OS with Java VM
Android

Show more

Programming Languages
ActionScript
Assembly
Bash
& Rust

Show more

Proiect Tvne:

| Database of Databases

Browse

Begin searching!

@ IndraDB
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Search
Found 8 databases
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Database of Databases

Datab:

Discover

Refine by

Start Year

End Year

Search

Country
Australia

Austria
Bangladesh
Show more
M (o] St Recent Compatible With
Access
Caché
Hyrise Cassandra
Sy

i

Embeds / Uses
Berkeley DB

TabDB BoltDB

Cassandra

Show more

IoTDB Derived From
Accumulo
Adaptive Server Enterprise
ThrudB Btrieve
Show more
Inspired By
BigQuery
C-Store
Calvin

KarelDB

Show more

Operating System
AlX
All OS with Java vM
Androld

Programming Languages
ActionScript
Assembly
Bash
= Rust

Show more

Proiect Tvne:

Database of Databases

Begin searching!

@ IndraDB

IndraDB

LlamaDB

LocustDB

Database of Databas

PumpkinDB ¢

PUMPKINDB is a low-level event Sourcing database engine that is ACID-compliant. it s a
database engine that could be used to build different types of event sourcing systems such as
embedded and client-server ones,

PumpkinDB is designed to be Immutable, the reason behind this is that overwriting data could
be unsafe, valuable history of data will be erased. As the cost of storage dropping, a more

In order ta have control OVer querying costs, it Provides an embedded executable imperative
language, Pumpkinscript, which (s a low-level untyped language inspired by MuMps,

PumpkinDB does not have customn protocals for communication, instead, it has 4 pipeline to a
SCript executor. When the applications need to communicate with PUMPKINDB, small
Pumpkmscripx programs are sent through a network interface in order to do that,

History @

PumpkinDB is 3 descendant of a event capture and querying framewark ES4). The difference
from ES4) s that PumpkinDB has » HLC timestamp, a UuIp, complies with the ELF format, and

It treats events as binary biobs, jt started as a backend for a lazy event sourcing approach on
2017.

Concurrency Contro)
'ﬁlsﬂblﬂ‘!eﬁ

Data Model @
ey Value |

It supports binary keys and values, which enables the use of any encoding such as XmL, 150N
and Pratobuf,

45

Website
http://pumpkindb.orgs

Source Code
hittps://githy b.iunnpumpklrjﬁ
fPumpkinDe

Tech Docs

http:/pumpkindb, org/doc/
Developer

Yuril Rashkovskii

Country of Origin
CA

Start Year
2017

Project Type
Open Source

Written in
Rust

Operating Systems
Linux, Windows

Licenses
W

zilla Public License

i

L
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DBDB.IO

All the articles will be hosted on dbdb.io

— [ will post registration details on Piazza.

[ will post a sign-up sheet for you to pick what

DBMS you want to write about.

— If you choose a widely known DBMS, then the article will
need to be comprehensive.

— If you choose an obscure DBMS, then you will have to do
the best you can to find information.
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DBMS you want to v
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need to be comprehe;
— If you choose an obsd
the best you can to fi

Database of Data bases

Edit Database System

Name
PumpkinDB

Logo

Currently: logos/pumpkindb, Png L) Clear

Change:  Browse... Nao file selected.

urt

hllp.//pumpkindh_orgl
RL of the DBMS company or project
Developer

Yurii Rashkovskii

The original organization that developed the BMS.

Source Code URL
hltps://gllhub,comr‘PumpkmDB/PumpkmDB
RL of where to download source code (i avaflable)
Tech docs
http.‘/fpumpkindb,orgldoc/
R, of the where 1o find technical documentation aba the DBMS
Wikipedia URL
Wikipedia URL
Project Type
Academic

Commerciat
Indusirial Research

Start year

2017

Start year citations

parate the urls with commas

End year citations

narate the urls wi
Former names

Former names

S names of the system

Acquired by

Acquired by

the DBMS

Countries of Origin
Burunu
Cabo Verde
Cambodia
Cameroon

mpany that first acquire:

End year

End year

Acquired by citations
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HOW TO DECIDE

Pick a DBMS based on whatever criteria you want:
— Country of Origin

— Popularity

— Programming Language

— Single-Node vs. Embedded vs. Distributed

— Disk vs. Memory

— Row Store vs. Column Store

— Open-Source vs. Proprietary
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Q@ PLAGIARISM WARNING @

This article must be your own writing with your
own images. You may not copy text/images
directly from papers or other sources that you find
on the web.

Plagiarism will not be tolerated.
See CMU's Policy on Academic Integrity for
additional information.
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NEXT CLASS

Transactions!
— aka the second hardest part about database systems
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