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CMU 15-445/645 (Fall 2019)

ADMINISTRIVIA

Project #3 will be released this week.
It is due Sun Nov 17th @ 11:59pm.

Homework #4 will be released next week.
It is due Wed Nov 13th @ 11:59pm.
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QUERY OPTIMIZATION

Heuristics / Rules
→ Rewrite the query to remove stupid / inefficient things.
→ These techniques may need to examine catalog, but they 

do not need to examine data.

Cost-based Search
→ Use a model to estimate the cost of executing a plan.
→ Evaluate multiple equivalent plans for a query and pick 

the one with the lowest cost.
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TODAY'S  AGENDA

Plan Cost Estimation

Plan Enumeration

Nested Sub-queries
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COST ESTIMATION

How long will a query take?
→ CPU:  Small cost; tough to estimate
→ Disk: # of block transfers
→ Memory: Amount of DRAM used
→ Network: # of messages

How many tuples will be read/written?

It is too expensive to run every possible plan to 
determine this information, so the DBMS need a 
way to derive this information…
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STATISTICS

The DBMS stores internal statistics about tables, 
attributes, and indexes in its internal catalog.

Different systems update them at different times.

Manual invocations:
→ Postgres/SQLite: ANALYZE
→ Oracle/MySQL: ANALYZE TABLE
→ SQL Server: UPDATE STATISTICS
→ DB2: RUNSTATS
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STATISTICS

For each relation R, the DBMS maintains the 
following information:
→ NR: Number of tuples in R.
→ V(A,R): Number of distinct values for attribute A.
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DERIVABLE STATISTICS

The selection cardinality SC(A,R) is the 
average number of records with a value for an 
attribute A given NR / V(A,R)

Note that this assumes data uniformity.
→ 10,000 students, 10 colleges – how many students in SCS?
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SELECTION STATISTICS

Equality predicates on unique keys are 
easy to estimate. 

What about more complex 
predicates? What is their selectivity?
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SELECT * FROM people 
WHERE id = 123

SELECT * FROM people 
WHERE val > 1000

SELECT * FROM people 
WHERE age = 30
AND status = 'Lit'

CREATE TABLE people (
id INT PRIMARY KEY,
val INT NOT NULL,
age INT NOT NULL,
status VARCHAR(16)

);
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COMPLEX PREDICATES

The selectivity (sel) of a predicate P is the 
fraction of tuples that qualify.

Formula depends on type of predicate:
→ Equality
→ Range
→ Negation
→ Conjunction
→ Disjunction

10
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COMPLEX PREDICATES
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SELECTIONS COMPLEX PREDICATES

Assume that V(age,people) has five 
distinct values (0–4) and NR = 5

Equality Predicate: A=constant
→ sel(A=constant) = SC(P) / NR
→ Example: sel(age=2) =
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SC(age=2)=1

SELECT * FROM people 
WHERE age = 2

1/5
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SELECTIONS COMPLEX PREDICATES

Range Predicate:
→ sel(A>=a) = (Amax – a) / (Amax – Amin)
→ Example: sel(age>=2) 

12

≈ (4 – 2) / (4 – 0)
≈ 1/2

agemin = 0

SELECT * FROM people 
WHERE age >= 2

agemax = 4
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SELECTIONS COMPLEX PREDICATES

Negation Query:
→ sel(not P) = 1 – sel(P)
→ Example: sel(age != 2)

13

SC(age=2)=1

SELECT * FROM people 
WHERE age != 2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

0 1 2 3 4

co
u

n
t

age

SELECTIONS COMPLEX PREDICATES

Negation Query:
→ sel(not P) = 1 – sel(P)
→ Example: sel(age != 2)

Observation: Selectivity ≈ Probability

13

= 1 – (1/5) = 4/5

SC(age!=2)=2 SC(age!=2)=2

SELECT * FROM people 
WHERE age != 2
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SELECTIONS COMPLEX PREDICATES

Conjunction: 
→ sel(P1 ⋀ P2) = sel(P1) ∙ sel(P2)
→ sel(age=2 ⋀ name LIKE 'A%')

This assumes that the predicates are 
independent.

14

SELECT * FROM people 
WHERE age = 2
AND name LIKE 'A%'

P1 P2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)
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SELECT * FROM people 
WHERE age = 2
AND name LIKE 'A%'
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SELECTIONS COMPLEX PREDICATES

Disjunction: 
→ sel(P1 ⋁ P2)

= sel(P1) + sel(P2) – sel(P1⋀P2)
= sel(P1) + sel(P2) – sel(P1) ∙ sel(P2)

→ sel(age=2 OR name LIKE 'A%')

This again assumes that the
selectivities are independent.

15

SELECT * FROM people 
WHERE age = 2

OR name LIKE 'A%'

P1 P2
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SELECTIONS COMPLEX PREDICATES
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SELECT * FROM people 
WHERE age = 2

OR name LIKE 'A%'

P1 P2
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SELECTION CARDINALIT Y

Assumption #1: Uniform Data
→ The distribution of values (except for the heavy hitters) is 

the same.

Assumption #2: Independent Predicates
→ The predicates on attributes are independent

Assumption #3: Inclusion Principle
→ The domain of join keys overlap such that each key in the 

inner relation will also exist in the outer table.
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CORREL ATED AT TRIBUTES

Consider a database of automobiles:
→ # of Makes = 10, # of Models = 100

And the following query:
→ (make="Honda" AND model="Accord")

With the independence and uniformity 
assumptions,  the selectivity is:
→ 1/10 × 1/100 = 0.001

But since only Honda makes Accords the real 
selectivity is 1/100 = 0.01
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Source: Guy Lohman
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COST ESTIMATIONS

Our formulas are nice, but we assume that data 
values are uniformly distributed.

20
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COST ESTIMATIONS

Our formulas are nice, but we assume that data 
values are uniformly distributed.
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COST ESTIMATIONS

Our formulas are nice, but we assume that data 
values are uniformly distributed.
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COST ESTIMATIONS

Our formulas are nice, but we assume that data 
values are uniformly distributed.
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HISTOGRAMS WITH QUANTILES

Vary the width of buckets so that the total number 
of occurrences for each bucket is roughly the same.
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HISTOGRAMS WITH QUANTILES

Vary the width of buckets so that the total number 
of occurrences for each bucket is roughly the same.
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SAMPLING

Modern DBMSs also collect samples 
from tables to estimate selectivities.

Update samples when the underlying 
tables changes significantly.

23

⋮
1 billion tuples

SELECT AVG(age)
FROM people 
WHERE age > 50

id name age status

1001 Obama 58 Rested

1002 Kanye 41 Weird

1003 Tupac 25 Dead

1004 Bieber 25 Crunk

1005 Andy 38 Lit

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

SAMPLING

Modern DBMSs also collect samples 
from tables to estimate selectivities.

Update samples when the underlying 
tables changes significantly.

23

⋮
1 billion tuples

SELECT AVG(age)
FROM people 
WHERE age > 50

id name age status

1001 Obama 58 Rested

1002 Kanye 41 Weird

1003 Tupac 25 Dead

1004 Bieber 25 Crunk

1005 Andy 38 Lit

1001 Obama 58 Rested

1003 Tupac 25 Dead

1005 Andy 38 Lit

Table Sample

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

SAMPLING
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OBSERVATION

Now that we can (roughly) estimate the selectivity 
of predicates, what can we actually do with them?
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QUERY OPTIMIZATION

After performing rule-based rewriting, the DBMS 
will enumerate different plans for the query and 
estimate their costs.
→ Single relation.
→ Multiple relations.
→ Nested sub-queries.

It chooses the best plan it has seen for the query 
after exhausting all plans or some timeout.
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SINGLE-REL ATION QUERY PL ANNING

Pick the best access method.
→ Sequential Scan
→ Binary Search (clustered indexes)
→ Index Scan

Predicate evaluation ordering.

Simple heuristics are often good enough for this.

OLTP queries are especially easy…

26

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

OLTP QUERY PL ANNING

Query planning for OLTP queries is easy because 
they are sargable (Search Argument Able).
→ It is usually just picking the best index.
→ Joins are almost always on foreign key relationships with 

a small cardinality.
→ Can be implemented with simple heuristics.

27

CREATE TABLE people (
id INT PRIMARY KEY,
val INT NOT NULL,
⋮

);

SELECT * FROM people
WHERE id = 123;
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MULTI-REL ATION QUERY PL ANNING

As number of joins increases, number of 
alternative plans grows rapidly
→ We need to restrict search space.

Fundamental decision in System R: only left-deep 
join trees are considered.
→ Modern DBMSs do not always make this assumption 

anymore.
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MULTI-REL ATION QUERY PL ANNING

Fundamental decision in System R: Only consider 
left-deep join trees.
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MULTI-REL ATION QUERY PL ANNING

Fundamental decision in System R: Only consider 
left-deep join trees.

Allows for fully pipelined plans where 
intermediate results are not written to temp files.
→ Not all left-deep trees are fully pipelined.

30
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MULTI-REL ATION QUERY PL ANNING

Enumerate the orderings
→ Example: Left-deep tree #1, Left-deep tree #2…

Enumerate the plans for each operator
→ Example: Hash, Sort-Merge, Nested Loop…

Enumerate the access paths for each table
→ Example: Index #1, Index #2, Seq Scan…

Use dynamic programming to reduce the 
number of cost estimations.
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DYNAMIC PROGRAMMING

32

SortMerge Join
R.a=S.a

SortMerge Join
T.b=S.b

Hash Join
T.b=S.b

R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T

Hash Join
R.a=S.a SELECT * FROM R, S, T

WHERE R.a = S.a
AND S.b = T.b

Cost: 
300

Cost: 
400

Cost: 
280

Cost: 
200

R
S
T
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DYNAMIC PROGRAMMING

32

Hash Join
T.b=S.b

R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T

Hash Join
R.a=S.a SELECT * FROM R, S, T

WHERE R.a = S.a
AND S.b = T.b

Cost: 
300

Cost: 
200

R
S
T
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DYNAMIC PROGRAMMING

32

Hash Join
T.b=S.b

R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T

Hash Join
R.a=S.a

Hash Join
S.b=T.b

SortMerge Join
S.b=T.b

SortMerge Join
S.a=R.a

Hash Join
S.a=R.a

SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b

Cost: 
300

Cost: 
200

Cost: 
450

Cost: 
300

Cost: 
400

Cost: 
380

R
S
T
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DYNAMIC PROGRAMMING

32

Hash Join
T.b=S.b

R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T

Hash Join
R.a=S.a

Hash Join
S.b=T.b

SortMerge Join
S.a=R.a

SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b

Cost: 
300

Cost: 
200

Cost: 
300

Cost: 
380

R
S
T
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DYNAMIC PROGRAMMING

32

Hash Join
T.b=S.b

R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T
SortMerge Join
S.a=R.a

SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b

Cost: 
200

Cost: 
300

R
S
T
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CANDIDATE PL AN EXAMPLE

How to generate plans for search 
algorithm:
→ Enumerate relation orderings
→ Enumerate join algorithm choices
→ Enumerate access method choices

No real DBMSs does it this way.
It’s actually more messy…

33

SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b
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CANDIDATE PL ANS

Step #1: Enumerate relation orderings

34
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Prune plans with cross-
products immediately!
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CANDIDATE PL ANS

Step #1: Enumerate relation orderings
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CANDIDATE PL ANS

Step #2: Enumerate join algorithm choices

35
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CANDIDATE PL ANS

Step #2: Enumerate join algorithm choices
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CANDIDATE PL ANS

Step #3: Enumerate access method choices

36

R S

T

HJ

HJ

Do this for the other 
plans. 

HJ

HJ

SeqScan SeqScan

SeqScan

HJ

HJ

SeqScan IndexScan(S.b)

SeqScan
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POSTGRES OPTIMIZER

Examines all types of join trees
→ Left-deep, Right-deep, bushy

Two optimizer implementations:
→ Traditional Dynamic Programming Approach
→ Genetic Query Optimizer (GEQO)

Postgres uses the traditional algorithm when # of 
tables in query is less than 12 and switches to 
GEQO when there are 12 or more.

37
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POSTGRES OPTIMIZER
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POSTGRES OPTIMIZER

38
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POSTGRES OPTIMIZER

38
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POSTGRES OPTIMIZER
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POSTGRES OPTIMIZER
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NESTED SUB-QUERIES

The DBMS treats nested sub-queries in the where 
clause as functions that take parameters and return 
a single value or set of values.

Two Approaches:
→ Rewrite to de-correlate and/or flatten them
→ Decompose nested query and store result to temporary 

table
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NESTED SUB-QUERIES:  REWRITE

40

SELECT name FROM sailors AS S
WHERE EXISTS (

SELECT * FROM reserves AS R
WHERE S.sid = R.sid
AND R.day = '2018-10-15'

)
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NESTED SUB-QUERIES:  REWRITE

40

SELECT name FROM sailors AS S
WHERE EXISTS (

SELECT * FROM reserves AS R
WHERE S.sid = R.sid
AND R.day = '2018-10-15'

)

SELECT name
FROM sailors AS S, reserves AS R
WHERE S.sid = R.sid
AND R.day = '2018-10-15'
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NESTED SUB-QUERIES:  DECOMPOSE

41

For each sailor with the highest rating (over all sailors) and at 
least two reservations for red boats, find the sailor id and the 
earliest date on which the sailor has a reservation for a red boat.

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1
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DECOMPOSING QUERIES

For harder queries, the optimizer breaks up 
queries into blocks and then concentrates on one 
block at a time.

Sub-queries are written to a temporary table that 
are discarded after the query finishes.
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DECOMPOSING QUERIES

43

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

Nested Block
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DECOMPOSING QUERIES

43

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

Nested Block

SELECT MAX(rating) FROM sailors
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DECOMPOSING QUERIES

43

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

SELECT MAX(rating) FROM sailors

###
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DECOMPOSING QUERIES

43

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

Outer Block

SELECT MAX(rating) FROM sailors

###
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CONCLUSION

Filter early as possible.

Selectivity estimations
→ Uniformity
→ Independence
→ Histograms
→ Join selectivity

Dynamic programming for join orderings

Rewrite nested queries 

Again, query optimization is hard…
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EXTRA CREDIT

Each student can earn extra credit if they write a 
encyclopedia article about a DBMS.
→ Can be academic/commercial, active/historical.

Each article will use a standard taxonomy.
→ For each feature category, you select pre-defined options 

for your DBMS.
→ You will then need to provide a summary paragraph with 

citations for that category.
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DBDB.IO

All the articles will be hosted on dbdb.io
→ I will post registration details on Piazza.

I will post a sign-up sheet for you to pick what 
DBMS you want to write about.
→ If you choose a widely known DBMS, then the article will 

need to be comprehensive.
→ If you choose an obscure DBMS, then you will have to do 

the best you can to find information.

46

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://dbdb.io/


CMU 15-445/645 (Fall 2019)

DBDB.IO
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→ I will post registration details on Piazza.

I will post a sign-up sheet for you to pick what 
DBMS you want to write about.
→ If you choose a widely known DBMS, then the article will 

need to be comprehensive.
→ If you choose an obscure DBMS, then you will have to do 

the best you can to find information.
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HOW TO DECIDE

Pick a DBMS based on whatever criteria you want:
→ Country of Origin
→ Popularity
→ Programming Language
→ Single-Node vs. Embedded vs. Distributed
→ Disk vs. Memory
→ Row Store vs. Column Store
→ Open-Source vs. Proprietary
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PL AGIARISM WARNING

This article must be your own writing with your 
own images. You may not copy text/images 
directly from papers or other sources that you find 
on the web.

Plagiarism will not be tolerated.
See CMU's Policy on Academic Integrity for 
additional information. 
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NEXT CL ASS

Transactions!
→ aka the second hardest part about database systems
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