
Intro to Database Systems

15-445/15-645

Fall 2019

Andy Pavlo
Computer Science 
Carnegie Mellon UniversityAP

10 Sorting & 
Aggregations

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/


CMU 15-445/645 (Fall 2019)

ADMINISTRIVIA

Homework #3 is due Wed Oct 9th @ 11:59pm

Mid-Term Exam is Wed Oct 16th @ 12:00pm

Project #2 is due Sun Oct 20th @ 11:59pm

2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

COURSE STATUS

We are now going to talk about how 
to execute queries using table heaps 
and indexes.

Next two weeks:
→ Operator Algorithms
→ Query Processing Models
→ Runtime Architectures

3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

QUERY PL AN

The operators are arranged in a tree.

Data flows from the leaves of the tree 
up towards the root.

The output of the root node is the 
result of the query.

4

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

DISK-ORIENTED DBMS

Just like it cannot assume that a table fits entirely 
in memory, a disk-oriented DBMS cannot assume 
that the results of a query fits in memory.

We are going use on the buffer pool to implement 
algorithms that need to spill to disk.

We are also going to prefer algorithms that 
maximize the amount of sequential access.

5

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

TODAY'S  AGENDA

External Merge Sort

Aggregations

6

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

WHY DO WE NEED TO SORT ?

Tuples in a table have no specific order.

But queries often want to retrieve tuples in a 
specific order.
→ Trivial to support duplicate elimination (DISTINCT).
→ Bulk loading sorted tuples into a B+Tree index is faster.
→ Aggregations (GROUP BY).

7

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

SORTING ALGORITHMS

If data fits in memory, then we can use a standard 
sorting algorithm like quick-sort. 

If data does not fit in memory, then we need to use 
a technique that is aware of the cost of writing data 
out to disk…

8

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

EXTERNAL MERGE SORT

Divide-and-conquer sorting algorithm that splits 
the data set into separate runs and then sorts them 
individually.

Phase #1 – Sorting
→ Sort blocks of data that fit in main-memory and then 

write back the sorted blocks to a file on disk.

Phase #2 – Merging
→ Combine sorted sub-files into a single larger file. 

9

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

2-WAY EXTERNAL MERGE SORT

We will start with a simple example of a 2-way 
external merge sort.
→ "2" represents the number of runs that we are going to 

merge into a new run for each pass.

Data set is broken up into N pages.

The DBMS has a finite number of B buffer pages 
to hold input and output data.

10

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

2-WAY EXTERNAL MERGE SORT

Pass #0
→ Read every B pages of the table into memory
→ Sort pages into runs and write them back to disk.

Memory

Disk

11

Page #1 Page #2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

2-WAY EXTERNAL MERGE SORT

Pass #0
→ Read every B pages of the table into memory
→ Sort pages into runs and write them back to disk.

Memory

Disk

11

Page #1 Page #2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

2-WAY EXTERNAL MERGE SORT

Pass #0
→ Read every B pages of the table into memory
→ Sort pages into runs and write them back to disk.

Memory

Disk

11

Page #1 Page #2 Sorted Run

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

2-WAY EXTERNAL MERGE SORT

Pass #0
→ Read every B pages of the table into memory
→ Sort pages into runs and write them back to disk.

Memory Memory

Disk

11

Page #1 Page #2 Sorted Run

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

2-WAY EXTERNAL MERGE SORT

Pass #0
→ Read every B pages of the table into memory
→ Sort pages into runs and write them back to disk.

Memory Memory

Disk

11

Page #1 Page #2 Sorted Run

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

2-WAY EXTERNAL MERGE SORT

Pass #0
→ Read every B pages of the table into memory
→ Sort pages into runs and write them back to disk.

Pass #1,2,3,…
→ Recursively merges pairs of runs into runs twice as long.
→ Uses three buffer pages (2 for input pages, 1 for output).

Memory Memory Memory

Disk

11

Page #1 Page #2 Sorted Run

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

2-WAY EXTERNAL MERGE SORT

Pass #0
→ Read every B pages of the table into memory
→ Sort pages into runs and write them back to disk.

Pass #1,2,3,…
→ Recursively merges pairs of runs into runs twice as long.
→ Uses three buffer pages (2 for input pages, 1 for output).

Memory Memory Memory

Disk

11

Page #1 Page #2 Sorted Run

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

2-WAY EXTERNAL MERGE SORT

Pass #0
→ Read every B pages of the table into memory
→ Sort pages into runs and write them back to disk.

Pass #1,2,3,…
→ Recursively merges pairs of runs into runs twice as long.
→ Uses three buffer pages (2 for input pages, 1 for output).

Memory Memory Memory

Disk

11

Page #1 Page #2

Final Result

Sorted Run

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

2-WAY EXTERNAL MERGE SORT

In each pass, we read and 
write each page in file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

12

1-PAGE
RUNS

PASS
#0

2-PAGE
RUNS

PASS
#1

4-PAGE
RUNS

PASS
#2

8-PAGE
RUNS

PASS
#3

3,4 2,6 4,9 7,8 5,6 1,3 2 ∅

6,2 9,4 8,7 5,6 3,1 2 ∅3,4

2,3

4,6

4,7

8,9

1,3

5,6

2

∅

4,4

6,7

8,9

2,3 1,2

3,5

6

∅

1,2

2,3

3,4

4,5

6,6

7,8

9

∅

EOF

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

2-WAY EXTERNAL MERGE SORT

This algorithm only requires three buffer pages to 
perform the sorting (B=3).

But even if we have more buffer space available 
(B>3), it does not effectively utilize them…

13

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

DOUBLE BUFFERING OPTIMIZATION

Prefetch the next run in the background and store 
it in a second buffer while the system is processing 
the current run.
→ Reduces the wait time for I/O requests at each step by 

continuously utilizing the disk.

14

Memory

Disk
Page #1 Page #2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

DOUBLE BUFFERING OPTIMIZATION

Prefetch the next run in the background and store 
it in a second buffer while the system is processing 
the current run.
→ Reduces the wait time for I/O requests at each step by 

continuously utilizing the disk.

14

Memory

Disk
Page #1 Page #2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

GENERAL EXTERNAL MERGE SORT

Pass #0
→ Use B buffer pages. 
→ Produce ⌈N / B⌉ sorted runs of size B

Pass #1,2,3,…
→ Merge B-1 runs (i.e., K-way merge).

Number of passes = 1 + ⌈ logB-1 ⌈N / B⌉ ⌉

Total I/O Cost = 2N ∙ (# of passes)

15

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

GENERAL EXTERNAL MERGE SORT

Pass #0
→ Use B buffer pages. 
→ Produce ⌈N / B⌉ sorted runs of size B

Pass #1,2,3,…
→ Merge B-1 runs (i.e., K-way merge).

Number of passes = 1 + ⌈ logB-1 ⌈N / B⌉ ⌉

Total I/O Cost = 2N ∙ (# of passes)

15

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

EXAMPLE

Sort 108 pages with 5 buffer pages: N=108, B=5
→ Pass #0: ⌈N / B⌉ = ⌈108 / 5⌉ = 22 sorted runs of 5 pages 

each (last run is only 3 pages).
→ Pass #1: ⌈N’ / B-1⌉ = ⌈22 / 4⌉ = 6 sorted runs of 20 pages 

each (last run is only 8 pages).
→ Pass #2: ⌈N’’ / B-1⌉ = ⌈6 / 4⌉ = 2 sorted runs, first one has 

80 pages and second one has 28 pages.
→ Pass #3: Sorted file of 108 pages.

1+⌈ logB-1⌈N / B⌉ ⌉ = 1+⌈log4 22⌉ = 1+⌈2.229...⌉
= 4 passes

16

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

USING B+TREES FOR SORTING

If the table that must be sorted already has a 
B+Tree index on the sort attribute(s), then we can 
use that to accelerate sorting.

Retrieve tuples in desired sort order by simply 
traversing the leaf pages of the tree.

Cases to consider:
→ Clustered B+Tree
→ Unclustered B+Tree

18

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

CASE #1 CLUSTERED B+TREE

Traverse to the left-most leaf page, 
and then retrieve tuples from all leaf 
pages.

This is always better than external 
sorting because there is no 
computational cost and all disk access 
is sequential.

19

B+Tree Index

101 102 103 104

Tuple Pages

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

CASE #2 UNCLUSTERED B+TREE

Chase each pointer to the page that 
contains the data.

This is almost always a bad idea.
In general, one I/O per data record. 

20

101 102 103 104

Tuple Pages

B+Tree Index

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

AGGREGATIONS

Collapse multiple tuples into a single scalar value.

Two implementation choices:
→ Sorting
→ Hashing

21

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

cid

15-445
15-445
15-721
15-826

SORTING AGGREGATION

22

Remove
Columns

SortFilter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')
ORDER BY cid

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

cid

15-445
15-445
15-721
15-826

SORTING AGGREGATION

22

Remove
Columns

Sort
Eliminate

Dupes

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')
ORDER BY cid

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

cid

15-445
15-445
15-721
15-826

SORTING AGGREGATION

22

Remove
Columns

Sort
Eliminate

Dupes

X
Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')
ORDER BY cid

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

ALTERNATIVES TO SORTING

What if we don’t need the data to be ordered?
→ Forming groups in GROUP BY (no ordering)
→ Removing duplicates in DISTINCT (no ordering)

Hashing is a better alternative in this scenario.
→ Only need to remove duplicates, no need for ordering.
→ Can be computationally cheaper than sorting.

23

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

HASHING AGGREGATE

Populate an ephemeral hash table as the DBMS 
scans the table. For each record, check whether 
there is already an entry in the hash table:
→ DISTINCT: Discard duplicate.
→ GROUP BY: Perform aggregate computation.

If everything fits in memory, then it is easy.

If the DBMS must spill data to disk, then we need 
to be smarter…

24

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

EXTERNAL HASHING AGGREGATE

Phase #1 – Partition
→ Divide tuples into buckets based on hash key.
→ Write them out to disk when they get full.

Phase #2 – ReHash
→ Build in-memory hash table for each partition and 

compute the aggregation.

25

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

PHASE #1 PARTITION

Use a hash function h1 to split tuples into 
partitions on disk.
→ We know that all matches live in the same partition.
→ Partitions are "spilled" to disk via output buffers.

Assume that we have B buffers.

We will use B-1 buffers for the partitions and 1
buffer for the input data.

26

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

PHASE #1 PARTITION

27

Remove
Columns

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-445 15-445
15-445 15-445
15-445

15-826
15-826

15-721

⋮

h1

B-1 partitions

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

⋮

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

PHASE #2 REHASH

For each partition on disk:
→ Read it into memory and build an in-memory hash table 

based on a second hash function h2.
→ Then go through each bucket of this hash table to bring 

together matching tuples.

This assumes that each partition fits in memory.

28

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

PHASE #2 REHASH

29

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-445 15-445
15-445 15-445
15-445

15-826
15-826

⋮

Phase #1 Buckets

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

PHASE #2 REHASH

29

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-445 15-445
15-445 15-445
15-445

15-826
15-826

⋮

Phase #1 Buckets

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

PHASE #2 REHASH

29

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-445 15-445
15-445 15-445
15-445

15-826
15-826

⋮

h2

Phase #1 Buckets

cid

15-445

Hash Table

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

PHASE #2 REHASH

29

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-445 15-445
15-445 15-445
15-445

15-826
15-826

⋮

h2

h2

Phase #1 Buckets

cid

15-445

Hash Table

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

15-826

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

PHASE #2 REHASH

29

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-445 15-445
15-445 15-445
15-445

15-826
15-826

⋮

h2

h2

Phase #1 Buckets

cid

15-445

cid

15-445
15-826

Hash Table

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

Final Result15-826

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

PHASE #2 REHASH

29

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-721

15-445 15-445
15-445 15-445
15-445

15-826
15-826

⋮

h2

h2

Phase #1 Buckets

cid

15-445

cid

15-445
15-826

Hash Table

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

Final Result15-826

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

PHASE #2 REHASH

29

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-721

15-445 15-445
15-445 15-445
15-445

15-826
15-826

⋮

h2

h2

h2

Phase #1 Buckets

cid

15-445
15-826

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

Final Result

cid

15-721

Hash Table

15-721

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

HASHING SUMMARIZATION

During the ReHash phase, store pairs of the form 
(GroupKey→RunningVal)

When we want to insert a new tuple into the hash 
table:
→ If we find a matching GroupKey, just update the 

RunningVal appropriately
→ Else insert a new GroupKey→RunningVal

30

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

HASHING SUMMARIZATION

31

SELECT cid, AVG(s.gpa)
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

15-445
15-445

15-826

15-721

⋮

h2

h2

h2

Phase #1
Buckets

key value

15-445 (2, 7.32)

15-826 (1, 3.33)

15-721 (1, 2.89)

Hash Table

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

HASHING SUMMARIZATION

31

SELECT cid, AVG(s.gpa)
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

15-445
15-445

15-826

15-721

⋮

h2

h2

h2

Phase #1
Buckets

key value

15-445 (2, 7.32)

15-826 (1, 3.33)

15-721 (1, 2.89)

Hash Table

AVG(col)   → (COUNT,SUM)
MIN(col)   → (MIN)
MAX(col)   → (MAX)
SUM(col)   → (SUM)
COUNT(col) → (COUNT)

Running Totals

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

HASHING SUMMARIZATION

31

SELECT cid, AVG(s.gpa)
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

15-445
15-445

15-826

15-721

⋮

h2

h2

h2

Phase #1
Buckets

key value

15-445 (2, 7.32)

15-826 (1, 3.33)

15-721 (1, 2.89)

Hash Table
cid AVG(gpa)

15-445 3.66

15-826 3.33

15-721 2.89

Final Result

AVG(col)   → (COUNT,SUM)
MIN(col)   → (MIN)
MAX(col)   → (MAX)
SUM(col)   → (SUM)
COUNT(col) → (COUNT)

Running Totals

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

COST ANALYSIS

How big of a table can we hash using this 
approach?
→ B-1 "spill partitions" in Phase #1
→ Each should be no more than B blocks big

Answer: B ∙ (B-1)
→ A table of N pages needs about sqrt(N) buffers
→ Assumes hash distributes records evenly.

Use a "fudge factor" f>1 for that: we need 
B ∙ sqrt(f ∙ N)

32

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

CONCLUSION

Choice of sorting vs. hashing is subtle and depends 
on optimizations done in each case.

We already discussed the optimizations for 
sorting:
→ Chunk I/O into large blocks to amortize seek+RD costs.
→ Double-buffering to overlap CPU and I/O.

33

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

PROJECT #2

You will build a thread-safe linear 
probing hash table that supports 
automatic resizing.

We define the API for you. You need 
to provide the implementation.

34

https://15445.courses.cs.cmu.edu/fall2019/project2/

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2018/project2/


CMU 15-445/645 (Fall 2019)

PROJECT #2 TASKS

Page Layouts

Hash Table Implementation

Table Resizing

Concurrency Control Protocol

35

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

DEVELOPMENT HINTS

Follow the textbook semantics and algorithms.

You should make sure your page layout are 
working correctly before switching to the actual 
hash table itself.

Then focus on the single-threaded use case first.

Avoid premature optimizations.
→ Correctness first, performance second.

36

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

THINGS TO NOTE

Do not change any file other than the ones that 
you submit to Gradescope.

Rebase on top of the latest BusTub master branch.

Post your questions on Piazza or come to TA 
office hours.

37

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/


CMU 15-445/645 (Fall 2019)

PL AGIARISM WARNING

Your project implementation must be 
your own work.
→ You may not copy source code from other 

groups or the web.
→ Do not publish your implementation on 

Github.

Plagiarism will not be tolerated.
See CMU's Policy on Academic 
Integrity for additional information. 

38

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
http://www.cmu.edu/policies/documents/Academic%20Integrity.htm


CMU 15-445/645 (Fall 2019)

NEXT CL ASS

Nested Loop Join

Sort-Merge Join

Hash Join

39

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

