
Intro to Database Systems

15-445/15-645

Fall 2019

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

09 Index
Concurrency

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

CMU 15-445/645 (Fall 2019)

ADMINISTRIVIA

Project #1 is due Fri Sept 27th @ 11:59pm

Homework #2 is due Mon Sept 30th @ 11:59pm

Project #2 will be released Mon Sept 30th

2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

OBSERVATION

We assumed that all the data structures that we
have discussed so far are single-threaded.

But we need to allow multiple threads to safely
access our data structures to take advantage of
additional CPU cores and hide disk I/O stalls.

3

They Don't Do This!

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://voltdb.com/
https://redis.io/

CMU 15-445/645 (Fall 2019)

CONCURRENCY CONTROL

A concurrency control protocol is the method
that the DBMS uses to ensure "correct" results for
concurrent operations on a shared object.

A protocol's correctness criteria can vary:
→ Logical Correctness: Can I see the data that I am

supposed to see?
→ Physical Correctness: Is the internal representation of

the object sound?

4

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TODAY'S AGENDA

Latches Overview

Hash Table Latching

B+Tree Latching

Leaf Node Scans

Delayed Parent Updates

5

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LOCKS VS. L ATCHES

Locks
→ Protects the database's logical contents from other txns.
→ Held for txn duration.
→ Need to be able to rollback changes.

Latches
→ Protects the critical sections of the DBMS's internal data

structure from other threads.
→ Held for operation duration.
→ Do not need to be able to rollback changes.

6

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LOCKS VS. L ATCHES

7

Locks Latches

Separate… User transactions Threads

Protect… Database Contents In-Memory Data Structures

During… Entire Transactions Critical Sections

Modes… Shared, Exclusive, Update,
Intention

Read, Write

Deadlock Detection & Resolution Avoidance

…by… Waits-for, Timeout, Aborts Coding Discipline

Kept in… Lock Manager Protected Data Structure
Source: Goetz Graefe

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf
https://15445.courses.cs.cmu.edu/fall2019/schedule.html#oct-23-2019

CMU 15-445/645 (Fall 2019)

L ATCH MODES

Read Mode
→ Multiple threads can read the same object

at the same time.
→ A thread can acquire the read latch if

another thread has it in read mode.

Write Mode
→ Only one thread can access the object.
→ A thread cannot acquire a write latch if

another thread holds the latch in any
mode.

8

Read Write

Read ✔ X

Write X X

Compatibility Matrix

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

L ATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex
→ Simple to use
→ Non-scalable (about 25ns per lock/unlock invocation)
→ Example: std::mutex

9

std::mutex m;
⋮

m.lock();
// Do something special...
m.unlock();

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

L ATCH IMPLEMENTATIONS

Approach #2: Test-and-Set Spin Latch (TAS)
→ Very efficient (single instruction to latch/unlatch)
→ Non-scalable, not cache friendly
→ Example: std::atomic<T>

10

std::atomic_flag latch;
⋮

while (latch.test_and_set(…)) {
// Retry? Yield? Abort?

}

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

L ATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latch
→ Allows for concurrent readers
→ Must manage read/write queues to avoid starvation
→ Can be implemented on top of spinlocks

11

read write

Latch

=0

=0

=0

=0

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

L ATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latch
→ Allows for concurrent readers
→ Must manage read/write queues to avoid starvation
→ Can be implemented on top of spinlocks

11

read write

Latch

=0

=0

=0

=0

=1

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

L ATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latch
→ Allows for concurrent readers
→ Must manage read/write queues to avoid starvation
→ Can be implemented on top of spinlocks

11

read write

Latch

=0

=0

=0

=0

=1=2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

L ATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latch
→ Allows for concurrent readers
→ Must manage read/write queues to avoid starvation
→ Can be implemented on top of spinlocks

11

read write

Latch

=0

=0

=0

=0

=1=2

=1

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

L ATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latch
→ Allows for concurrent readers
→ Must manage read/write queues to avoid starvation
→ Can be implemented on top of spinlocks

11

read write

Latch

=0

=0

=0

=0

=1=2

=1=1

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

HASH TABLE L ATCHING

Easy to support concurrent access due to the
limited ways threads access the data structure.
→ All threads move in the same direction and only access a

single page/slot at a time.
→ Deadlocks are not possible.

To resize the table, take a global latch on the entire
table (i.e., in the header page).

12

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

HASH TABLE L ATCHING

Approach #1: Page Latches
→ Each page has its own reader-write latch that protects its

entire contents.
→ Threads acquire either a read or write latch before they

access a page.

Approach #2: Slot Latches
→ Each slot has its own latch.
→ Can use a single mode latch to reduce meta-data and

computational overhead.

13

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valA

| valC

HASH TABLE PAGE L ATCHES

14

| valB

hash(D)
T1: Find D

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valA

| valC

HASH TABLE PAGE L ATCHES

14

| valB

R
hash(D)
T1: Find D

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valA

| valC

HASH TABLE PAGE L ATCHES

14

| valB

R
hash(D)
T1: Find D

hash(E)
T2: Insert E

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valA

| valC

HASH TABLE PAGE L ATCHES

14

| valB

R
hash(D)
T1: Find D

hash(E)
T2: Insert E

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valA

| valC

HASH TABLE PAGE L ATCHES

14

| valB

R
hash(D)
T1: Find D

hash(E)
T2: Insert E

0

1

2

It’s safe to release the
latch on Page #1.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valA

| valC

HASH TABLE PAGE L ATCHES

14

| valB

hash(D)
T1: Find D

R

hash(E)
T2: Insert E

0

1

2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valA

| valC

HASH TABLE PAGE L ATCHES

14

| valB

hash(D)
T1: Find D

R

hash(E)
T2: Insert E

W

0

1

2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valA

| valC

HASH TABLE PAGE L ATCHES

14

| valB

hash(D)
T1: Find D

hash(E)
T2: Insert E

W

0

1

2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valA

| valC

HASH TABLE PAGE L ATCHES

14

| valB

hash(D)
T1: Find D

hash(E)
T2: Insert E

0

1

2

W

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valE

| valA

| valC

HASH TABLE PAGE L ATCHES

14

| valB

hash(D)
T1: Find D

hash(E)
T2: Insert E

0

1

2

W

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valA

| valC

HASH TABLE SLOT L ATCHES

15

| valB
0

1

2

hash(D)
T1: Find D

hash(E)
T2: Insert E

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valA

| valC

HASH TABLE SLOT L ATCHES

15

| valB

R

0

1

2

hash(D)
T1: Find D

hash(E)
T2: Insert E

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valA

| valC

HASH TABLE SLOT L ATCHES

15

| valB

R

0

1

2

hash(D)
T1: Find D

hash(E)
T2: Insert E

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valA

| valC

HASH TABLE SLOT L ATCHES

15

| valB

R

0

1

2

W

hash(D)
T1: Find D

hash(E)
T2: Insert E

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valA

| valC

HASH TABLE SLOT L ATCHES

15

| valB

R

0

1

2

W

hash(D)
T1: Find D

hash(E)
T2: Insert E

It’s safe to release the
latch on A

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valA

| valC

HASH TABLE SLOT L ATCHES

15

| valB
0

1

2

W

hash(D)
T1: Find D

hash(E)
T2: Insert E

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valA

| valC

HASH TABLE SLOT L ATCHES

15

| valB
0

1

2

W

hash(D)
T1: Find D

hash(E)
T2: Insert E

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valA

| valC

HASH TABLE SLOT L ATCHES

15

| valB
0

1

2

W

R

hash(D)
T1: Find D

hash(E)
T2: Insert E

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valE

| valA

| valC

HASH TABLE SLOT L ATCHES

15

| valB
0

1

2

R

W

hash(D)
T1: Find D

hash(E)
T2: Insert E

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

| valD

| valE

| valA

| valC

HASH TABLE SLOT L ATCHES

15

| valB

R

0

1

2W

hash(D)
T1: Find D

hash(E)
T2: Insert E

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

B+TREE CONCURRENCY CONTROL

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect from two types of problems:
→ Threads trying to modify the contents of a node at the

same time.
→ One thread traversing the tree while another thread

splits/merges nodes.

16

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38

B+TREE MULTI-THREADED EXAMPLE

17

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44

41

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38

B+TREE MULTI-THREADED EXAMPLE

17

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44

41

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38

B+TREE MULTI-THREADED EXAMPLE

17

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44

41

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38

B+TREE MULTI-THREADED EXAMPLE

17

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44

41

Rebalance!

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38

B+TREE MULTI-THREADED EXAMPLE

17

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44
T2: Find 41

41

Rebalance!

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38

B+TREE MULTI-THREADED EXAMPLE

17

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44
T2: Find 41

41

Rebalance!

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38

B+TREE MULTI-THREADED EXAMPLE

17

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44
T2: Find 41

41

Rebalance!

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38

B+TREE MULTI-THREADED EXAMPLE

17

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44
T2: Find 41

41

Rebalance!

41

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38

B+TREE MULTI-THREADED EXAMPLE

17

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44
T2: Find 41

41

Rebalance!

41

???

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

L ATCH CRABBING/COUPLING

Protocol to allow multiple threads to
access/modify B+Tree at the same time.

Basic Idea:
→ Get latch for parent.
→ Get latch for child
→ Release latch for parent if “safe”.

A safe node is one that will not split or merge
when updated.
→ Not full (on insertion)
→ More than half-full (on deletion)

18

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

L ATCH CRABBING/COUPLING

Find: Start at root and go down; repeatedly,
→ Acquire R latch on child
→ Then unlatch parent

Insert/Delete: Start at root and go down,
obtaining W latches as needed. Once child is
latched, check if it is safe:
→ If child is safe, release all latches on ancestors.

19

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

EXAMPLE #1 FIND 38

20

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

B

C D

E F G H I

3510

R
A

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

EXAMPLE #1 FIND 38

20

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

B

C D

E F G H I

3510

R

R

It’s safe to release the
latch on A.

A

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

EXAMPLE #1 FIND 38

20

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

B

C D

E F G H I

3510
R

A

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

EXAMPLE #1 FIND 38

20

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

B

C D

E F G H I

3510

R

A

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

EXAMPLE #1 FIND 38

20

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

B

C D

E F G H I

3510

R

A

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

EXAMPLE #1 FIND 38

20

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

B

C D

E F G H I

3510

A

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #2 DELETE 38

21

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #2 DELETE 38

21

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

W

We may need to coalesce B, so
we can’t release the latch on A.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #2 DELETE 38

21

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

W

W

We know that D will not need
to merge with C, so it’s safe to

release latches on A and B.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #2 DELETE 38

21

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

We know that D will not need
to merge with C, so it’s safe to

release latches on A and B.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #2 DELETE 38

21

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #2 DELETE 38

21

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #3 INSERT 45

22

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

C D

E F G H I

3510

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #3 INSERT 45

22

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

W

We know that if D needs to
split, B has room so it’s safe

to release the latch on A.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #3 INSERT 45

22

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

C D

E F G H I

3510
W

W

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #3 INSERT 45

22

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

C D

E F G H I

3510
W

W

W

Node I won’t split, so we
can release B+D.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #3 INSERT 45

22

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

Node I won’t split, so we
can release B+D.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

23

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

W

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

23

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510
W

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

23

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510
W

W

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

23

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

23

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

W

We need to split F so we need to
hold the latch on its parent node.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

23

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

W
25

We need to split F so we need to
hold the latch on its parent node.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

23

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

W
25

31

We need to split F so we need to
hold the latch on its parent node.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

OBSERVATION

What was the first step that all the update
examples did on the B+Tree?

24

20 A
W

Delete 38

20 A
W

Insert 45

20 A
W

Insert 25

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

OBSERVATION

What was the first step that all the update
examples did on the B+Tree?

Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.

Can we do better?

25

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BET TER L ATCHING ALGORITHM

Assume that the leaf node is safe.

Use read latches and crabbing to reach
it, and then verify that it is safe.

If leaf is not safe, then do previous
algorithm using write latches.

26

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://link.springer.com/article/10.1007/BF00263762

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #2 DELETE 38

27

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #2 DELETE 38

27

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510
R

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #2 DELETE 38

27

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #2 DELETE 38

27

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

W

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #2 DELETE 38

27

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

H will not need to coalesce, so
we’re safe!

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #2 DELETE 38

27

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

H will not need to coalesce, so
we’re safe!

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

28

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

We need to split F so we
have to restart and re-

execute like before.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BET TER L ATCHING ALGORITHM

Search: Same as before.

Insert/Delete:
→ Set latches as if for search, get to leaf, and set W latch on

leaf.
→ If leaf is not safe, release all latches, and restart thread

using previous insert/delete protocol with write latches.

This approach optimistically assumes that only leaf
node will be modified; if not, R latches set on the
first pass to leaf are wasteful.

29

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

OBSERVATION

The threads in all the examples so far have
acquired latches in a "top-down" manner.
→ A thread can only acquire a latch from a node that is

below its current node.
→ If the desired latch is unavailable, the thread must wait

until it becomes available.

But what if we want to move from one leaf node
to another leaf node?

30

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LEAF NODE SCAN EXAMPLE #1

31

A

B

3

1 2 3 4

C

T1: Find Keys < 4
R

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LEAF NODE SCAN EXAMPLE #1

31

A

B

3

1 2 3 4

C

T1: Find Keys < 4

R

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LEAF NODE SCAN EXAMPLE #1

31

A

B

3

1 2 3 4

C

T1: Find Keys < 4

R

Do not release latch on C
until thread has latch on B

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LEAF NODE SCAN EXAMPLE #1

31

A

B

3

1 2 3 4

C

T1: Find Keys < 4

R R

Do not release latch on C
until thread has latch on B

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LEAF NODE SCAN EXAMPLE #1

31

A

B

3

1 2 3 4

C

T1: Find Keys < 4

R

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LEAF NODE SCAN EXAMPLE #2

32

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LEAF NODE SCAN EXAMPLE #2

32

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1
R

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LEAF NODE SCAN EXAMPLE #2

32

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1
R

R R

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LEAF NODE SCAN EXAMPLE #2

32

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1

R R

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LEAF NODE SCAN EXAMPLE #2

32

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1

R R

Both T1 and T2 now hold
this read latch.

Both T1 and T2 now hold
this read latch.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LEAF NODE SCAN EXAMPLE #2

32

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1

R R

Only T1 holds
this read latch.

Only T2 holds
this read latch.

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LEAF NODE SCAN EXAMPLE #3

33

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1R

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LEAF NODE SCAN EXAMPLE #3

33

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R W

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LEAF NODE SCAN EXAMPLE #3

33

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R W

T2 cannot acquire
the read latch on C

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LEAF NODE SCAN EXAMPLE #3

33

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R W

T2 does not know
what T1 is doing…

T2 cannot acquire
the read latch on C

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LEAF NODE SCAN EXAMPLE #3

33

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R W

T2 does not know
what T1 is doing…

T2 cannot acquire
the read latch on C

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LEAF NODE SCANS

Latches do not support deadlock detection or
avoidance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a "no-wait" mode.

The DBMS's data structures must cope with failed
latch acquisitions.

34

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DEL AYED PARENT UPDATES

Every time a leaf node overflows, we must update
at least three nodes.
→ The leaf node being split.
→ The new leaf node being created.
→ The parent node.

Blink-Tree Optimization: When a leaf node
overflows, delay updating its parent node.

35

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

R

R

T1: Insert 25

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510
R

R

T1: Insert 25

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

R

T1: Insert 25

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

Add the new leaf node as a
sibling to F, but do not update C

T1: Insert 25

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W
25

31

Add the new leaf node as a
sibling to F, but do not update C

T1: Insert 25

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

25

31

Add the new leaf node as a
sibling to F, but do not update C

T1: Insert 25

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

25

31

Update C the next time that a
thread takes a write latch on it.

T1: Insert 25 C: Add 31

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

25

31

T1: Insert 25

T2: Find 31

C: Add 31

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

25

31

T1: Insert 25

T2: Find 31

C: Add 31

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

R

25

31

T1: Insert 25

T2: Find 31

T3: Insert 33

C: Add 31

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510
R

25

31

T1: Insert 25

T2: Find 31

T3: Insert 33

C: Add 31

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510
R

25

31

W

T1: Insert 25

T2: Find 31

T3: Insert 33

C: Add 31

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510
R

25

31

W

T1: Insert 25

T2: Find 31

T3: Insert 33

C: Add 31

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

38 41

EXAMPLE #4 INSERT 25

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510
R

25

31

W

T1: Insert 25

T2: Find 31

T3: Insert 33

33

C: Add 31

W

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CONCLUSION

Making a data structure thread-safe is notoriously
difficult in practice.

We focused on B+Trees but the same high-level
techniques are applicable to other data structures.

37

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

NEXT CL ASS

We are finally going to discuss how to execute
some queries…

38

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

