
Intro to Database Systems

15-445/15-645

Fall 2019

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

08 Tree Indexes
Part II

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

CMU 15-445/645 (Fall 2019)

UPCOMING DATABASE EVENTS

Vertica Talk
→ Monday Sep 23rd @ 4:30pm
→ GHC 8102

2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://db.cs.cmu.edu/events/db-seminar-fall-2019-db-group-stephen-walkauskas/

CMU 15-445/645 (Fall 2019)

TODAY'S AGENDA

More B+Trees

Additional Index Magic

Tries / Radix Trees

Inverted Indexes

3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

B+TREE: DUPLICATE KEYS

Approach #1: Append Record Id
→ Add the tuple's unique record id as part of the key to

ensure that all keys are unique.
→ The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes
→ Allow leaf nodes to spill into overflow nodes that contain

the duplicate keys.
→ This is more complex to maintain and modify.

4

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

B+TREE: APPEND RECORD ID

5

<5 <9 ≥9

6 7 8 9 131 3

5 9

<Key,RecordId>

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

B+TREE: APPEND RECORD ID

5

<5 <9 ≥9

6 7 8 9 131 3

5 9
Insert 6

<Key,RecordId>

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

B+TREE: APPEND RECORD ID

5

<5 <9 ≥9

6 7 8 9 131 3

5 9

<Key,RecordId>

Insert <6,(Page,Slot)>

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

B+TREE: APPEND RECORD ID

5

<5 <9 ≥9

6 7 8 9 131 3

5 9

<Key,RecordId>

Insert <6,(Page,Slot)>

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

B+TREE: APPEND RECORD ID

5

<5 <9

6 7 8 9 131 3

5 9

<Key,RecordId>

Insert <6,(Page,Slot)>

7 8

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

B+TREE: APPEND RECORD ID

5

<5 <9

6 7 8 9 131 3

5 9

<Key,RecordId>

Insert <6,(Page,Slot)>

7 8

7 9

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

B+TREE: APPEND RECORD ID

5

<5 <9

6 7 8 9 131 3

5 9

<Key,RecordId>

Insert <6,(Page,Slot)>

7 8

7 9

6

≥9<9

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

B+TREE: OVERFLOW LEAF NODES

6

<5 <9 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

B+TREE: OVERFLOW LEAF NODES

6

<5 <9 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

Insert 7

7

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

B+TREE: OVERFLOW LEAF NODES

6

<5 <9 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

Insert 7

7

Insert 6

6

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DEMO

B+Tree vs. Hash Indexes

Table Clustering

7

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

IMPLICIT INDEXES

Most DBMSs automatically create an index to
enforce integrity constraints but not referential
constraints (foreign keys).
→ Primary Keys
→ Unique Constraints

9

CREATE TABLE foo (
id SERIAL PRIMARY KEY,
val1 INT NOT NULL,
val2 VARCHAR(32) UNIQUE

);

CREATE UNIQUE INDEX foo_pkey
ON foo (id);

CREATE UNIQUE INDEX foo_val2_key
ON foo (val2);

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

IMPLICIT INDEXES

Most DBMSs automatically create an index to
enforce integrity constraints but not referential
constraints (foreign keys).
→ Primary Keys
→ Unique Constraints

9

CREATE TABLE foo (
id SERIAL PRIMARY KEY,
val1 INT NOT NULL,
val2 VARCHAR(32) UNIQUE

);

CREATE TABLE bar (
id INT REFERENCES foo (val1),
val VARCHAR(32)

);

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

IMPLICIT INDEXES

Most DBMSs automatically create an index to
enforce integrity constraints but not referential
constraints (foreign keys).
→ Primary Keys
→ Unique Constraints

9

CREATE TABLE foo (
id SERIAL PRIMARY KEY,
val1 INT NOT NULL,
val2 VARCHAR(32) UNIQUE

);

CREATE TABLE bar (
id INT REFERENCES foo (val1),
val VARCHAR(32)

);

CREATE INDEX foo_val1_key
ON foo (val1);

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

IMPLICIT INDEXES

Most DBMSs automatically create an index to
enforce integrity constraints but not referential
constraints (foreign keys).
→ Primary Keys
→ Unique Constraints

9

CREATE TABLE foo (
id SERIAL PRIMARY KEY,
val1 INT NOT NULL,
val2 VARCHAR(32) UNIQUE

);

CREATE TABLE bar (
id INT REFERENCES foo (val1),
val VARCHAR(32)

);

CREATE INDEX foo_val1_key
ON foo (val1);

X

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

IMPLICIT INDEXES

Most DBMSs automatically create an index to
enforce integrity constraints but not referential
constraints (foreign keys).
→ Primary Keys
→ Unique Constraints

9

CREATE TABLE foo (
id SERIAL PRIMARY KEY,
val1 INT NOT NULL UNIQUE,
val2 VARCHAR(32) UNIQUE

);

CREATE TABLE bar (
id INT REFERENCES foo (val1),
val VARCHAR(32)

);

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PARTIAL INDEXES

Create an index on a subset of the
entire table. This potentially reduces
its size and the amount of overhead
to maintain it.

One common use case is to partition
indexes by date ranges.
→ Create a separate index per month, year.

10

CREATE INDEX idx_foo
ON foo (a, b)

WHERE c = 'WuTang';

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PARTIAL INDEXES

Create an index on a subset of the
entire table. This potentially reduces
its size and the amount of overhead
to maintain it.

One common use case is to partition
indexes by date ranges.
→ Create a separate index per month, year.

10

CREATE INDEX idx_foo
ON foo (a, b)

WHERE c = 'WuTang';

SELECT b FROM foo
WHERE a = 123
AND c = 'WuTang';

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

COVERING INDEXES

If all the fields needed to process the
query are available in an index, then
the DBMS does not need to retrieve
the tuple.

This reduces contention on the
DBMS's buffer pool resources.

11

SELECT b FROM foo
WHERE a = 123;

CREATE INDEX idx_foo
ON foo (a, b);

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

COVERING INDEXES

If all the fields needed to process the
query are available in an index, then
the DBMS does not need to retrieve
the tuple.

This reduces contention on the
DBMS's buffer pool resources.

11

SELECT b FROM foo
WHERE a = 123;

CREATE INDEX idx_foo
ON foo (a, b);

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INDEX INCLUDE COLUMNS

Embed additional columns in indexes
to support index-only queries.

These extra columns are only stored
in the leaf nodes and are not part of
the search key.

12

CREATE INDEX idx_foo
ON foo (a, b)

INCLUDE (c);

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INDEX INCLUDE COLUMNS

Embed additional columns in indexes
to support index-only queries.

These extra columns are only stored
in the leaf nodes and are not part of
the search key.

12

SELECT b FROM foo
WHERE a = 123
AND c = 'WuTang';

CREATE INDEX idx_foo
ON foo (a, b)

INCLUDE (c);

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INDEX INCLUDE COLUMNS

Embed additional columns in indexes
to support index-only queries.

These extra columns are only stored
in the leaf nodes and are not part of
the search key.

12

SELECT b FROM foo
WHERE a = 123
AND c = 'WuTang';

CREATE INDEX idx_foo
ON foo (a, b)

INCLUDE (c);

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INDEX INCLUDE COLUMNS

Embed additional columns in indexes
to support index-only queries.

These extra columns are only stored
in the leaf nodes and are not part of
the search key.

12

SELECT b FROM foo
WHERE a = 123
AND c = 'WuTang';

CREATE INDEX idx_foo
ON foo (a, b)

INCLUDE (c);

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

FUNCTIONAL/EXPRESSION INDEXES

An index does not need to store keys
in the same way that they appear in
their base table.

13

SELECT * FROM users
WHERE EXTRACT(dow

⮱FROM login) = 2;

CREATE INDEX idx_user_login
ON users (login);

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

FUNCTIONAL/EXPRESSION INDEXES

An index does not need to store keys
in the same way that they appear in
their base table.

13

SELECT * FROM users
WHERE EXTRACT(dow

⮱FROM login) = 2;

CREATE INDEX idx_user_login
ON users (login);X

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

FUNCTIONAL/EXPRESSION INDEXES

An index does not need to store keys
in the same way that they appear in
their base table.

You can use expressions when
declaring an index.

13

SELECT * FROM users
WHERE EXTRACT(dow

⮱FROM login) = 2;

CREATE INDEX idx_user_login
ON users (login);

CREATE INDEX idx_user_login
ON users (EXTRACT(dow FROM login));

X

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

FUNCTIONAL/EXPRESSION INDEXES

An index does not need to store keys
in the same way that they appear in
their base table.

You can use expressions when
declaring an index.

13

SELECT * FROM users
WHERE EXTRACT(dow

⮱FROM login) = 2;

CREATE INDEX idx_user_login
ON users (login);

CREATE INDEX idx_user_login
ON users (EXTRACT(dow FROM login));

X

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

FUNCTIONAL/EXPRESSION INDEXES

An index does not need to store keys
in the same way that they appear in
their base table.

You can use expressions when
declaring an index.

13

SELECT * FROM users
WHERE EXTRACT(dow

⮱FROM login) = 2;

CREATE INDEX idx_user_login
ON users (login);

CREATE INDEX idx_user_login
ON users (EXTRACT(dow FROM login));

X

CREATE INDEX idx_user_login
ON foo (login)

WHERE EXTRACT(dow FROM login) = 2;

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

OBSERVATION

The inner node keys in a B+Tree cannot tell you
whether a key exists in the index. You must always
traverse to the leaf node.

This means that you could have (at least) one
buffer pool page miss per level in the tree just to
find out a key does not exist.

14

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TRIE INDEX

Use a digital representation of
keys to examine prefixes one-
by-one instead of comparing
entire key.
→ Also known as Digital Search Tree,

Prefix Tree.

15

Keys: HELLO, HAT, HAVE

L

L

O

¤

¤ E

¤

H

A E

VT

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TRIE INDEX

Use a digital representation of
keys to examine prefixes one-
by-one instead of comparing
entire key.
→ Also known as Digital Search Tree,

Prefix Tree.

15

Keys: HELLO, HAT, HAVE

L

L

O

¤

¤ E

¤

H

A E

VT

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TRIE INDEX PROPERTIES

Shape only depends on key space and lengths.
→ Does not depend on existing keys or insertion order.
→ Does not require rebalancing operations.

All operations have O(k) complexity where k is the
length of the key.
→ The path to a leaf node represents the key of the leaf
→ Keys are stored implicitly and can be reconstructed from

paths.

16

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TRIE KEY SPAN

The span of a trie level is the number of bits that
each partial key / digit represents.
→ If the digit exists in the corpus, then store a pointer to the

next level in the trie branch. Otherwise, store null.

This determines the fan-out of each node and the
physical height of the tree.
→ n-way Trie = Fan-Out of n

17

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TRIE KEY SPAN

Keys: K10,K25,K31

18

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤

0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤

0 ¤ 1 ¤

0 Ø 1 ¤

0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TRIE KEY SPAN

Keys: K10,K25,K31

18

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤

0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤

0 ¤ 1 ¤

0 Ø 1 ¤

0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TRIE KEY SPAN

Keys: K10,K25,K31

18

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤

0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤

0 ¤ 1 ¤

0 Ø 1 ¤

0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TRIE KEY SPAN

Keys: K10,K25,K31

18

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤

0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤

0 ¤ 1 ¤

0 Ø 1 ¤

0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TRIE KEY SPAN

Keys: K10,K25,K31

18

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤

0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤

0 ¤ 1 ¤

0 Ø 1 ¤

0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TRIE KEY SPAN

Keys: K10,K25,K31

18

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤

0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤

0 ¤ 1 ¤

0 Ø 1 ¤

0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TRIE KEY SPAN

Keys: K10,K25,K31

18

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤

0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤

0 ¤ 1 ¤

0 Ø 1 ¤

0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TRIE KEY SPAN

Keys: K10,K25,K31

18

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

Repeat 10x

¤ Ø

¤ Ø

¤ ¤

¤ Ø

Ø ¤

¤ Ø

¤ Ø

Ø ¤

Ø ¤ Ø ¤

¤ ¤

Ø ¤

Ø ¤

Tuple
Pointer

Node
Pointer

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TRIE KEY SPAN

Keys: K10,K25,K31

18

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

Repeat 10x

¤ Ø

¤ Ø

¤ ¤

¤ Ø

Ø ¤

¤ Ø

¤ Ø

Ø ¤

Ø ¤ Ø ¤

¤ ¤

Ø ¤

Ø ¤

Tuple
Pointer

Node
Pointer

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

RADIX TREE

Omit all nodes with only a single
child.
→ Also known as Patricia Tree.

Can produce false positives, so the
DBMS always checks the original
tuple to see whether a key matches.

19

1-bit Span Radix Tree

¤ Ø

¤ Ø

¤ ¤

Ø ¤

¤ ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

¤

T

¤

VE

H

A

Insert HAIR

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

¤

T

¤

VE

H

A

¤

IR

Insert HAIR

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

¤

T

¤

VE

H

A

¤

IR

Insert HAIR
Delete HAT

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

¤

VE

H

A

¤

IR

Insert HAIR
Delete HAT

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

¤

VE

H

A

¤

IR

Insert HAIR
Delete HAT

Delete HAVE

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

H

A

¤

IR

Insert HAIR
Delete HAT

Delete HAVE

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

H

A

¤

IR

Insert HAIR
Delete HAT

Delete HAVE

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

H

A

Insert HAIR
Delete HAT

AIR

¤

Delete HAVE

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

RADIX TREE: BINARY COMPARABLE KEYS

Not all attribute types can be decomposed into
binary comparable digits for a radix tree.
→ Unsigned Integers: Byte order must be flipped for little

endian machines.
→ Signed Integers: Flip two’s-complement so that negative

numbers are smaller than positive.
→ Floats: Classify into group (neg vs. pos, normalized vs.

denormalized), then store as unsigned integer.
→ Compound: Transform each attribute separately.

21

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

RADIX TREE: BINARY COMPARABLE KEYS

22

Hex Key: 0A 0B 0C 0D

Int Key: 168496141
0A

0B

0C

0D

Big
Endian

0D

0C

0B

0A

Little
Endian

0A

0F0B

0B 1D0C ¤

¤ ¤0D0B

¤ ¤

8-bit Span Radix Tree

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

RADIX TREE: BINARY COMPARABLE KEYS

22

Hex Key: 0A 0B 0C 0D

Int Key: 168496141
0A

0B

0C

0D

Big
Endian

0D

0C

0B

0A

Little
Endian

Hex 0A 0B 1D

Find 658205

0A

0F0B

0B 1D0C ¤

¤ ¤0D0B

¤ ¤

8-bit Span Radix Tree

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

RADIX TREE: BINARY COMPARABLE KEYS

22

Hex Key: 0A 0B 0C 0D

Int Key: 168496141
0A

0B

0C

0D

Big
Endian

0D

0C

0B

0A

Little
Endian

Hex 0A 0B 1D

Find 658205

0A

0F0B

0B 1D0C ¤

¤ ¤0D0B

¤ ¤

8-bit Span Radix Tree

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

OBSERVATION

The tree indexes that we've discussed so far are
useful for "point" and "range" queries:
→ Find all customers in the 15217 zip code.
→ Find all orders between June 2018 and September 2018.

They are not good at keyword searches:
→ Find all Wikipedia articles that contain the word "Pavlo"

23

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

WIKIPEDIA EXAMPLE

24

CREATE TABLE revisions (
revID INT PRIMARY KEY,
userID INT REFERENCES useracct (userID),
pageID INT REFERENCES pages (pageID),
content TEXT,
updated DATETIME

);

CREATE TABLE pages (
pageID INT PRIMARY KEY,
title VARCHAR UNIQUE,
latest INT
⮱REFERENCES revisions (revID),

);

CREATE TABLE useracct (
userID INT PRIMARY KEY,
userName VARCHAR UNIQUE,
⋮

);

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

WIKIPEDIA EXAMPLE

If we create an index on the content
attribute, what does that do?

This doesn't help our query.

Our SQL is also not correct...

25

CREATE INDEX idx_rev_cntnt
ON revisions (content);

SELECT pageID FROM revisions
WHERE content LIKE '%Pavlo%';

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

INVERTED INDEX

An inverted index stores a mapping of words to
records that contain those words in the target
attribute.
→ Sometimes called a full-text search index.
→ Also called a concordance in old (like really old) times.

The major DBMSs support these natively.
There are also specialized DBMSs.

26

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

QUERY T YPES

Phrase Searches
→ Find records that contain a list of words in the given

order.

Proximity Searches
→ Find records where two words occur within n words of

each other.

Wildcard Searches
→ Find records that contain words that match some pattern

(e.g., regular expression).

27

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DESIGN DECISIONS

Decision #1: What To Store
→ The index needs to store at least the words contained in

each record (separated by punctuation characters).
→ Can also store frequency, position, and other meta-data.

Decision #2: When To Update
→ Maintain auxiliary data structures to "stage" updates and

then update the index in batches.

28

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CONCLUSION

B+Trees are still the way to go for tree indexes.

Inverted indexes are covered in CMU 11-442.

We did not discuss geo-spatial tree indexes:
→ Examples: R-Tree, Quad-Tree, KD-Tree
→ This is covered in CMU 15-826.

30

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://boston.lti.cs.cmu.edu/classes/11-642/
http://www.cs.cmu.edu/~christos/courses/826.S17/

CMU 15-445/645 (Fall 2019)

NEXT CL ASS

How to make indexes thread-safe!

31

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

