
Intro to Database Systems

15-445/15-645

Fall 2019

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

05 Buffer Pools

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

CMU 15-445/645 (Fall 2019)

ADMINISTRIVIA

Homework #1 is due TODAY @ 11:59pm

Project #1 is due Fri Sept 26th @ 11:59pm

2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DATABASE WORKLOADS

On-Line Transaction Processing (OLTP)
→ Fast operations that only read/update a small amount of

data each time.

On-Line Analytical Processing (OLAP)
→ Complex queries that read a lot of data to compute

aggregates.

Hybrid Transaction + Analytical Processing
→ OLTP + OLAP together on the same database instance

3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BIFURCATED ENVIRONMENT

4

Extract
Transform

Load

OLAP Data WarehouseOLTP Data Silos

Analytical QueriesTransactions

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BIFURCATED ENVIRONMENT

4

Extract
Transform

Load

OLAP Data Warehouse

Analytical Queries
Transactions

HTAP Database

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DATABASE STORAGE

Problem #1: How the DBMS represents the
database in files on disk.

Problem #2: How the DBMS manages its memory
and move data back-and-forth from disk.

5

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DATABASE STORAGE

Spatial Control:
→ Where to write pages on disk.
→ The goal is to keep pages that are used together often as

physically close together as possible on disk.

Temporal Control:
→ When to read pages into memory, and when to write

them to disk.
→ The goal is minimize the number of stalls from having to

read data from disk.

6

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DISK-ORIENTED DBMS

7

Disk

Memory

D
a

ta
b

a
se

 F
il
e

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
e

r
P

o
o

l

2
Header

4
Header

5
Header

Execution
Engine

Get page #2

Directory

Pointer to page #2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TODAY'S AGENDA

Buffer Pool Manager

Replacement Policies

Other Memory Pools

8

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BUFFER POOL ORGANIZATION

Memory region organized as an array
of fixed-size pages.
An array entry is called a frame.

When the DBMS requests a page, an
exact copy is placed into one of these
frames.

9

Buffer
Pool

frame1

frame2

frame3

frame4

On-Disk File

page1 page2 page3 page4

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BUFFER POOL ORGANIZATION

Memory region organized as an array
of fixed-size pages.
An array entry is called a frame.

When the DBMS requests a page, an
exact copy is placed into one of these
frames.

9

Buffer
Pool

frame1

frame2

frame3

frame4

page1

On-Disk File

page1 page2 page3 page4

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BUFFER POOL ORGANIZATION

Memory region organized as an array
of fixed-size pages.
An array entry is called a frame.

When the DBMS requests a page, an
exact copy is placed into one of these
frames.

9

Buffer
Pool

frame1

frame2

frame3

frame4

page1

page3

On-Disk File

page1 page2 page3 page4

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BUFFER POOL META-DATA

The page table keeps track of pages
that are currently in memory.

Also maintains additional meta-data
per page:
→ Dirty Flag
→ Pin/Reference Counter

10

page1 page2 page3 page4

On-Disk File

Buffer
Pool

frame1

frame2

frame3

frame4

page1

page3

Page
Table

page1

page3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BUFFER POOL META-DATA

The page table keeps track of pages
that are currently in memory.

Also maintains additional meta-data
per page:
→ Dirty Flag
→ Pin/Reference Counter

10

page1 page2 page3 page4

On-Disk File

Buffer
Pool

frame1

frame2

frame3

frame4

page1

page3

Page
Table

page1

page3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BUFFER POOL META-DATA

The page table keeps track of pages
that are currently in memory.

Also maintains additional meta-data
per page:
→ Dirty Flag
→ Pin/Reference Counter

10

page1 page2 page3 page4

On-Disk File

Buffer
Pool

frame1

frame2

frame3

frame4

page1

page3

Page
Table

page1

page3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BUFFER POOL META-DATA

The page table keeps track of pages
that are currently in memory.

Also maintains additional meta-data
per page:
→ Dirty Flag
→ Pin/Reference Counter

10

page1 page2 page3 page4

On-Disk File

Buffer
Pool

frame1

frame2

frame3

frame4

page1

page3

Page
Table

page1

page3

page2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BUFFER POOL META-DATA

The page table keeps track of pages
that are currently in memory.

Also maintains additional meta-data
per page:
→ Dirty Flag
→ Pin/Reference Counter

10

page1 page2 page3 page4

On-Disk File

Buffer
Pool

frame1

frame2

frame3

frame4

page1

page3

Page
Table

page1

page3

page2

page2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LOCKS VS. L ATCHES

Locks:
→ Protects the database's logical contents from other

transactions.
→ Held for transaction duration.
→ Need to be able to rollback changes.

Latches:
→ Protects the critical sections of the DBMS's internal data

structure from other threads.
→ Held for operation duration.
→ Do not need to be able to rollback changes.

11

←Mutex

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PAGE TABLE VS. PAGE DIRECTORY

The page directory is the mapping from page ids
to page locations in the database files.
→ All changes must be recorded on disk to allow the DBMS

to find on restart.

The page table is the mapping from page ids to a
copy of the page in buffer pool frames.
→ This is an in-memory data structure that does not need to

be stored on disk.

12

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

ALLOCATION POLICIES

Global Policies:
→ Make decisions for all active txns.

Local Policies:
→ Allocate frames to a specific txn without considering the

behavior of concurrent txns.
→ Still need to support sharing pages.

13

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BUFFER POOL OPTIMIZATIONS

Multiple Buffer Pools

Pre-Fetching

Scan Sharing

Buffer Pool Bypass

14

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

MULTIPLE BUFFER POOLS

The DBMS does not always have a single buffer
pool for the entire system.
→ Multiple buffer pool instances
→ Per-database buffer pool
→ Per-page type buffer pool

Helps reduce latch contention and improve
locality.

15

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PRE-FETCHING

The DBMS can also prefetch pages
based on a query plan.
→ Sequential Scans
→ Index Scans

17

Buffer Pool

page0

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PRE-FETCHING

The DBMS can also prefetch pages
based on a query plan.
→ Sequential Scans
→ Index Scans

17

Buffer Pool

page0

page1

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PRE-FETCHING

The DBMS can also prefetch pages
based on a query plan.
→ Sequential Scans
→ Index Scans

17

Buffer Pool

page0

page1

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PRE-FETCHING

The DBMS can also prefetch pages
based on a query plan.
→ Sequential Scans
→ Index Scans

17

Buffer Pool

page1

page2

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

page3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PRE-FETCHING

The DBMS can also prefetch pages
based on a query plan.
→ Sequential Scans
→ Index Scans

17

Buffer Pool

page1

page2

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

page3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PRE-FETCHING

The DBMS can also prefetch pages
based on a query plan.
→ Sequential Scans
→ Index Scans

17

Buffer Pool

Disk Pages

page0

page1

page2

page3

page4

page5Q1

page3

page4

page5

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PRE-FETCHING

18

Buffer Pool

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

SELECT * FROM A
WHERE val BETWEEN 100 AND 250

Q1

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PRE-FETCHING

18

Buffer Pool

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

0 99 100 199 200 299 300 399

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PRE-FETCHING

18

Buffer Pool

index-page0

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

Q1

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

0 99 100 199 200 299 300 399

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PRE-FETCHING

18

Buffer Pool

index-page0

index-page1

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

Q1

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

0 99 100 199 200 299 300 399

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PRE-FETCHING

18

Buffer Pool

index-page0

index-page1

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

Q1

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

0 99 100 199 200 299 300 399

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCAN SHARING

Queries can reuse data retrieved from storage or
operator computations.
→ This is different from result caching.

Allow multiple queries to attach to a single cursor
that scans a table.
→ Queries do not have to be the same.
→ Can also share intermediate results.

19

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SCAN SHARING

If a query starts a scan and if there one already
doing this, then the DBMS will attach to the
second query's cursor.
→ The DBMS keeps track of where the second query joined

with the first so that it can finish the scan when it reaches
the end of the data structure.

Fully supported in IBM DB2 and MSSQL.
Oracle only supports cursor sharing for identical
queries.

20

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Buffer Pool

page0

SCAN SHARING

21

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1
Q1

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Buffer Pool

page0

page1

page2

SCAN SHARING

21

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

Q1

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Buffer Pool

page0

page1

page2

SCAN SHARING

21

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

Q1

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Buffer Pool

page1

page2

SCAN SHARING

21

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

Q1page3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Buffer Pool

page1

page2

SCAN SHARING

21

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

Q1page3

Q2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Buffer Pool

page1

page2

SCAN SHARING

21

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

Q1page3 Q2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Buffer Pool

SCAN SHARING

21

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

Q1

page3

Q2

page4

page5

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Buffer Pool

SCAN SHARING

21

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

page3

Q2

page4

page5

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Buffer Pool

page0

page1

page2

SCAN SHARING

21

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

Q2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Buffer Pool

page0

page1

page2

SCAN SHARING

21

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

Q2

SELECT AVG(val) FROM A LIMIT 100Q2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BUFFER POOL BYPASS

The sequential scan operator will not store fetched
pages in the buffer pool to avoid overhead.
→ Memory is local to running query.
→ Works well if operator needs to read a large sequence of

pages that are contiguous on disk.
→ Can also be used for temporary data (sorting, joins).

Called "Light Scans" in Informix.

22

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.perf.doc/ids_prf_237.htm

CMU 15-445/645 (Fall 2019)

OS PAGE CACHE

Most disk operations go through the OS API.

Unless you tell it not to, the OS maintains its own
filesystem cache.

Most DBMSs use direct I/O (O_DIRECT)to bypass
the OS's cache.
→ Redundant copies of pages.
→ Different eviction policies.

Demo: Postgres

23

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://linux.die.net/man/2/open

CMU 15-445/645 (Fall 2019)

BUFFER REPL ACEMENT POLICIES

When the DBMS needs to free up a frame to make
room for a new page, it must decide which page to
evict from the buffer pool.

Goals:
→ Correctness
→ Accuracy
→ Speed
→ Meta-data overhead

24

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LEAST-RECENTLY USED

Maintain a timestamp of when each page was last
accessed.

When the DBMS needs to evict a page, select the
one with the oldest timestamp.
→ Keep the pages in sorted order to reduce the search time

on eviction.

25

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CLOCK

Approximation of LRU without
needing a separate timestamp per
page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer
with a "clock hand":
→ Upon sweeping, check if a page's bit is set

to 1.
→ If yes, set to zero. If no, then evict.

26

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CLOCK

Approximation of LRU without
needing a separate timestamp per
page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer
with a "clock hand":
→ Upon sweeping, check if a page's bit is set

to 1.
→ If yes, set to zero. If no, then evict.

26

page1

page3

page4 page2

ref=1

ref=0

ref=0

ref=0

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CLOCK

Approximation of LRU without
needing a separate timestamp per
page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer
with a "clock hand":
→ Upon sweeping, check if a page's bit is set

to 1.
→ If yes, set to zero. If no, then evict.

26

page1

page3

page4 page2

ref=1

ref=0

ref=0

ref=0

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CLOCK

Approximation of LRU without
needing a separate timestamp per
page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer
with a "clock hand":
→ Upon sweeping, check if a page's bit is set

to 1.
→ If yes, set to zero. If no, then evict.

26

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CLOCK

Approximation of LRU without
needing a separate timestamp per
page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer
with a "clock hand":
→ Upon sweeping, check if a page's bit is set

to 1.
→ If yes, set to zero. If no, then evict.

26

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0

X

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CLOCK

Approximation of LRU without
needing a separate timestamp per
page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer
with a "clock hand":
→ Upon sweeping, check if a page's bit is set

to 1.
→ If yes, set to zero. If no, then evict.

26

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0
page5

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CLOCK

Approximation of LRU without
needing a separate timestamp per
page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer
with a "clock hand":
→ Upon sweeping, check if a page's bit is set

to 1.
→ If yes, set to zero. If no, then evict.

26

page1

page3

page4 page2

ref=0

ref=0

ref=1

ref=1
page5

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CLOCK

Approximation of LRU without
needing a separate timestamp per
page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer
with a "clock hand":
→ Upon sweeping, check if a page's bit is set

to 1.
→ If yes, set to zero. If no, then evict.

26

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0
page5

X

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PROBLEMS

LRU and CLOCK replacement policies are
susceptible to sequential flooding.
→ A query performs a sequential scan that reads every page.
→ This pollutes the buffer pool with pages that are read

once and then never again.

The most recently used page is actually the most
unneeded page.

27

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Buffer Pool

page0

SEQUENTIAL FLOODING

28

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

Q1

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Buffer Pool

page0

SEQUENTIAL FLOODING

28

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2 Q2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Buffer Pool

page0

page1

page2

SEQUENTIAL FLOODING

28

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2

Q2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Buffer Pool

page1

page2

SEQUENTIAL FLOODING

28

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2

page3 Q2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

Buffer Pool

page1

page2

SEQUENTIAL FLOODING

28

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2

page3 Q2

SELECT * FROM A WHERE id = 1Q3

Q2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BET TER POLICIES: LRU -K

Track the history of the last K references as
timestamps and compute the interval between
subsequent accesses.

The DBMS then uses this history to estimate the
next time that page is going to be accessed.

29

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BET TER POLICIES: LOCALIZATION

The DBMS chooses which pages to evict on a per
txn/query basis. This minimizes the pollution of
the buffer pool from each query.
→ Keep track of the pages that a query has accessed.

Example: Postgres maintains a small ring buffer
that is private to the query.

30

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BET TER POLICIES: PRIORIT Y HINTS

The DBMS knows what the context of each page
during query execution.

It can provide hints to the buffer pool on whether
a page is important or not.

31

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

INSERT INTO A VALUES (id++)Q1

MIN MAXid

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BET TER POLICIES: PRIORIT Y HINTS

The DBMS knows what the context of each page
during query execution.

It can provide hints to the buffer pool on whether
a page is important or not.

31

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

INSERT INTO A VALUES (id++)Q1

MIN MAXid

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BET TER POLICIES: PRIORIT Y HINTS

The DBMS knows what the context of each page
during query execution.

It can provide hints to the buffer pool on whether
a page is important or not.

31

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

SELECT * FROM A WHERE id = ?Q2

INSERT INTO A VALUES (id++)Q1

MIN MAXid

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DIRT Y PAGES

FAST: If a page in the buffer pool is not dirty, then
the DBMS can simply "drop" it.

SLOW: If a page is dirty, then the DBMS must
write back to disk to ensure that its changes are
persisted.

Trade-off between fast evictions versus dirty
writing pages that will not be read again in the
future.

32

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

BACKGROUND WRITING

The DBMS can periodically walk through the page
table and write dirty pages to disk.

When a dirty page is safely written, the DBMS can
either evict the page or just unset the dirty flag.

Need to be careful that we don’t write dirty pages
before their log records have been written…

33

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

OTHER MEMORY POOLS

The DBMS needs memory for things other than
just tuples and indexes.

These other memory pools may not always backed
by disk. Depends on implementation.
→ Sorting + Join Buffers
→ Query Caches
→ Maintenance Buffers
→ Log Buffers
→ Dictionary Caches

34

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CONCLUSION

The DBMS can manage that sweet, sweet memory
better than the OS.

Leverage the semantics about the query plan to
make better decisions:
→ Evictions
→ Allocations
→ Pre-fetching

35

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

PROJECT #1

You will build the first component of
your storage manager.
→ Clock Replacement Policy
→ Buffer Pool Manager

We will provide you with the disk
manager and page layouts.

36

Due Date:
Friday Sept 27th @ 11:59pm

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://github.com/cmu-db/bustub

CMU 15-445/645 (Fall 2019)

TASK #1 CLOCK REPL ACEMENT POLICY

Build a data structure that tracks the usage of
frame_ids using the CLOCK policy.

General Hints:
→ Your ClockReplacer needs to check the "pinned" status

of a Page.
→ If there are no pages touched since last sweep, then

return the lowest page id.

37

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TASK #2 BUFFER POOL MANAGER

Use your CLOCK replacer to manage
the allocation of pages.
→ Need to maintain an internal data

structures of allocated + free pages.
→ We will provide you components to

read/write data from disk.
→ Use whatever data structure you want for

the page table.

General Hints:
→ Make sure you get the order of operations

correct when pinning.

38

Buffer Pool
(In-Memory)

Page6

Page2

Page4

Database
(On-Disk)

Page0

Page1

Page2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

GET TING STARTED

Download the source code from GitHub.

Make sure you can build it on your machine.
→ We've tested Ubuntu, OSX, and Windows (WSL2).
→ We are also providing a docker file to setup your

environment.
→ It does not compile on the Andrews machines. Please

contact me if this is a problem.

39

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://github.com/cmu-db/bustub

CMU 15-445/645 (Fall 2019)

THINGS TO NOTE

Do not change any file other than the four that
you must hand in.

The projects are cumulative.

We will not be providing solutions.

Post your questions on Piazza or come to our
office hours. We will not help you debug.

40

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

CODE QUALIT Y

We will automatically check whether you are
writing good code.
→ Google C++ Style Guide
→ Doxygen Javadoc Style

You need to run these targets before you submit
your implementation to Gradescope.
→ make format
→ make check-lint
→ make check-censored
→ make check-clang-tidy

41

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://google.github.io/styleguide/cppguide.html
http://www.doxygen.nl/manual/docblocks.html

CMU 15-445/645 (Fall 2019)

PL AGIARISM WARNING

Your project implementation must be
your own work.
→ You may not copy source code from other

groups or the web.
→ Do not publish your implementation on

GitHub.

Plagiarism will not be tolerated.
See CMU's Policy on Academic
Integrity for additional information.

42

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
http://www.cmu.edu/policies/documents/Academic%20Integrity.htm

CMU 15-445/645 (Fall 2019)

NEXT CL ASS

HASH TABLES!

43

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

