
Intro to Database Systems

15-445/15-645

Fall 2019

Andy Pavlo
Computer Science
Carnegie Mellon UniversityAP

04 Database Storage
Part II

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

CMU 15-445/645 (Fall 2019)

ADMINISTRIVIA

Homework #1 is due September 11th @ 11:59pm

Project #1 will be released on September 11th

2

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

UPCOMING DATABASE EVENTS

SalesForce Talk
→ Friday Sep 13th @ 12:00pm
→ CIC 4th Floor

Impira Talk
→ Monday Sep 16th @ 4:30pm
→ GHC 8102

Vertica Talk
→ Monday Sep 23rd @ 4:30pm
→ GHC 8102

3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://db.cs.cmu.edu/events/fall-2019-pat-helland-salesforce/
https://db.cs.cmu.edu/events/db-seminar-fall-2019-db-group-ankur-goyal/
https://db.cs.cmu.edu/events/db-seminar-fall-2019-db-group-stephen-walkauskas/

CMU 15-445/645 (Fall 2019)

DISK-ORIENTED ARCHITECTURE

The DBMS assumes that the primary storage
location of the database is on non-volatile disk.

The DBMS's components manage the movement
of data between non-volatile and volatile storage.

4

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SLOT TED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

5

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed/Var-length
Tuple Data

Slot Array

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SLOT TED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

5

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed/Var-length
Tuple Data

Slot Array

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LOG-STRUCTURED FILE ORGANIZATION

Instead of storing tuples in pages, the
DBMS only stores log records.

The system appends log records to the
file of how the database was modified:
→ Inserts store the entire tuple.
→ Deletes mark the tuple as deleted.
→ Updates contain the delta of just the

attributes that were modified.

6

…N
e

w
 E

n
tr

ie
s

INSERT id=1,val=a

INSERT id=2,val=b

DELETE id=4

UPDATE val=X (id=3)

UPDATE val=Y (id=4)

INSERT id=3,val=c

Page

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LOG-STRUCTURED FILE ORGANIZATION

To read a record, the DBMS scans the
log backwards and "recreates" the
tuple to find what it needs.

7

INSERT id=1,val=a

INSERT id=2,val=b

DELETE id=4

UPDATE val=X (id=3)

UPDATE val=Y (id=4)

INSERT id=3,val=c

…

R
e

a
d

s

Page

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LOG-STRUCTURED FILE ORGANIZATION

To read a record, the DBMS scans the
log backwards and "recreates" the
tuple to find what it needs.

Build indexes to allow it to jump to
locations in the log.

7

INSERT id=1,val=a

INSERT id=2,val=b

DELETE id=4

UPDATE val=X (id=3)

UPDATE val=Y (id=4)

INSERT id=3,val=c

…
id=1

id=2

id=3

id=4

Page

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LOG-STRUCTURED FILE ORGANIZATION

To read a record, the DBMS scans the
log backwards and "recreates" the
tuple to find what it needs.

Build indexes to allow it to jump to
locations in the log.

Periodically compact the log.

7

id=1,val=a
id=2,val=b
id=3,val=X
id=4,val=Y

Page

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

LOG-STRUCTURED FILE ORGANIZATION

To read a record, the DBMS scans the
log backwards and "recreates" the
tuple to find what it needs.

Build indexes to allow it to jump to
locations in the log.

Periodically compact the log.

7

id=1,val=a
id=2,val=b
id=3,val=X
id=4,val=Y

Page

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TODAY'S AGENDA

Data Representation

System Catalogs

Storage Models

8

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TUPLE STORAGE

A tuple is essentially a sequence of bytes.

It's the job of the DBMS to interpret those bytes
into attribute types and values.

The DBMS's catalogs contain the schema
information about tables that the system uses to
figure out the tuple's layout.

9

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT
→ C/C++ Representation

FLOAT/REAL vs. NUMERIC/DECIMAL
→ IEEE-754 Standard / Fixed-point Decimals

VARCHAR/VARBINARY/TEXT/BLOB
→ Header with length, followed by data bytes.

TIME/DATE/TIMESTAMP
→ 32/64-bit integer of (micro)seconds since Unix epoch

10

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

VARIABLE PRECISION NUMBERS

Inexact, variable-precision numeric type that uses
the "native" C/C++ types.
→ Examples: FLOAT, REAL/DOUBLE

Store directly as specified by IEEE-754.

Typically faster than arbitrary precision numbers
but can have rounding errors…

11

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://en.wikipedia.org/wiki/IEEE-754

CMU 15-445/645 (Fall 2019)

VARIABLE PRECISION NUMBERS

12

#include <stdio.h>

int main(int argc, char* argv[]) {
float x = 0.1;
float y = 0.2;
printf("x+y = %f\n", x+y);
printf("0.3 = %f\n", 0.3);

}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

VARIABLE PRECISION NUMBERS

12

#include <stdio.h>

int main(int argc, char* argv[]) {
float x = 0.1;
float y = 0.2;
printf("x+y = %f\n", x+y);
printf("0.3 = %f\n", 0.3);

}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output

#include <stdio.h>

int main(int argc, char* argv[]) {
float x = 0.1;
float y = 0.2;
printf("x+y = %.20f\n", x+y);
printf("0.3 = %.20f\n", 0.3);

}

x+y = 0.30000001192092895508
0.3 = 0.29999999999999998890

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

FIXED PRECISION NUMBERS

Numeric data types with arbitrary precision and
scale. Used when round errors are unacceptable.
→ Example: NUMERIC, DECIMAL

Typically stored in a exact, variable-length binary
representation with additional meta-data.
→ Like a VARCHAR but not stored as a string

Demo: Postgres, SQL Server, Oracle

13

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

POSTGRES: NUMERIC

14

typedef unsigned char NumericDigit;

typedef struct {

int ndigits;

int weight;

int scale;

int sign;

NumericDigit *digits;

} numeric;

of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

POSTGRES: NUMERIC

14

typedef unsigned char NumericDigit;

typedef struct {

int ndigits;

int weight;

int scale;

int sign;

NumericDigit *digits;

} numeric;

of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://doxygen.postgresql.org/interfaces_2ecpg_2pgtypeslib_2numeric_8c_source.html#l00722

CMU 15-445/645 (Fall 2019)

L ARGE VALUES

Most DBMSs don't allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate
overflow storage pages.
→ Postgres: TOAST (>2KB)
→ MySQL: Overflow (>½ size of page)
→ SQL Server: Overflow (>size of page)

15

Overflow Page

VARCHAR DATA

Tuple

Header a b c d e

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

EXTERNAL VALUE STORAGE

Some systems allow you to store a
really large value in an external file.
Treated as a BLOB type.
→ Oracle: BFILE data type
→ Microsoft: FILESTREAM data type

The DBMS cannot manipulate the
contents of an external file.
→ No durability protections.
→ No transaction protections.

16

Data

Header a b c d e

External File

Tuple

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

EXTERNAL VALUE STORAGE

Some systems allow you to store a
really large value in an external file.
Treated as a BLOB type.
→ Oracle: BFILE data type
→ Microsoft: FILESTREAM data type

The DBMS cannot manipulate the
contents of an external file.
→ No durability protections.
→ No transaction protections.

16

Data

Header a b c d e

External File

Tuple

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://www.microsoft.com/en-us/research/publication/to-blob-or-not-to-blob-large-object-storage-in-a-database-or-a-filesystem/

CMU 15-445/645 (Fall 2019)

SYSTEM CATALOGS

A DBMS stores meta-data about databases in its
internal catalogs.
→ Tables, columns, indexes, views
→ Users, permissions
→ Internal statistics

Almost every DBMS stores their a database's
catalog in itself.
→ Wrap object abstraction around tuples.
→ Specialized code for "bootstrapping" catalog tables.

17

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

SYSTEM CATALOGS

You can query the DBMS’s internal
INFORMATION_SCHEMA catalog to get info about
the database.
→ ANSI standard set of read-only views that provide info

about all of the tables, views, columns, and procedures in
a database

DBMSs also have non-standard shortcuts to
retrieve this information.

18

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

ACCESSING TABLE SCHEMA

List all the tables in the current database:

19

SELECT *
FROM INFORMATION_SCHEMA.TABLES
WHERE table_catalog = '<db name>';

SQL-92

\d; Postgres

SHOW TABLES; MySQL

.tables; SQLite

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

ACCESSING TABLE SCHEMA

List all the tables in the student table:

20

SELECT *
FROM INFORMATION_SCHEMA.TABLES
WHERE table_name = 'student'

SQL-92

\d student; Postgres

DESCRIBE student; MySQL

.schema student; SQLite

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

OBSERVATION

The relational model does not specify that we
have to store all of a tuple's attributes together in a
single page.

This may not actually be the best layout for some
workloads…

23

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

WIKIPEDIA EXAMPLE

24

CREATE TABLE revisions (
revID INT PRIMARY KEY,
userID INT REFERENCES useracct (userID),
pageID INT REFERENCES pages (pageID),
content TEXT,
updated DATETIME

);

CREATE TABLE pages (
pageID INT PRIMARY KEY,
title VARCHAR UNIQUE,
latest INT
⮱REFERENCES revisions (revID),

);

CREATE TABLE useracct (
userID INT PRIMARY KEY,
userName VARCHAR UNIQUE,
⋮

);

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

OLTP

On-line Transaction Processing:
→ Simple queries that read/update a small

amount of data that is related to a single
entity in the database.

This is usually the kind of application
that people build first.

25

UPDATE useracct
SET lastLogin = NOW(),

hostname = ?
WHERE userID = ?

INSERT INTO revisions
VALUES (?,?…,?)

SELECT P.*, R.*
FROM pages AS P
INNER JOIN revisions AS R

ON P.latest = R.revID
WHERE P.pageID = ?

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

OL AP

On-line Analytical Processing:
→ Complex queries that read large portions

of the database spanning multiple entities.

You execute these workloads on the
data you have collected from your
OLTP application(s).

26

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM

U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY
EXTRACT(month FROM U.lastLogin)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

WORKLOAD CHARACTERIZATION

Writes Reads
Simple

Complex

Workload Focus

O
p

e
ra

ti
o

n
 C

o
m

p
le

x
it

y

OLTP

OLAP

[SOURCE]

HTAP

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
http://cacm.acm.org/magazines/2011/6/108651

CMU 15-445/645 (Fall 2019)

DATA STORAGE MODELS

The DBMS can store tuples in different ways that
are better for either OLTP or OLAP workloads.

We have been assuming the n-ary storage model
(aka "row storage") so far this semester.

28

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

N-ARY STORAGE MODEL (NSM)

The DBMS stores all attributes for a single tuple
contiguously in a page.

Ideal for OLTP workloads where queries tend to
operate only on an individual entity and insert-
heavy workloads.

29

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

N-ARY STORAGE MODEL (NSM)

The DBMS stores all attributes for a single tuple
contiguously in a page.

30

←Tuple #1

←Tuple #2

←Tuple #3

←Tuple #4

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

- - - --

Header

Header

Header

Header

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

N-ARY STORAGE MODEL (NSM)

The DBMS stores all attributes for a single tuple
contiguously in a page.

30

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

- - - --

Header

Header

Header

Header

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

N-ARY STORAGE MODEL (NSM)

31

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ?

Index

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

- - - --

Header

Header

Header

Header

Lecture 7

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/schedule.html#sep-18-2019

CMU 15-445/645 (Fall 2019)

N-ARY STORAGE MODEL (NSM)

31

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ?

Index
INSERT INTO useracct
VALUES (?,?,…?)

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

- - - --

Header

Header

Header

Header userID userName userPass lastLoginhostnameHeader

Lecture 7

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/schedule.html#sep-18-2019

CMU 15-445/645 (Fall 2019)

N-ARY STORAGE MODEL (NSM)

32

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month

FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastLogin)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

N-ARY STORAGE MODEL (NSM)

32

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

Header

Header

Header

Header

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month

FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastLogin)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

N-ARY STORAGE MODEL (NSM)

32

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

Header

Header

Header

Header

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month

FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastLogin)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

N-ARY STORAGE MODEL (NSM)

32

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

Header

Header

Header

Header

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month

FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastLogin)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

N-ARY STORAGE MODEL (NSM)

32

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

Header

Header

Header

Header

Useless Data

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month

FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastLogin)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

N-ARY STORAGE MODEL

Advantages
→ Fast inserts, updates, and deletes.
→ Good for queries that need the entire tuple.

Disadvantages
→ Not good for scanning large portions of the table and/or

a subset of the attributes.

33

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores the values of a single attribute
for all tuples contiguously in a page.
→ Also known as a "column store".

Ideal for OLAP workloads where read-only
queries perform large scans over a subset of the
table’s attributes.

34

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores the values of a single attribute
for all tuples contiguously in a page.
→ Also known as a "column store".

35

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

Header

Header

Header

Header

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores the values of a single attribute
for all tuples contiguously in a page.
→ Also known as a "column store".

35

userID

userName

userPass

DSM Disk Page

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

lastLogin

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DECOMPOSITION STORAGE MODEL
(DSM)

36

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month

FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastLogin)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DSM Disk Page

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

DECOMPOSITION STORAGE MODEL
(DSM)

36

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month

FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastLogin)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

TUPLE IDENTIFICATION

Choice #1: Fixed-length Offsets
→ Each value is the same length for an attribute.

Choice #2: Embedded Tuple Ids
→ Each value is stored with its tuple id in a column.

37

Offsets

0
1
2
3

A B C D

Embedded Ids
A

0
1
2
3

B

0
1
2
3

C

0
1
2
3

D

0
1
2
3

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DECOMPOSITION STORAGE MODEL (DSM)

Advantages
→ Reduces the amount wasted I/O because the DBMS only

reads the data that it needs.
→ Better query processing and data compression (more on

this later).

Disadvantages
→ Slow for point queries, inserts, updates, and deletes

because of tuple splitting/stitching.

38

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DSM SYSTEM HISTORY

1970s: Cantor DBMS

1980s: DSM Proposal

1990s: SybaseIQ (in-memory only)

2000s: Vertica, VectorWise, MonetDB

2010s: Everyone

39

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=655555

CMU 15-445/645 (Fall 2019)

CONCLUSION

The storage manager is not entirely independent
from the rest of the DBMS.

It is important to choose the right storage model
for the target workload:
→ OLTP = Row Store
→ OLAP = Column Store

40

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

CMU 15-445/645 (Fall 2019)

DATABASE STORAGE

Problem #1: How the DBMS represents the
database in files on disk.

Problem #2: How the DBMS manages its memory
and move data back-and-forth from disk.

41

← Next

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

