Garnegie Mellon University
e A

»

»

§

O a1+ Database Storage
—Part Il

-

o h

O Intro to Database Systems Andy Pavlo
> e AP

15-445/15-645 Computer Science
g @& Fall 2019 Carnegie Mellon University

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Homework #1 is due September 11% @ 11:59pm

Project #1 will be released on September 11t

E-g CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$=CMU-DB

UPCOMING DATABASE EVENTS

SalesForce Talk

— Friday Sep 13" @ 12:00pm
— CIC 4™ Floor

Impira Talk

— Monday Sep 16™ @ 4:30pm
— GHC 8102

Vertica Talk

— Monday Sep 23" @ 4:30pm
— GHC 8102

salesforce

Impira

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://db.cs.cmu.edu/events/fall-2019-pat-helland-salesforce/
https://db.cs.cmu.edu/events/db-seminar-fall-2019-db-group-ankur-goyal/
https://db.cs.cmu.edu/events/db-seminar-fall-2019-db-group-stephen-walkauskas/

$2CMU-DB

DISK-ORIENTED ARCHITECTURE

The DBMS assumes that the primary storage
location of the database is on non-volatile disk.

The DBMS's components manage the movement
of data between non-volatile and volatile storage.

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

SLOTTED PAGES
Slot Array

The most common layout scheme is ' ‘
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

Tuple #3

The header keeps track of:
— The # of used slots
— The offset of the starting location of the \ J

1
last slot used. Fixed/Var-length
Tuple Data

Tuple #2 Tuple #1

E‘% CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

SLOTTED PAGES
Slot Array

The most common layout scheme is ' ‘
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

Tuple #4 | Tuple #3

The header keeps track of:
— The # of used slots
— The offset of the starting location of the \ J

1
last slot used. Fixed/Var-length
Tuple Data

Tuple #2 Tuple #1

E‘% CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

LOG-STRUCTURED FILE ORGANIZATION
Page

INSERT id=1,val=a
INSERT id=2,val=b

Instead of storing tuples in pages, the
DBMS only stores log records.

The system appends log records to the
file of how the database was modified: INSERT 1d=3.val=c
— Inserts store the entire tuple.
— Deletes mark the tuple as deleted.
— Updates contain the delta of just the .

attributes that were modified. :

E%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

LOG-STRUCTURED FILE ORGANIZATION
Page

INSERT id=1,val=a
INSERT id=2,val=b

DELETE id=4

To read a record, the DBMS scans the
log backwards and "recreates" the
tuple to find what it needs.

INSERT id=3,val=c
UPDATE val=X (id=3)
UPDATE val=Y (id=4)

E%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

LOG-STRUCTURED FILE ORGANIZATION

To read a record, the DBMS scans the
log backwards and "recreates" the
tuple to find what it needs.

Build indexes to allow it to jump to
locations in the log.

$=CMU-DB

1d=1

id=2

1d=3

1d=4

Page

INSERT id=1,val=a
INSERT id=2,val=b

DELETE id=4

INSERT id=3,val=c
UPDATE val=X (id=3)
UPDATE val=Y (id=4)

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

LOG-STRUCTURED FILE ORGANIZATION

To read a record, the DBMS scans the
log backwards and "recreates" the
tuple to find what it needs.

Build indexes to allow it to jump to
locations in the log.

Periodically compact the log.

$2CMU-DB

Page

id=1,val=a
id=2,val=b
id=3,val=X
id=4,val=Y

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

LOG-STRUCTURED FILE ORGANIZATION

Page
To read a record, the DBMS scans the
log backwards and "recreates" the 1d=1,val=a
. id=2,val=b
tuple to find what it needs. id=3 val=X

id=4,val=Y

Build indexes to allow it to jump to
locations in the log.

Periodically compact the log.

HEHSE T35 Steves 7% pocksde

cassandra
E‘g CMU-DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

TODAY'S AGENDA

Data Representation
System Catalogs
Storage Models

]
~ CMU-DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

TUPLE STORAGE

A tuple is essentially a sequence of bytes.

[t's the job of the DBMS to interpret those bytes
into attribute types and values.

The DBMS's catalogs contain the schema
information about tables that the system uses to
figure out the tuple's layout.

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

10

DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT

— C/C++ Representation

FLOAT/REAL vs. NUMERIC/DECIMAL
— IEEE-754 Standard / Fixed-point Decimals

VARCHAR/VARBINARY/TEXT/BLOB
— Header with length, followed by data bytes.

TIME/DATE/TIMESTAMP

— 32/64-bit integer of (micro)seconds since Unix epoch

E%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

11

VARIABLE PRECISION NUMBERS

Inexact, variable-precision numeric type that uses

the "native" C/C++ types.
— Examples: FLOAT, REAL/DOUBLE

Store directly as specified by IEEE-754.

Typically faster than arbitrary precision numbers
but can have rounding errors...

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://en.wikipedia.org/wiki/IEEE-754

12

VARIABLE PRECISION NUMBERS

Rounding Example Output

#include <stdio.h> x+y = 0.300000
0.3 = 0.300000

int main(int argc, char* argv[]) {

float x = 0.1;
float y = 0.2;
printf("x+y = %f\n", xty);
printf("0.3 = %f\n", 0.3);

$2CMU-DB

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

12

VARIABLE PRECISION NUMBERS

Rounding Example

#include <stdio.h>

in

float x = 0.1;
float y = 0.2;
printf("x+y =
printf("0.3 =

I#include <stdio.h>

int main(int argc, char* argv[]) {

%.20f\n", x+y);
%.20f\n", 0.3);

Output

x+y = 0.300000

0.3 = 0.300000

x+y = 0.30000001192092895508
0.3 = 0.29999999999999998890

$2CMU-DB

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

13

FIXED PRECISION NUMBERS

Numeric data types with arbitrary precision and

scale. Used when round errors are unacceptable.
— Example: NUMERIC, DECIMAL

Typically stored in a exact, variable-length binary

representation with additional meta-data.
— Like a VARCHAR but not stored as a string

Demo: Postgres, SQL Server, Oracle

E-g CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

14

POSTGRES: NUMERIC

of Digits
typedef unsigned char NumericDigit:

typedef struct {

Weight of 1°t Digit

int ndigits;

Scale FactOr <l iNt Wept
int sdale;
Positive/Negative/NaN 4/ int sign;
“r,ﬂ””'NumericDigit xdigits;
Digit Storage

} numeric;

E-g CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

#

Weight of

Sca

Positive/Negat

Digil

0

CMU-DB

i

add_var() -

*

ES

* Full version of add functionality on variable level (handling signs).
* result might point to one of the operands too without danger.

EGTYPESnumeric add{numeric *varl, numeric *var2, numeric *result)

*®
* Decide on the signs of the twe variables what to do
*®

if {varl->sign == NUMERIC POS)
1f (var2-=sign == NUMERIC POS)
{

-
* Both are positive result = +(ABS(varl) + ABS(var2))
-
1f (add_abs(varl, var2, result) l= a)
return -1;
result-»sign = NUMERIC POS;
else

/ﬂr
* varl is positive, var2? is negative Must compare absolute values
L3

iw;tck (cmp_abs(varl, var2))

#

ABS({varl) == ABS{var2)
result = ZERD

*®

*f
zero_var(result);

result-=rscale = Max(varl-=rscale, var2-»rscale);
result->dscale = Max(varl->dscale, var2->dscale);
break;

* ABS(varl) = ABS(var2)
* result = +(ABS(varl) - ABS(var2))
k3

*

1f (sub _abs(varl, var2, result) != @)
return -1;
result-»sign = NUMERIC FOS;
reak;
case -1

* ABS{varl) = ABS(var2)
* result = -(ABS(var2) - ABS{varl})
-

14

NumericDigit;

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://doxygen.postgresql.org/interfaces_2ecpg_2pgtypeslib_2numeric_8c_source.html#l00722

15

LARGE VALUES

Tuple
Most DBMSs don't allow a tuple to veader| a | b | c q .
exceed the size of a single page. T
To store values that are larger than a
page, the DBMS uses separate Overflow Page
overflow storage pages. VARCHAR DATA @&1—>

— Postgres: TOAST (>2KB)
— MySQL: Overflow (> size of page)
— SQL Server: Overflow (>size of page)

E‘% CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

EXTERNAL VALUE STORAGE

Some systems allow you to store a
really large value in an external file.

Treated as a BLOB type.
— Oracle: BFILE data type
— Microsoft: FILESTREAM data type

The DBMS cannot manipulate the

contents of an external file.
— No durability protections.
— No transaction protections.

$2CMU-DB

Tu

nle

16

Header

a b

C

|

External File

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

{H

16

EXTERNAL VALUE |

Some systems allow you to store a
really large value in an external file.

Treated as a BLOB type.

— Oracle: BFILE data type
— Microsoft: FILESTREAM data type

The DBMS cannot manipulate the

contents of an external file.

— No durability protections.
— No transaction protections.

CMuU-DB

Large Object Sf

sears@cs.berkeley,

Abstract

Application designers must decide whether to store
large objects (BLOBS) in a filesystem or in a database.

Generally, this decision

application simplicity or manageability.

performance affects these

Folklore tells us that databases effi
large numbers of small objects, while file

more efficient for lang

database record?
Of course, this

system and SQL Server
Create, {read,
workload, BLOBs smal

efficiently handled by SQL Sery
more cfficient BLOBS larger than IMB. Of course,

this break-cven point
database system

To BLOB or Not To BLOB:

Russell Sear.

I: Microsoft Re:

factors.

e objects,

depends on the
filesystem, database system, and workload in ques
This study shows that when comparing the NTFS
2005 database system on 5

r ace}*
ler than 256KB
r, while

will vary among

lesystems, and workloads
By measuring the performance
workload typical of web application

Pprotocols such as WebDAYV [WebDAV], we

the break-even point depends
However, our experiments suggest that Storage age, the

fatio of bytes in deleted or replaced objects

live objects, is dominant
fragmentation tends to i
study

small files.

Surprisingly, for these studies,

has better fragmentation
database we used, suggesting the database system
would benefit from incorporating ideas from filesystem
architecture, Conversely, filesystem performance may
be improved by using database techniques to handle

. As storage age
ncrease. The files
control

object size is held constant, the distribution

sizes did not significanily
found that, in addition to

affect performance.

low percentage free s
low ratio of free space to average object size loads 1
i i ° teoradt

and

edu, vaningen@m

ntly handle
systems are
Where s the
break-cven point? When is accessing a BLOB store

as a file cheaper than accessing a BLOB. stored g5 g

of a storage server
s which use gev/put

on many

when average

torage in a Database or a Filesys

“atharine van Ingen', Jim Gra y'
search, 2: University of California at Berkeley
rosoft.com, gray@microsoft.com
MSR-TR-2006-45
April 2006 Revised June 2006

1. Introduction
Application data objects are getting
media becomes

network applications means that s;
managed static archives of “fin

updating these objects, the archi

multiple versions of

stands for “versioning™), or

replacement (as in

[SharePoint]).
Application designers have the

e Jarge objects as files in the filesy:

icul, SharePoint
particular
n.

2 (binary large objects)
delete oy tion of both. Only folkl
are more regarding the tradeoffs - often the design decision is
NTES is

based on which technology the desi;

different oo vor small binary objects and that

for large objects. But, what is the break-cven point?

What are the tradeoffs?

found that
factors. oy relatively large objects. Two
9 System are compared: one uses a rela
0 bytes in

ICreases, objects as files in the filesystem. We measure how
ysiem e Performance changes over time as the storage becomes
than

when picking a storage system.

support.

One surprising (to us at least) conclusion of our
storage fragmentation is the main

ki work is that
of object determinant of the break-even point
. We also

ace, a

than databases and this drives the
down from about IMB to about 256K

> Furthermore, the
is based on factors such as increasing popularity of web services and other
Often, system

fanage frequently modified versions of application
data as it is being created and updated. Rather than

e objects (the V of WebDAY
mply does wholesale

in a database,

Most designers will tell you that a daabase is probably

This article: characterizes the performance of an
abstracted write-intensive web application that dele

Store large objects, while the other version stores the

fragmented. The article concludes by describing and
2 the factors that a designer should consider

filesystem and database improvements for large object

Therefore, much of our work and much of this article
focuses on storage fragmentation issues,
filesystems seem to have beter fragmentation handling

tem?

larger as digital

ystems that once
ed” objects now

ve cither stores

Team Services
choice of storing
stem, as BLOBs
or as a
ore is available

gner knows best.

that files are best

versions of the
tional database to

It also suggests

't in the tradeoff.
In essence,

break-even point
B.

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://www.microsoft.com/en-us/research/publication/to-blob-or-not-to-blob-large-object-storage-in-a-database-or-a-filesystem/

$2CMU-DB

SYSTEM CATALOGS

A DBMS stores meta-data about databases in its

internal catalogs.

— Tables, columns, indexes, views
— Users, permissions
— Internal statistics

Almost every DBMS stores their a database's

catalog in itself.
— Wrap object abstraction around tuples.
— Specialized code for "bootstrapping" catalog tables.

17

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

SYSTEM CATALOGS

You can query the DBMS’s internal

INFORMATION_SCHEMA catalog to get info about

the database.

— ANSI standard set of read-only views that provide info
about all of the tables, views, columns, and procedures in
a database

DBMSs also have non-standard shortcuts to
retrieve this information.

18

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

ACCESSING TABLE SCHEMA

List all the tables in the current database:

SELECT * SQL-92
FROM INFORMATION_SCHEMA.TABLES
WHERE table_catalog = '<db name>';

\d; Postgres
SHOW TABLES; MySQL
.tables; SQlLite

19

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

20

ACCESSING TABLE SCHEMA

List all the tables in the student table:

SELECT * SQL-92
FROM INFORMATION_SCHEMA.TABLES
WHERE table_name = 'student'

\d student; Postgres

DESCRIBE student; MysSQL

.schema student; SQLite

E‘g CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

23

OBSERVATION

The relational model does not specify that we
have to store all of a tuple's attributes together in a
single page.

This may not actually be the best layout for some
workloads...

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

{H

CMU-DB

WIKIPEDIA EXAMPLE

24

CREATE TABLE useracct (
userID INT PRIMARY KEY,
userName VARCHAR UNIQUE,

);.

A

CREATE TABLE pages (
pageID INT PRIMARY KEY,
title VARCHAR UNIQUE,
latest INT

);

—® S REFERENCES revisions (revID),

content TEXT,

);

CREATE TABLE revisions (
revID INT PRIMARY KEY,
® userID INT REFERENCES useracct (userlID),
pageID INT REFERENCES pages (pagelD)®

updated DATETIME

A

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

25

OLTP

SELECT P.x, R.*

On-line Transaction Processing: FROM pages AS P

— Simple queries that read/update a small INNER JOIN revisions AS R
amount of data that is related to a single ON P.latest = R.revID
entity in the database. WHERE P.pageID = ?

This is usually the kind of application |UPDATE useracct

that people build first. SET lastlogin = NOW(),
hostname = 7

WHERE userID = ?

INSERT INTO revisions
VALUES (7,7..,7)

g—g CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

Ww

"

26

OLAP

. . . SELECT COUNT(U.lastLogin),
On-line Analytical Processing: EXTRACT (month FROM

— Complex queries that read large portions EROM useragé%aiél_agln) 55 LS
of the database spanning multiple entities. | wyere U.hostname LIKE '%.gov'
GROUP BY

EXTRACT(month FROM U.lastlLogin)

You execute these workloads on the

data you have collected from your
OLTP application(s).

CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

WORKLOAD CHARACTERIZATION
2
< Complex
@
o
e HTAP
O
5
= OLTP
E .
o Simple _
8 Writes Reads
Workload Focus [SOURCE]

E%CMU'DB CMU 15-445/645 (Fall 2019

)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
http://cacm.acm.org/magazines/2011/6/108651

$=CMU-DB

DATA STORAGE MODELS

The DBMS can store tuples in different ways that
are better for either OLTP or OLAP workloads.

We have been assuming the n-ary storage model
(aka "row storage") so far this semester.

28

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

29

N-ARY STORAGE MODEL (NSM)

The DBMS stores all attributes for a single tuple
contiguously in a page.

I[deal for OLTP workloads where queries tend to

operate only on an individual entity and insert-
heavy workloads.

E-g CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$2CMU-DB

30

N-ARY STORAGE MODEL (NSM)

The DBMS stores all attributes for a single tuple
contiguously in a page.

Header | userID JuserNameuserPass|hostname| lastLogin <—Tup|e #1

Header

<Tuple #2
<Tuple #3
<Tuple #4

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

30

N-ARY STORAGE MODEL (NSM)

The DBMS stores all attributes for a single tuple
contiguously in a page.

,‘ NSM Disk Page

Header | userID JuserName|userPass|hostname| lastlLogin

Header =

0

CMU‘DB CMU 15-445/645 (Fall 2019)

i

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

Ww

"

31

N-ARY STORAGE MODEL (NSM)

SELECT * FROM useracct

WHERE userName = ?
' Index

AND userPass = ?

/| NsM Disk Page l

Header | userID JuserName|userPass|hostname| lastlLogin

Header | userID JuserNamefuserPass|hostname] lastlLogin

Header | userID JuserNameuserPassfhostname| lastlLogin

Header = = = - -

CMU‘DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/schedule.html#sep-18-2019

Ww

"

31

N-ARY STORAGE MODEL (NSM)

SELECT * FROM useracct
WHERE userName = ?
' Index

AND userPass = ?

INSERT INTO useracct

VALUES (?,?,..7) ‘
NSM Disk Page

Header | userID JuserName|userPass|hostname| lastlLogin

Header | userID JuserNamefuserPass|hostname] lastlLogin

Header | userID JuserNameuserPassfhostname| lastlLogin

Header | userID JuserNamefuserPass|jhostname| lastlLogin

CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2019/schedule.html#sep-18-2019

32

N-ARY STORAGE MODEL (NSM)

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)

E%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

Ww

"

32

N-ARY STORAGE MODEL (NSM)

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)

,4 NSM Disk Page

II Header | userID JuserName|userPass|hostname| lastlLogin
U
U

Header | userID JuserNamefuserPass|hostname] lastlLogin

Header | userID JuserNamefuserPass|hostname] lastlLogin

Header | userID JuserName|userPass|hostname| lastlLogin

CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

Ww

"

32

N-ARY STORAGE MODEL (NSM)

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U

WHERE |U.hostname| LIKE '%.gov'

GROUP BY EXTRACT(month FROM U.lastlLogin)

,4 NSM Disk Page

Header | userID JuserName|userPassfjhostname] lastlLogin

Header | userID JuserNamefuserPassfjhostname] lastlLogin

Header | userID JuserNamefuserPassfjhostname] lastlLogin

Header | userID JuserNamefuserPassfjhostname] lastlLogin

CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

Ww

"

32

N-ARY STORAGE MODEL (NSM)

SELECT COUNTdU.lastLoginp,
EXTRACT (month FROM |[U.lastLogin) AS month
FROM useracct AS U

WHERE |U.hostname| LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLogin)

,4 NSM Disk Page

Header | userID JuserName|userPassfjhostnamef] lastlLogin

Header | userID JuserNamefuserPassfjhostnamel] lastlLogin

Header | userID JuserNamefuserPassfjhostname] lastlLogin

Header | userID JuserNamefuserPassfjhostnamel] lastlLogin

CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$=CMU-DB

N-ARY STORAGE MODEL (NSM)

SELECT COUNTdU.lastLoginp,

EXTRACT (month FROM |[U.lastLogin) AS month

FROM useracct AS U

WHERE |U.hostname| LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLogin)

,4 NSM Disk Page

Header M userID JuserName shostnamel] lastlLogin
Header B userID JuserName hostnamel] lastlLogin
Header | userID JuserName shostnamel] lastlLogin
Header W userID JuserName hostnamel] lastlLogin

Useless Data

32

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

33

N-ARY STORAGE MODEL

Advantages
— Fast inserts, updates, and deletes.

— Good for queries that need the entire tuple.
Disadvantages

— Not good for scanning large portions of the table and/or
a subset of the attributes.

$2CMU-DB

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

34

DECOMPOSITION STORAGE MODEL (DSM)

$2CMU-DB

The DBMS stores the values of a single attribute

for all tuples contiguously in a page.
— Also known as a "column store".

Ideal for OLAP workloads where read-only

queries perform large scans over a subset of the
table’s attributes.

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

35

DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores the values of a single attribute

for all tuples contiguously in a page.
— Also known as a "column store".

Header | userID lastLogin

Header | userID lastLogin

Header | userID lastlLogin

Header [userID lastlLogin

§-§ CMU-DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

35

DECOMPOSITION STORAGE MODEL (DSM)

$2CMU-DB

The DBMS stores the values of a single attribute

for all tuples contiguously in a page.
— Also known as a "column store".

/| s pisk Page

4 hostnamejhostnamefhostnamejhostnamefhostnamefhostname
hostnamelhostnamefhostnamejhostnamefhostnamefhostname
hostnamejhostnamefhostnamejhostnamehostnamefhostname
hostnamelhostnamefhostnamejhostnamefhostnamefhostname

EEEEmEE

userPass

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

36

DECOMPOSITION STORAGE MODEL
(DSM)

SELECT COUNTdU.lastLoginp,
EXTRACT (month FROM |[U.lastLogin) AS month
FROM useracct AS U

WHERE |U.hostname| LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLogin)

$=CMU-DB

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$=CMU-DB

DECOMPOSITION STORAGE MODEL

(DSM)

SELECT COUNTdU.lastLoginp,

FROM useracct AS U

WHERE |U.hostname| LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLogin)

EXTRACT (month FROM |[U.lastLogin) AS month

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

36

CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

37

TUPLE IDENTIFICATION

Choice #1: Fixed-length Offsets

— Each value is the same length for an attribute.

Choice #2: Embedded Tuple Ids

— Each value is stored with its tuple id in a column.

Offsets Embedded Ids
s fcf o]

wma@h
wma@h
wma@h
wm—‘sh

WNN = O

g—g CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

38

DECOMPOSITION STORAGE MODEL (DSM)

Advantages

— Reduces the amount wasted I/O because the DBMS only
reads the data that it needs.

— Better query processing and data compression (more on
this later).

Disadvantages

— Slow for point queries, inserts, updates, and deletes
because of tuple splitting/stitching.

E-g CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

$=CMU-DB

39

DSM SYSTEM HISTORY

r l‘
1970s: Cantor DBMS u SYBASE

1980s: DSM Proposal monet db)
1990s: SybaselQ (in-memory only) \'/ER‘HO\
2000s: Vertica, Vector Wise, MonetDB
[¥ vectorwise
2010s: Everyone MariaDB
D duid ¥ ET g e
ORACLE Greenplumc R ey
EART ClickHouse HEYRISEE
ZSOLServer Exasol . =EE
nnnnnn AN MEMSQL miDR
B<ad Q - InfiniDB

MAPD CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=655555

40

CONCLUSION

The storage manager is not entirely independent
from the rest of the DBMS.

[t is important to choose the right storage model

for the target workload:
— OLTP = Row Store
— OLAP = Column Store

E-g CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

41

DATABASE STORAGE

Problem #1: How the DBMS represents the
database in files on disk.

Problem #2: How the DBMS manages its memory « Next
and move data back-and-forth from disk. ex

E%CMU'DB CMU 15-445/645 (Fall 2019)

https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/

